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GW200129 is claimed to be the first-ever observation of the spin-disk orbital precession detected
with gravitational waves (GWs) from an individual binary system. However, this claim warrants a
cautious evaluation because the GW event coincided with a broadband noise disturbance in LIGO
Livingston caused by the 45MHz electro-optic modulator system. In this paper, we present a
state-of-the-art neural network that is able to model and mitigate the broadband noise from the
LIGO Livingston interferometer. We also demonstrate that our neural network mitigates the noise
better than the algorithm used by the LIGO-Virgo-KAGRA collaboration. Finally, we re-analyse
GW200129 with the improved data quality compared to the data used by the LIGO-Virgo-KAGRA
collaboration and show that the evidence for precession is still observed.

I. INTRODUCTION

The gravitational-wave (GW) era started in 2015 when
a binary black hole (BBH) merger was detected [1]. Since
then, the LIGO-Virgo-KAGRA (LVK) collaboration ob-
served binary neutron star and neutron star-black hole
systems, as well as many other BBH mergers [2–4].

GW analyses often assume that the noise is Gaussian.
While this is true in many cases, about 24% of the GW
candidates from the third LVK observing run (O3) were
flagged as having a non-Gaussian noise nearby [3, 4]. If
the non-Gaussian noise is not accounted for, GW searches
and source parameter estimation can be affected, includ-
ing the sky localisation which is used for the electromag-
netic follow-up efforts [5–9].

One of the GW candidate events from O3, GW200129,
attracted interest because it is claimed to be the first-ever
individual BBH that has strong evidence for spin-induced
orbital precession [10]. Initial analysis performed by the
LVK collaboration with two waveform models found evi-
dence for precession when using IMRPhenomXPHM but
not with SEOBNRv4 [4]. Ref. [4] gave equal weight to
both analyses, thus leaving the properties of GW200129
unclear. In addition, Nitz et al. [11] found GW200129
to be precessing when analysed with the IMRPhenomX
waveform model [12]. Hannam et al. [10] put forward
an analysis based on the NRSurrogate waveform model
that is more faithful to numerical simulations [13] and
found the orbital precession of GW200129 to be 10 or-
ders of magnitude higher than any previous weak-field
measurement.

The precession claim warrants a cautious eval-
uation because GW200129 coincided with excess
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noise at the Livingston interferometer caused by
the 45MHz electro-optic modulator system [14, 15].
Luckily, this noise was also recorded by multiple
witness channels, namely LSC-POP A RF45 I ERR DQ,
LSC-POP A RF45 Q ERR DQ and LSC-POP A RF9 I ERR DQ
which we refer to as RF45-I, RF45-Q and RF9-I, respec-
tively.

The LIGO-Virgo-KAGRA collaboration used
gwsubtract to model and mitigate the excess noise
in the GW strain channel h(t) [4]. The gwsubtract
algorithm was first developed to remove the ‘jitter’
noise from LIGO Hanford interferometer during the
second LIGO-Virgo observing run, which resulted in
30% improvement in LIGO Hanford sensitivity [16].
The algorithm was similarly applied for noise mitigation
around GW200129 for the Livingston data: it estimated
the coupling between the RF9-I and h(t) channels, and
removed the predicted excess noise from h(t). This
cleaned version of the Livingston data was then used in
the LVK and Ref. [10] analyses.

The implementation of gwsubtract for GW200129
and the algorithm itself has multiple shortcomings.
Firstly, the derivation of gwsubtract relies on the as-
sumptions that the data is Gaussian and stationary [16],
while the excess power in the Livingston data is non-
Gaussian by definition. Furthermore, the algorithm as-
sumes that the noise coupling must be linear which is not
necessarily the case for GW200129. Finally, the LVK col-
laboration used only a single channel, RF9-I, to estimate
the noise coupling, even though RF45-I and RF45-Q also
recorded the noise.

Additional studies suggest that the evidence for pre-
cession using the gwsubtract data is robust when using
a NRSurogate waveform model [17, 18]. However, it is
unclear if the gwsubtract data is systematically biased,
which is the reason why Payne et al. [18] also used an al-
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ternative method to clean the Livingston data. Ref. [18]
mitigates the excess noise with BayesWave, an algorithm
that does not use witness channels and relies only on the
strain data to model the noise [19, 20]. Their analysis
found that the evidence for precession is smaller than
the statistical and systematic uncertainty of noise miti-
gation.

