

Journal of Advanced Zoology
ISSN: 0253-7214

Volume 44 Issue S-6 Year 2023 Page 1824:1830

__

- 1824 -

2D Scaling in Cloud Computing

Aruna Mailavaram1, B.Padmaja Rani2

1Madanapalle Institute of Technology & Science,A.P.
1JNTUHCEH, Hyderabad.

*Corresponding author’s E-mail: Aruna Mailavaram

Article History

Received: 08 June 2023

Revised: 21 Sept 2023

Accepted: 10 Dec 2023

CC License

CC-BY-NC-SA 4.0

Abstract

Two-Dimensional scaling is increasing the resources of the cloud as per the

requirements. In this paper we are discussing about the scaling in both

vertical and horizontal as to fulfill the needs of the customers. Vertical scaling

is increasing the specifications of existing infrastructure by adding or

replacing CPU, HDD or other components, whereas horizontal scaling is

adding new resources to the existing pool of resources. Increasing the

resources in two-dimensional is known as Diagonal Scaling.

Keywords: Deadline, Scaling, Cloud Computing, Performance, Vertical

Scaling And Horizontal Scaling

1. Introduction
Cloud Computing [6] is a huge source of resources where different organizations utilize them for their

work. Since all the resources are globally spread through the internet, remotely many services can be

accessed. Since the customers are not limited, day by day customers are increasing cloud has to be

designed with no issues. But still we have few issues in cloud computing like security, scalability,

performance, latency etc. To design a scalable[1] cloud system to improve performance and making

all the tasks to reach within deadline time we are proposing a method, where all the tasks are reaching

the deadlines.

The above figure shows the architecture of the cloud, how the cloudlets[3] are being processed using

cloud sim tool, this architecture provides the environment of cloud. The scheduling policies[4] will be

mounted on scheduling policy in the architecture[5]. Here in this paper we are designing horizontal

and vertical scaling algorithms and compared with each other. We are trying to improve the

performance of the system as well as the tasks should reach the deadline. So two parameters we are

focusing on. In my next upcoming paper, we will focus on the combination of both vertical and

horizontal scaling algorithms.

 https://jazindia.comnline at: le obilaAva - 1825 -

Design and Implementation

Here we are implementing both horizontal and vertical scaling[12] separately and compared with the

previous algorithms and found better results in horizontal scaling[13]. Initially we are taking a data set

of VMs, task lengths and deadlines as input and given to broker function for accessing all the tasks are

arranged in ascending order and VMs in descending order. Allotting tasks to the VMs for processing

if any leftover tasks are there we are implementing horizontal scaling[12].

Horizontal Scaling: Arrange all the VMs in descending order, and all tasks in ascending order

associated with their deadlines according to the task length[9]. Here in this algorithm we are checking

overloaded condition and under loaded condition of each VM. We are utilizing 80 percentage of each

MV capacity in order to avoid overloaded condition. For example if we consider 720 MIPS capacity

VM then we are utilizing 576 MIPS of its capacity. And we are seeing that tasks not reaching the

deadline is less at the same time improving the performance of the system.

Since this is horizontal scaling we can add resources to the pool of existing resources[8]. In the given

data set we have taken ten VMs and arranged them in descending order. Two VMs with high capacity

are kept in spare for further use to handle high length tasks. So we are starting from 720 MIPS Virtual

Machine, and assigning the tasks until it reaches 80 percentage of VM capacity[3], then task is being

hand over to next VM, until all VMs get engaged. Check for the left over tasks, assign the tasks to the

VMs which we kept in spare for further use to handle high length tasks. If further any tasks ae still left

over then we have to implement horizontal scaling if the percentage of unprocessed tasks[10] are less

than 10 percentage then increase VMs with 10 percentage, if else the unprocessed tasks are between

10 to 25 percentage increase the VMs by 25 percentage else calculate Average Resource Utilization

Ratio (ARUR).

Problem Formulation

Capacity of VM is CVM = p*q+BW{j,k}

Where p is the processing speed and q is he umber cpu and BW is the band width between j and k

virtual machines.

Now we find out the load at the data center i.e., DC = ∑i=1
m CVMj

Load information at the VM can be found by LVM = number of task * ∑ task length/p*q.

So, total load at Data Center is TL VM = ∑j=1
m LVM.

Expected Execution Time at Virtual Machine is calculated as

EET = Task Length/p*q.

Makespan Time = Max(∑m
i=1 ET.

Algorithm for Horizontal Scaling :

1.Generate n tasks T1,T2,T3,…Tn.

2.Sort the tasks in ascending order.

3. Generate m number of virtual machines and sort them in descending order.

4. Consider VMs from m*0.2 to m-1, higher capacity VMs are kept in UVM list in increasing order to

handle high length tasks.

