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Abstract 

   

Several studies have successfully used fly-ash (FA)-like waste material 

for the manufacturing of geopolymer concrete (GPC). This study uses 

gene expression programming (GEP), a type of soft computing approach, 

to produce an empirical equation that estimates the compressive strength 

fc0 of GPC using FA. Through a thorough analysis of the published 

research, a consistent, large, and trustworthy data set is assembled in 

order to develop a model. 298 fc0 experimental outcomes make up the 

collected data set. The following are considered explanatory variables: 

the amount of extra water added as percent FA (%EW), the percentage of 

plasticizer (%P), the initial curing temperature (T), the specimen's age 

(A), the curing duration (t), the ratio of fine aggregate to total aggregate 

(F/AG), the percentage of total aggregate by volume (%AG), the 

molarity of the NaOH solution, the activator or alkali to FA ratio 

(AL/FA), the ratio of sodium oxide (Na2O) to water (N/W) for preparing 

Na2SiO3 solution, and the ratio of Na2SiO3 to NaOH (Ns/No). An 

empirical GEP equation is put forth to calculate the fc0 of GPC using FA. 

The suggested model's precision, applicability, and forecasting capacity 

were assessed using parametric analysis, statistical verification, and a 

comparison with both linear and non-linear regression equations. 

 

Keywords: artificial intelligence; gene expression programming; fly 

ash; waste materials; geopolymer; regression analysis; building 
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1. Introduction 

 

The unburned residual waste from thermal coal plants is known as fly ash (FA) [1]. This is carried by gases 

released by the boiler's combustion zone. FA is gathered using an electrostatic or mechanical separator [2]. 

Globally, 375 million tonnes of FA are produced annually, and the cost of disposal might reach $20–40 per 

tonne [3]. In suburban regions, it is disposed of in landfills [4]. On the other hand, dumping tonnes of FA 

without treatment have a harmful effect on the environment [5]. The dangerous components of FA, including 

as alumina, silica, and oxides like ferric oxide (Fe2O3), operate as mediators in the contamination of the air, 

water, and soil. In the end, this results in various geo-environmental difficulties and health concerns [6, 7]. 

Maintaining a safe environment over time requires effective waste management [8]. If FA is not disposed of 

appropriately, it will impact the entire ecological cycle. When ultra-fine FA particles enter the pulmonary 

system, they behave similarly to poison. Thus, leading to physiological imbalances and other associated 

medical conditions such as cancer, hepatic dysfunction, anaemia, dermatitis, and gastroenteritis. FA 

contaminates surface and subsurface water, endangering aquatic life and resulting in skin conditions and 

diarrhoea [7]. 

Concrete is the second most consumable material after water and is utilised in building all around the world 

[9, 10]. It is estimated that three tonnes of concrete are produced for every person. Globally, over 25 billion 

tonnes of concrete are produced annually. Global statistics for the current year indicate that about 2.6 billion 

tonnes of cement are produced annually. Over the following ten years, this will increase by 25%. Cement 

production, however, has a negative impact on the environment. To make one tonne of cement, one tonne of 

CO2 is released into the atmosphere. This puts the environment in a worrying predicament. The primary 

ingredient in regular Portland cement is limestone. It's possible that severe limestone shortages may happen in 

25–50 years. The global building sector is responsible for 30% of CO2 emissions and uses one-third of all 

resources. Green concrete manufacturing is therefore crucial to minimising harmful environmental 

consequences. FA can be added to the cementitious matrix as an additional material. Researchers have used it 

to create green concrete. Using FA in the building sector is a wise decision since it will cut down on the amount 

of cement used and the negative effects of landfill disposal. 