In this paper, we describe a novel method to mitigate
the excess noise using machine learning, with a focus on
removing the noise around GW200129. In §II, we de-
scribe our data selection procedure, the machine learn-
ing model, how the effectiveness of the model is tested, as
well as the procedure to estimate the orbital precession
for GW200129. In §III, we show how well the machine
learning model works, compare its effectiveness against
gwsubtract and present results of the spin-induced or-
bital precession estimate. We summarize our findings in
§IV.

II. METHODS

A. Data

The Livingston interferometer was locked and observ-
ing for more than five hours when GW200129 was de-
tected and continued to observe for more than 38 hours.
During this time, the Livingston interferometer had ex-
cess noise caused by the 45MHz electro-optic modulator
system; this noise is also known as the radio frequency
(RF) noise [15]. RF noise coupled to the GW strain chan-
nel h(t), as well as the noise witness channels RF45-I,
RF45-Q and RF9-I (Figure 1).
To learn the coupling between the witness channels

and the GW strain channel h(t), we selected 27 hours
of the total 43 hours when the detector was locked and
observing. To be exact, we chose the interval from Jan
29, 2020 09:55:06 UTC to Jan 30, 2020 12:55:06 UTC.

We chose this interval due to multiple reasons. Firstly,
the RF noise was exceptionally recurrent during this
time. In addition, the noise coupling may change if
the interferometer configuration changes, therefore we se-
lected only the data contained in this observational lock.
Finally, we did not use the time around GW200129 to
avoid any biases.

After data selection, we whitened the data using the
inner product equation, where ⟨a|b⟩ is the inner product
between the two time-series a(t) and b(t) given by

⟨a|b⟩ = 4

∫ ∞

0

ã(f)b̃∗(f)

Sn(f)
df, (1)

where Sn(f) denotes the power spectral density (PSD).
To avoid using PSD biased by the RF noise, we inspected
the data visually and selected 512 s of relatively quiet
data for the PSD estimation.

Once the data was whitened, it was resampled to
512Hz. Because our network memory requirement is

FIG. 1: Whitened time series data for the
gravitational-wave strain channel h(t) and witness

channels RF45-Q, RF45-I and RF9-I.
Gravitational-wave signal GW200129 is clearly seen in
h(t) at 0 s. The non-Gaussian noise in h(t) caused by
the electro-optic modulator system is also recorded by

the witness channels.

proportional to f3
Nyquist, data resampling from 4096Hz

to 512Hz significantly reduced the required memory to
train the algorithm. Since the orbital precession for
GW200129 is mostly observed below 50Hz [18], reducing
the sampling rate does not impact the precession mea-
surement.

After resampling the data, we selected the time in-
tervals when the RF noise was present in the witness
channels. To identify these intervals, the Z-score of 11.7
was used for the RF45-I channel (there was no particu-
lar reason why this specific channel was selected out of
the three witness channels). If a data point passed this
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Layer Output Shape (length, dimensions)

Input (1024, 3)
Flatten (3072, 1)
Dense (1024, 1)

Dropout (1024, 1)
Dense (1024, 1)
Output (1, 1)

TABLE I: Dense neural network architecture. We use
2 s of data with fNyquist = 256Hz from each RF

channel to predict a single data point, i.e. 1
512 s, in the

gravitational-wave strain channel h(t).

threshold, we would select 4 s around this data point.
We collated 477 noisy data intervals (about 32 min-

utes) after this procedure. Using ∼32 minutes of noise-
only data instead of the full 27 hours of data allowed us
to train the machine learning algorithm more efficiently.

B. Dense Neural Network

We use a Dense Neural Network (DNN) to model
the excess noise witnessed by the RF channels. DNNs
are well known for their ability to generalize even ex-
tremely complicated relationships in data, including the
non-linear coupling which can happen among multiple
noise witness channels. In addition, a DNN does not
rely on the assumption that the data needs to be Gaus-
sian and stationary like the linear subtraction method
gwsubtract.

We found that a relatively simple fully connected
DNN with just two hidden layers and a dropout layer
in between is enough to model the RF noise around
GW200129 (see Table I for full network architecture). To
predict a single noise point, i.e. 1

512 s, in h(t), we use 2 s
of data from each RF channel.

In order to reduce the overfitting and increase the
learning efficiency, we use L2 kernel regularization of
10−4 and ReLu activation function. The dataset from
§IIA is split with 9:1 ratio for testing and validating the
algorithm. The network is trained for 500 epochs us-
ing Adam optimizer [21] with inverse time decay learn-
ing function, learning rate of 10−3 and Mean Squared
Error loss function. Training the network written with
TensorFlow [22] takes about 30 minutes on Nvidia A100
80GB GPU.