5. For loop for T i from 0 to n-1 and for all virtual machines Rj belongs to m-1.

6. If(Tasks[i]!=Ø) then

7. For loop Tasks[i] -> VM[j], i++ until

 Total _time TT[j]<(VM[j]*0.8)

8.Then allot tasks to next VM i.e., VM[j+1]

9.Repeat step 7 and 8 until all VMs are engaged.

10.If(Tasks[i]==Ø) then calculate makespan

11.Else If

 While (UVM !=0)

 Tasks[i+1] -> VM[j] until UVM ==0

https://jazindia.com/

2-D Scaling in Cloud computing

Available online at: https://jazindia.com - 1826 -

12. Else calculate the left over tasks

 i. If (UT>0 && UT< m*0.1) increase VMs by 10 percentage

 ii. Else If (UT>m*0.1) Increase VMs by 20 percentage

 iii. Else UT==0 calculate ARUR.

13. Repeat step 11 and step 12 until all tasks are completed.

Vertical Scaling : In vertical scaling[14] initially we are using the same technique as we did in

horizontal scaling to allot the tasks to the VMs. Once the left over tasks are available, then allot them

to the VM which are in idle state, but these left over tasks has to wait until previous tasks allotted to

the virtual machine is completed and then allot task to the VM so here we have to increase the VM

capacity based on the deadline achievement.

Increasing the power of the system is vertical scaling unlike horizontal scaling the system power in

terms of cpu, RAM[11] we can increase in vertical scaling, many public clouds can also allow to

increase the capacity of the system power (example AWS). But the Virtual machine has to stop

running we can increase its power and start running with the new power to handle the task to

complete within the deadline.

In this scaling technique we are increasing the capacity of the VM based on the deadline, a new VM is

generated to reach the task within the deadline and still increase the capacity of the VM by 25

percentage to overcome the overloaded condition and round off the capacity of the VM.

Problem Formulation

New_VM=Task[i]/Deadline[i]

To avoid overload condition we are increasing the VM capacity by 25 percentage.

VMIncrease = New_VM*25/100

New_VM = New_VM + VMIncrease

Algorithm : Vertical Scaling

Input : VMs, Tasks and Deadline.

Output : All tasks are being processed.

1.Generate n tasks T1,T2,T3,…Tn.

2.Sort the tasks in ascending order.

3. Generate m number of virtual machines and sort them in descending order.

4. Consider VMs from m*0.2 to m-1, higher capacity VMs are kept in UVM list in increasing order to

handle high length tasks.

5. For loop for T i from 0 to n-1 and for all virtual machines Rj belongs to m-1.

6. If(Tasks[i]!=Ø) then

7. For loop Tasks[i] -> VM[j], i++ until

 Total _time TT[j]<(VM[j]*0.8)

8.Then allot tasks to next VM i.e., VM[j+1]

9.Repeat step 7 and 8 until all VMs are engaged.

10.If(Tasks[i]==Ø) then calculate makespan

11.Else If

 While (UVM !=0)

 Tasks[i+1] -> VM[j] until UVM ==0

12.Else calculate the number of left over tasks.

13. If UT!=Ø then

14. Generate new VM based on the deadline for each task as New_VM=tasks[i]/Deadline[i]

15. To avoid overload condition increase the new VM by 25 percentage.

https://jazindia.com/

 https://jazindia.comnline at: le obilaAva - 1827 -

Synthetic Data :

Considering a dataset for both the algorithms.

Task

ID

Task

Length(MI)

Deadline

of Task

{ms)

VMs

(MIPS)

17 98049 1050 760

18 107218 300 740

19 147281 1150 720

15 153285 800 700

7 182561 2000 680

16 205633 600 660

9 215744 1300 640

13 222784 550 620

10 253197 1250 600

14 253745 1000 580

4 325750 420 560

3 325800 410

5 325970 700

6 333911 660

11 334013 450

2 339760 920

12 344630 400

0 381771 400

1 392397 745

8 396156 300

After implementing Horizontal and vertical scaling we are getting the result as follows:

2. Results and Discussion

Horizontal Scaling :

Task ID
Task

Length

Deadline

of Task

Execution

Time

17 98049 1050 136

18 107218 300 284

19 147281 1150 488

15 153285 800 218

7 182561 2000 478

16 205633 600 302

9 215744 1300 326

13 222784 550 348

10 253197 1250 408

14 253745 1000 422

4 325750 420 561

3 325800 410 577

5 325970 700 440

6 333911 660 439

11 334013 450 428

2 339760 920 424

12 344630 400 420

0 381771 400 454

1 392397 745 456

8 396156 300 450

There are five tasks which are not meeting the deadline[7] Task ID 4,3,12,0,8.