Since less cement is needed to make geopolymer concrete (GPC), the usage of this FA-like waste-derived 

geopolymer concrete has increased during the past 20 years. Although FA has been employed successfully in 

the construction sector, its application is still restricted because of its unusual behaviour. Builders use FA-

dependent GPC widely. There isn't a way to calculate the mechanical characteristics of FA-based GPC using a 

mix ratio that has the most variations. The extra water added as percent FA (%EW), the percentage of plasticizer 

(%P), the initial curing temperature (T), the specimen's age (A), the length of the curing period (t), the fine 

aggregate to total aggregate ratio (F/AG), the percentage of total aggregate by volume (%AG), the molarity of 

the NaOH solution, the activator or alkali to FA ratio (AL/FA), the sodium oxide (Na2O) to water ratio (N/W) 

for preparing Na2SiO3 solution, and the Na2SiO3 to NaOH ratio (Ns/No) are some of the parameters that have 

a critical impact on the mechanical properties of FA-based GPC. This gives the GPC's prediction properties 

some uncertainty. Furthermore, there has been a noticeable upsurge in the use of soft computing methods for 

developing empirical models in recent times. One of the widely used soft computing techniques, gene 

expression programming (GEP) is applied by several researchers from a variety of engineering viewpoints. 

The gene-level replication of DNA molecules serves as the model for actual GEP. Different mechanical 

characteristics of lightweight concrete exposed to high temperatures were anticipated by Tanyildizi et al. With 

chromosomal levels equal to 30, head size of 8, and number of genes equal to 4, the author predicted two 

distinct GEP models. The two distinct linking functions that are employed are addition and multiplication. The 

population size is determined by the chromosomal level, which also affects the GEP execution time. 

Chromosome genetic variation is aided by genetic operators. Up until an acceptable fitness is reached, the 

chromosome that produces the greatest outcomes is passed on to next generations, and the process is repeated. 

The GEP has been used recently by a variety of studies to estimate the mechanical properties of various concrete 

kinds. The researchers employ GEP to forecast the compressive strength of sugar cane bagasse ash (SCBA) 

concrete using experimental and literature-based data. Additionally, the authors suggested a formula with just 

277 occurrences that uses GEP to estimate the axial capacity of concrete filled steel tubes (CFST).  Additionally, 

Nour et al. estimated the compressive strength of CFST incorporating recycled aggregates using GEP methods. 

 

2. Research Methodology 

 

In this segment, methodology for the establishment of an empirical model for the compressive strength (fc
0) of 

GPC made with FA has been incorporated. 
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2.1. Brief Review of Genetic Programming and Gene Expression Programming 

 

To offer a different approach for fixed-length binary strings (used in GAs), Koza suggested the GP technique. 

The collection of terminals (constants and input variables), the set of primitive functions (domain-explicit 

functions), the fitness evaluation, the control variables (population size and cross-over, etc.), and the 

termination criteria followed by a result designation method are the five main parameters to be defined 

throughout the GP methodology. The versatility of GP programming approach stems from the introduction of 

non-linear parse tree-like structures. Based on the data, it presumes any starting non-linearity. There has been 

prior use of a non-linearity of a comparable sort. The ignorance of the independent genome is GP's limitation. 

Non-linear structures, which serve as the phenotype and genotype, are used in GP. It is hence unlikely to 

provide simple, straightforward phrases. Ferreira suggests the GEP approach as an adaptation of the GP method 

to address its shortcomings. The fact that just the genome is passed on to the next generation is a major change 

that occurs during GEP. The formation of entities by a single chromosome made up of different genes is another 

notable feature. Each gene in GEP is represented by fitting length parameters, terminal sets of constants, and 

arithmetic operations as the functions. Moreover, there is a stable relationship between the chromosomal 

symbol and the related function in genetic code operators. The chromosomes contain the information required 

to create an empirical model, and in order to deduce this information, a novel programme known as karva is 

created. 

The process begins with the arbitrary creation of fixed-size chromosomes for every individual. These 

chromosomes are then transformed into expression trees (ET), and the fitness strength is calculated for every 

individual. The replication process for several creations continues with fresh participants until excellent 

outcomes are achieved. Population manipulation uses genetic processes including crossover, reproduction, and 

mutation. 