After the training is performed, the model can be ap-
plied to mitigate the noise around GW200129. To do
that, we perform the same steps as in §II A for 4096 s
around GW200129, i.e. the data is firstly whitened and
resampled. After that, the three RF channels are used as
input to get the RF noise contribution in h(t) estimated
by the DNN. Once that is done, the data is upsampled
to 4096Hz, de-whitened and subtracted from the origi-
nal 4096 s LIGO Livingston frame. This is the data frame
which has RF noise mitigated using our machine learn-

ing algorithm. The data frame is publicly available on
Zenodo [23].

C. Testing the cleaned data

We apply the method proposed by Macas & Lundgren
(2023) to estimate how much of the excess noise is re-
moved using our algorithm, and compare its effectiveness
with gwsubtract [24]. To do that, we firstly identify time
intervals when the RF noise is present in the data around
GW200129. Using the Z-score of 6 for the RF45-I chan-
nel, we select 366 s out of 4096 s considered to contain
the radio frequency noise.
We convert this data into the normalised time-

frequency tiles with quality factor Q = 8 which allows us
to estimate the average tile power. Then, using Bayesian
statistical modelling, we calculate the amount of power
in the non-Gaussian data versus the total power, defined
as fractional power. We repeat the same procedure for
the original Livingston data, as well as the data that has
the RF noise mitigated with gwsubtract.

D. Estimating the spin-induced orbital precession
of GW200129

We finally apply the bilby Bayesian inference pack-
age [25, 26] to estimate the posterior probability density
using our new cleaned Livingston data and the original
data from Hanford and Virgo. We follow the configu-
ration of the initial LVK GWTC-3 analysis [4], but use
the NRSur7dq4 waveform approximant [13] with a suit-
ably modified prior following Hannam et al. [10]. We
also marginalise over the calibration uncertainty. How-
ever, the PSD used by the GWTC-3 analysis, used an
on-source estimate which depends on the analysis data
itself. Since we have cleaned the Livingston data, we opt
instead to use a Welch PSD estimate for all three detec-
tors. Finally, we perform sampling using the bilby-MCMC
sampler [25].

III. RESULTS AND DISCUSSION

A. Data cleaning

Figure 2 shows the spectrograms of the Livingston data
around GW200129 before cleaning, after cleaning and the
difference between these two spectrograms. We note that
the algorithm removed large portions of the excess noise
after the GW signal, as well as some noise that happened
during the GW signal and within the frequency range
of the GW signal. Comparing with the gwsubtract re-
sults [14], it is clear that our algorithm removes notice-
ably more data at frequencies above 50Hz.
As we can see from Fig. 3, our modelled radio fre-

quency noise is closer to the gwsubtract noise prediction
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FIG. 2: Spectrograms of the original Livingston data
around GW200129, cleaned Livingston data using our
machine learning approach, and the difference between
these two spectrograms. Our algorithm removes the

non-Gaussian noise after the GW signal, as well as some
noise that happened during the GW signal and within

the frequency range of the GW signal.

FIG. 3: Radio frequency noise modelled by BayesWave
(purple), gwsubtract (orange) and our algorithm

(green); the original unmitigated data is in gray. All
data was whitened and bandpassed to 512Hz.

than the prediction made by BayesWave (glitch model
A) in Payne et al. [18]. This makes sense since both,
gwsubtract and ML approach use witness channel infor-
mation. However, ML subtraction contains more high-
frequency features than the gwsubtract, which can be
explained by the fact that ML uses more witness channels
and/or the algorithm represents the non-linearity better.
Comparing BayesWave’s noise model with gwsubtract
and ML, it looks much simpler with a peak around
−0.08 s before the merger.
Close to the merger time, we can see some dif-

ferences between all three models. Around −0.025 s
before the merger, BayesWave subtracts more data
than gwsubtract and ML. Later, around −0.015 s be-
fore the merger, gwsubtract subtracts more data than
BayesWave but less data than ML.
For a more quantitative comparison between the orig-

inal, gwsubtract and ML data frames, see Figure 4.
We omit results of Payne et al. [18] in this compari-
son because the Macas and Lundgren [24] comparison
method requires significantly more data than the Ref. [18]
cleaned.
The average tile power plot (Fig. 4a) shows that both