Vertical Scaling :

https://jazindia.com/

2-D Scaling in Cloud computing

Available online at: https://jazindia.com - 1828 -

Task ID
Task

Length

Deadline

of Task

Execution

Time

17 98049 1050 136

18 107218 300 284

19 147281 1150 488

15 153285 800 218

7 182561 2000 478

16 205633 600 302

9 215744 1300 326

13 222784 550 348

10 253197 1250 408

14 253745 1000 422

4 325750 420 420

3 325800 410 410

5 325970 700 756

6 333911 660 978

11 334013 450 946

2 339760 920 878

12 344630 400 848

0 381771 400 863

1 392397 745 1038

8 396156 300 1038

In vertical scaling there are total 8 tasks which are not reaching the deadlines[2] they are Task ID

5,6,11,2,12,0,1,8.

ARUR (Average Resource Utilization Ratio) :

Average Resource Utilization Ration(ARUR) for Vertical Scaling

ARUR = (Mean Time / Make Span)* 100

Mean Time = ∑ Total Time taken by resource VMj to finish all the job / No. of resources.

Parameters in Horizontal Scaling :

Parameters Values

No. of Overloaded Machines 2

No. of Under loaded Machines 0

Tasks not reaching deadline 5

Makespan 577 ms

ARUR 75.65

Parameters in Vertical Scaling :

Parameters Values

No. of Overloaded Machines 8

No. of Under loaded Machines 0

Tasks not reaching deadline 8

Make span 1038 ms

ARUR 83.01

Comparison(ms) :

Horizontal Scaling 577

Vertical Scaling 1038

https://jazindia.com/

 https://jazindia.comnline at: le obilaAva - 1829 -

Number of Overloaded machines :

Horizontal Scaling 2

Vertical Scaling 8

Number of tasks not reaching deadline :

Horizontal Scaling 5

Vertical Scaling 8

ARUR :

Horizontal Scaling 75.65

Vertical Scaling 83.01

https://jazindia.com/

2-D Scaling in Cloud computing

Available online at: https://jazindia.com - 1830 -

3. Conclusion

We have discussed about both vertical and horizontal scaling in cloud computing separately, scale out

is horizontal scaling on x-axis and scale up vertical scaling on y-axis. In my next coming papers we

will combine horizontal and vertical scaling. But according to this paper we concluded that in

horizontal scaling we were able to achieve more number of tasks meeting the deadline when

compared with vertical scaling.

References:
1. Dynamic load balancing algorithm for balancing the workload among virtual machine in cloud computing

Mohit Kumara,*,S.C.Sharma. https://doi.org/10.1016/j.procs.2017.09.141.

2. Deadline constrained based dynamic load balancing algorithm with elasticity in cloud environment.

https://doi.org/10.1016/j.compeleceng.2017.11.018..

3. Elastic and flexible deadline constraint load Balancing algorithm for Cloud Computing.

https://doi.org/10.1016/j.procs.2017.12.092

4. Dynamic load balancing algorithm to minimize the make span time and utilize the resources effectively in

cloud environment.https://doi.org/10.1080/1206212X.2017.1404823.

5. Load balancing algorithm to minimize the make span time in cloud environment. ISSN1746-

7233,England,UK World Journal of Modelling and Simulation. Vol.14(2018)No.4,pp.276-288.

6. A comprehensive survey for scheduling techniques in cloud computing.

https://doi.org/10.1016/j.jnca.2019.06.006.

7. Dynamic Auto-scaling and Scheduling of Deadline Constrained Service Workloads on IaaS Clouds.

10.1016/j.jss.2016.05.011

8. Optimized Task Scheduling and Resource Allocation on Cloud Computing Environment Using Improved

Differential Evolution Algorithm. http://dx.doi.org/10.1016/j.cor.2013.06.012

9. Heuristic-based load-balancing algorithm for IaaS cloud. https://doi.org/10.1016/j.future.2017.10.035.

10. Load balancing in cloud computing: A big picture. https://doi.org/10.1016/j.jksuci.2018.01.003

11. A Priority Based Job Scheduling Algorithm Using IBA and EASY Algorithm for

Cloud Metaschedular https://www.researchgate.net/publication/312814322

12. Horizontal and Vertical Scaling of Container-Based Applications Using Reinforcement Learning.

https://doi.org/10.1109/CLOUD.2019.00061

13. Vertical Scaling of Virtual Machines In Cloud Environment.

https://doi.org/10.1109/RTEICT52294.2021.9573715

14. Vertical/Horizontal Resource Scaling Mechanism for Federated Clouds.

https://doi.org/10.1109/ICISA.2014.6847479.

https://jazindia.com/