 

2.2. Data Collection 

 

The primary consideration in the study and design of concrete structures is compressive strength (fc
0). The 

creation of an exact and trustworthy expression that can link the mix percentage and fc
0of GPC manufactured 

with FA is necessary in order to save time, money, and to maintain the usage of FA in the construction sector. 

A comprehensive database for FA-based GPC's fc
0was assembled from previously published experimental 

studies. There are 298 samples altogether in the database, consisting of 31 cube specimens measuring 150 mm 

and 100 mm, height × diameter, 166, and 101 cylindrical specimens measuring 200 mm × 100 mm. fc
0 of 

cylindrical and cube specimens is dependent on the L/D ratio (length to diameter). 100 mm cubes have a fc0 

that is 5% higher than 150 mm cubes. However, the fc0 of 150 mm cubes is 20% higher than that of 100 mm 

× 200 mm cylindrical specimens. A specimen with a smaller dimension will have a lower fc0 than a specimen 

with a greater size because as the specimen's volume grows, so does the number of voids. Additionally, there 

exists an inverse relationship between the stress and the specimen's cross-sectional area. stronger stresses 

indicate a stronger internal resistance to failure in the case of the one with the smaller cross-sectional area. 

 

Data about the explanatory parameters are covered by the composed database, which includes the percentage 

of plasticizer (%P), the amount of extra water added as percent FA (%EW), the specimen's age (A), the length 

of time it took to cure (t), the ratio of fine aggregate to total aggregate (F/AG), the percentage of aggregate by 

volume (%AG), the percentage of SiO2 solids to water (% S/W) in a solution of sodium silicate (Na2SiO3), the 

molarity of the NaOH solution (M), the ratio of activator or alkali to FA (AL/FA), and the ratio of Na2SiO3 to 

NaOH (Ns/No) for the response of compressive strength. First, all of the samples that were gathered for the 

aforementioned criteria were heat cured for 24 hours at various temperatures. Researchers found that although 

the fc
0 of FA-based GPC rises with curing time, the rate of increment is fast up to 24 hours. Because of the 

geopolymerization process, GPC has a greater early strength, and there isn't much research on extended curing 

times. According to Van Jaarsveld et al., the fc
0 does not grow over a cure duration of more than 24 hours. All 

models' performances rely on how the explanatory parameters are distributed.  More detail is provided to the 

data by the bar charts that have been put above and to the right of the main plot. It displays the compressive 

strength distribution in addition to the input variable distribution. Each explanatory variable has a significant 

effect on how the FA-based GPC's compressive strength varies. 

 

Both cubes and cylindrical specimens are enumerated in order to create a database for the generalised 

investigation. It is recommended to use the recommended model with the given ranges in order to obtain 

accurate and consistent compressive strength estimates. It should be mentioned that several studies were carried 
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out in order to assess the database's consistency, validity, and dependability. When creating and assessing the 

model, datasets that deviated significantly from the world average (20%) were excluded. 298 datasets for 

compressive strength prediction were utilised to create an empirical model. The training and validation sets are 

two statistically consistent sets of data points that were randomly separated from the rest of the data points in 

this study. Additionally, the training set receives 70% (208 data points) of the entire data, whereas the validation 

set receives 30% (90 data points). The training set was used to train the gene progression empirical model, 

while validation data sets were used to calibrate and justify the constructed model's capacity to generalise, as 

recommended by the literature. 

 

3. Results and Discussion 

The GEP algorithm’s output for the compressive strength (fc
0) model as an expression tree is shown in Figure 

1. 

 
0 

Figure 1. GEP model expression trees (ETS) for compressive strength fc . 

 

GEP ETs use the indicators to express the explanatory variables. The corresponding symbols and description 

of each indicator are provided in Table 1. 

 

Table 1. Indicators of GEP expression tree. 