gwsubtract and ML algorithms significantly reduce the
excess power. For Gaussian data, the average tile power
is 1, while the original data frame has as much as twice
the amount of power than Gaussian data around 40Hz.
ML algorithm removes more excess power than

gwsubtract across all frequency ranges, and the differ-
ence becomes much higher at frequencies above ∼ 50Hz.
From ∼ 85Hz, gwsubtract does not remove any excess
noise any more. This happens because gwsubtract uses
only a single witness channel that does not contain any
correlation with h(t) at those frequencies.
The fractional power plot (Fig. 4b) shows similar con-

clusions. ML algorithm is better at removing the excess
noise across all frequencies, reducing up to 10% more
of the fractional power at frequencies below 50Hz. At
higher frequencies, the difference in fractional power be-
tween gwsubtract and ML can be as high as 20%.
Unfortunately, the average tile power and fractional

power plots (Figs. 4a and 4b) indicate that neither the
gwsubtract nor the ML algorithm remove the excess
noise completely. This can happen due to a variety of
reasons. Firstly, it is possible that both algorithms can-
not estimate the correlation function between the witness
channels and the gravitational-wave strain ideally. An-
other possibility is that none of the witness channels are
perfect, i.e. they do not record the full coherence between
the RF noise in a witness channel and the RF noise in
h(t).

B. Spin-induced orbital precession of GW200129

In Fig. 5, we show the posterior distribution of the
spin magnitude and tilt from our new analysis utilising
the cleaned data. Comparing with Fig. 2 of Hannam
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(a) Average tile power for data around GW200129 with
quality factor Q = 8.

(b) Fractional power for data around GW200129 with
quality factor Q = 8.

FIG. 4: Average tile power (above) and fractional
power (below) for data around GW200129 with quality
factor Q = 8. Both tests indicate that our machine
learning algorithm removes more non-Gaussian noise

than gwsubtract, especially at frequencies above 50Hz.

et al. [10] which used the gwsubtract cleaned frame, we
see similar results within the expected sampling error
(any subtle changes would most likely be caused by the
difference in PSD construction). From this figure, we can
confirm that the identification of evidence for precession,
i.e. that the primary spin is constrained to be close to
unity and highly misaligned, and is robust to our new
de-glitching routine.

In Fig.6, we demonstrate the two-dimensional mass ra-
tio q and precession parameter χp results using our noise
mitigation routine. We see that the mass ratio peaks
around 0.5 and that χp peaks around 0.95 indicating a

FIG. 5: A spin-disk plot showing the two-dimensional
posterior distribution of the spin magnitude and tilt of

the primary (right-hand panel) and secondary
(left-hand panel) of GW200129.

highly precessing system. This agrees with results from
Hannam et al. [10] but contrasts with the findings from
Payne et al. [18] where BayesWave is used to model the
noise. Payne et al. [18] finds the mass ratio to be less
symmetric and the posterior on the precession parame-
ter χp to be less informative (depending on the glitch
model they use).

IV. CONCLUSIONS

In this paper, we demonstrated that machine learning
can model the non-Gaussian noise recorded by witness
channels. We use RF45-I, RF45-Q and RF9-I channels
as input to the fully connected dense neural network and
gravitational-wave strain channel h(t) as output. Such
an algorithm allowed us to mitigate the noise around the
GW200129 signal.
We also found that our approach removes a significant

part of the non-Gaussian noise in h(t), and that it actu-
ally removes more non-Gaussian noise than gwsubtract,
the algorithm used by the LIGO-Virgo-KAGRA collab-
oration.
At frequencies below 50Hz, our algorithm removes

up to 10% more fractional power compared with
gwsubtract, while at higher frequencies the fractional
power difference can be as high as 20%. However, nei-
ther gwsubtract nor our method is able to remove the
non-Gaussian noise completely. This can happen due to
these algorithms being imperfect, witness channels not
containing the full information about the excess noise, or
any other unknown reason.
Furthermore, we note that our method does not over-
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FIG. 6: Mass ratio q and the precession parameter χp

plot for GW200129 using ML-mitigated data.

subtract the noise. The algorithm removes only the cor-
related noise between the gravitational-wave strain h(t)
and the witness channels as the algorithm does not have
enough capacity to memorize all of the data it is trained
on.

The re-analysis of GW200129 with the improved data
quality finds a similar evidence of the spin-induced pre-
cession as reported by Hannam et al. [10]. However, we
note that while our method is able to remove more RF
noise from the data than gwsubtract, we also show that
there is still some noise left unmitigated.
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