Indicator in Expression 

Tree 

Description Symbol 

do The temperature for curing in degrees Celsius T 

d1 The age of the sample A 

d2 Ratio of alkali or activator to the fly-ash AL/FA 

d3 Ratio of Na2SiO3 to NaOH Ns/No 

d4 NaOH solution molarity M 

d5 Percentage of total aggregate by volume % AG 

d6 Ratio of fine aggregate to total aggregate F/AG 

d7 Plasticizer as percent fly-ash % P 

d8 Percentage of SiO2 solids to water ratio %S/W 

d9 Extra water addition as percent fly ash % EW 
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3.1. Sensitivity and Parametric Analysis 

 

Figure 2 displays the sensitivity analysis results. The image makes clear that the explanatory parameters' 

participation in the fc0 of GPC manufactured with FA is identical whether seen through the lens of material 

engineering. 

 
Figure 2. Percent relative contribution of input parameter. 

 

Furthermore, parametric analysis is used to determine the most important input factors’ efficacy in projecting 

the compressive strength of FA-dependent GPC. Only one variable’s value was changed from maximum to 

lowest to record changes in compressive strength; all other inputs were kept at average levels. 

 

3.2. Performance Evaluation of GEP Models 

 

The previous study indicated that a minimum ratio of three should be reached between the number of data 

points in the database and the number of input parameters in order to produce a dependable GEP equation. 

However, a greater value of 30 has been employed in this investigation. The statistical analysis for the GEP 

model's training and validation sets is shown in Table 2. These findings show how well models can be trained 

and how well experimental and less error-prone projected outcomes correlate. The GEP model's training set's 

RMSE, MAE, and RSE are 5.971, 5.832, and 0.325, respectively. These values are derived from the validation 

samples as 2.643, 2.057, and 0.0675. The training and validation sets' statistical measures are comparable, 

indicating the model's greater capacity for generalisation. As a result, the created model is capable of making 

precise and trustworthy predictions for the new data. As ideal situations equal zero, Table 5 witnesses ρ 

approach zero. 

 

Table 2. Statistical analysis of GEP, linear, and non-linear regression models. 

Model 

RMSE MAE RSE RRMSE (%)  R  ρ 

TR 1 VDN 2 TR VDN TR VDN TR VDN TR VDN TR VDN 

GEP 5.971 2.643 5.823 2.057 0.325 0.0675 16.949 4.949 0.8586 0.9643 0.0911 0.02519 

Linear 6.986 5.546 6.543 4.967 0.589 0.304 19.20 10.21 0.8074 0.8976 0.1062 0.05382 

Non-Linear 6.593 5.054 6.053 4.875 0.497 0.298 18.53 9.021 0.8357 0.9247 0.1009 0.04687 
1 TR symbolizes training sample; 2 VDN symbolizes validation samples. 

 

4. Conclusions 

 

In this study, an expression for the estimate of the compressive strength, f0, of fly-ash-based geopolymer 

concrete (GPC) is established using the gene expression programming approach (GEP). With its widely 

dispersed database of many parameters drawn from the published literature, the predicted GEP model is 

empirical in nature. Explanatory variables that are extremely important and noticeable are taken into account 

for the prediction of the fc
0 of fly-ash-based GPC. The experimental results are satisfied by the projected model 

outcomes. It is evident from the parametric analysis that the projected model effectively takes into account the 
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influence of the input parameters in order to forecast the precise pattern of fly-ash-based GPC. By analysing 

and evaluating the statistical tests MAE, RSE, R, and RMSE as well as fitness functions (ρ) for training and 

validation samples, the accuracy of the projected models is confirmed. In addition, the model accurately 

satisfies the necessary criteria taken into account for external validation. When the suggested model is 

compared to basic linear and non-linear equations, it becomes clear that the GEP model has greater predictive 

power and generality, making it suitable for use in the first fly-ash-based GPC design. Moreover, a leachate 

analysis is advised prior to using fly ash as a geopolymer binder. The anticipated models have the potential to 

offer a comprehensive and useful basis for using harmful fly ash in building processes rather than disposing of 

it in landfills. Because green concrete is manufactured by using discarded fly ash, which lowers energy 

consumption, greenhouse gas emissions, disposal expenses, and building costs, this would result in efficient 

and sustainable construction. 
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