
Springer Nature 2021 LATEX template

Quantum Bounds for 2D-Grid and Dyck

Language

Andris Ambainis1, Kaspars Balodis1, Jānis Iraids1, Kamil
Khadiev2*, Vladislavs Kļevickis1, Krǐsjānis Prūsis1, Yixin

Shen3*, Juris Smotrovs1 and Jevgēnijs Vihrovs1

1Center for Quantum Computer Science, Faculty of Computing,
University of Latvia, Riga, Latvia.

2 Institute of Computational Mathematics and Information
Technologies, Kazan Federal University, Kazan, Russia.

3Information Security Group, Royal Holloway, Univesity of
London, Great Britain.

*Corresponding author(s). E-mail(s): kamilhadi@gmail.com;
yixin.shen@rhul.ac.uk;

Contributing authors: andris.ambainis@lu.lv;
kaspars.balodis2@lu.lv; janis.iraids@gmail.com;
vladklevitsky@gmail.com; krisjanis.prusis@lu.lv;

juris.smotrovs@lu.lv; jevgenijs.vihrovs@lu.lv;

Abstract

We study the quantum query complexity of two problems.
First, we consider the problem of determining if a sequence of paren-
theses is a properly balanced one (a Dyck word), with a depth of at
most k. We call this the Dyckk,n problem. We prove a lower bound of
Ω(ck

√
n), showing that the complexity of this problem increases expo-

nentially in k. Here n is the length of the word. When k is a constant, this
is interesting as a representative example of star-free languages for which
a surprising Õ(

√
n) query quantum algorithm was recently constructed

by Aaronson et al. [1]. Their proof does not give rise to a general algo-
rithm. When k is not a constant, Dyckk,n is not context-free. We give
an algorithm with O

(√
n(log n)0.5k

)
quantum queries for Dyckk,n for

all k. This is better than the trival upper bound n for k = o
(

log(n)
log logn

)
.

1



Springer Nature 2021 LATEX template

2 Quantum Bounds for 2D-Grid and Dyck Language

Second, we consider connectivity problems on grid graphs in 2 dimen-
sions, if some of the edges of the grid may be missing. By embedding
the “balanced parentheses” problem into the grid, we show a lower
bound of Ω(n1.5−ε) for the directed 2D grid and Ω(n2−ε) for the
undirected 2D grid. We present two algorithms for particular cases of
the problem. The directed problem is interesting as a black-box model
for a class of classical dynamic programming strategies including the
one that is usually used for the well-known edit distance problem. We
also show a generalization of this result to more than 2 dimensions.

Keywords: Quantum query complexity, Quantum algorithms, Dyck
language, Grid path

Acknowledgments. The research is supported by QuantERA ERA-
NET Cofund in Quantum Technologies implemented within the European
Union’s Horizon 2020 Programme (QuantAlgo project) and ERDF project
1.1.1.5/18/A/020 “Quantum algorithms: from complexity theory to experi-
ment”. Kamil Khadiev has been supported by the Kazan Federal University
Strategic Academic Leadership Program (”PRIORITY-2030”); a part of
his research (Theorem 10) was funded by the subsidy allocated to Kazan
Federal University for the state assignment in the sphere of scientific activ-
ities, project No. 0671-2020-0065. Yixin Shen is supported by EPSRC grant
EP/W02778X/1.

We thank Frédéric Magniez for helpful discussions. Part of the work was
done during Kamil Khadiev’s visit to IRIF, Université Paris Cité.

The paper is an extended version of the conference paper [2] that was
presented at MFCS2020.

1 Introduction

Quantum computers offer computational advantage in solving several classes
of problems. The most famous example is the factorization of large integers [3].
The exponential advantage of simulating quantum physical systems is also a
well-known example [4, 5]. This naturally leads to the question of understand-
ing how large the advantage of quantum computers can be. Unfortunately, it
is often very difficult to prove unconditional separations between classical and
quantum complexity classes. For this reason, people often study the power of
quantum computing in the query model. In this model, we want to compute
a function f(x1, · · · , xn) of an input (x1, · · · , xn). The input xi’s are accessed
via queries to a black box, that given i, outputs xi. The complexity is mea-
sured by the number of queries that an algorithm makes. The query model is
very interesting in the quantum case because it captures most of the known
quantum algorithms. We refer to [6] for a nice survey on the topic.

In this paper, we study the quantum query complexity of two problems.



Springer Nature 2021 LATEX template

Quantum Bounds for 2D-Grid and Dyck Language 3

Quantum complexity of regular languages. Consider the problem of
recognizing whether an n-bit string belongs to a given regular language. This
models a variety of computational tasks that can be described by regular lan-
guages. In theoretical computer science and formal language theory, a regular
language is a formal language that can be defined by a regular expression or
can be defined as a language recognized by a finite automaton. See, for exam-
ple, [7] for more details. In the quantum case, the most commonly used model
for studying the complexity of various problems is the query model [6]. For this
setting, Aaronson, Grier, and Schaeffer [1] recently showed that any regular
language L has one of three possible quantum query complexities on inputs of
length n: Θ(1) if the language can be decided by looking at O(1) first or last
symbols of the word; Θ̃(

√
n) if the best way to decide L is Grover’s search (for

example, for the language consisting of all words containing at least one letter
a); Θ(n) for languages in which we can embed counting modulo some number
p which has quantum query complexity Θ(n).

As shown in [1], a regular language being of complexity Õ(
√
n) (which

includes the first two cases above) is equivalent to it being star-free. Star-free
languages are defined as languages that have regular expressions not containing
the Kleene star (if it is allowed to use the complement operation). Informally,
Kleene star means ”zero or more repetitions” in regular expressions, see [7]
for more details. Star-free languages are one of the most commonly studied
subclasses of regular languages and there are many equivalent characterizations
of them. One class of the star-free languages mentioned in [1] is the Dyck
languages (with one type of parenthesis) with constant height k. Dyck language
with height k consists of words with a balanced number of parentheses such
that in no prefix the number of opening parentheses exceeds the number of
closing parentheses by more than k; we denote the problem of determining
if an input of length n belongs to this language by Dyckk,n. In the case of
unbounded height k = n

2 , the language is a fundamental example of a context-
free language that is not regular. When more types of parenthesis are allowed,
the famous Chomsky–Schützenberger representation theorem shows that any
context-free language is the homomorphic image of the intersection of a Dyck
language and a regular language [8]. Quantum algorithm for Dyck language
with more types of parenthesis was investigated in [9].

Our results. We show that an exponential dependence of the complexity
on k is unavoidable. Namely, for the balanced parentheses language, we have

• there exists c > 1 such that, for all k ≤ log n, the quantum query complexity
is Ω(ck

√
n);

• If k = c log n for an appropriate constant c, the quantum query complexity
is Ω(n1−ε).

Thus, the exponential dependence on k is unavoidable and distinguishing
sequences of balanced parentheses of length n and depth log n is almost as
hard as distinguishing sequences of length n and arbitrary depth.



Springer Nature 2021 LATEX template

4 Quantum Bounds for 2D-Grid and Dyck Language

Similar lower bounds have recently been independently proven by Buhrman
et al. [10].

Additionally, we give an explicit algorithm (see Theorem 3) for the decision
problem Dyckk,n with O

(√
n(log n)0.5k

)
quantum queries. The algorithm also

works when k is not a constant and is better than the trivial upper bound of

n when k = o
(

log(n)
log logn

)
.

Note that classical (deterministic or randomized) query complexity of
Dyckk,n is Ω(n) even if k ≥ 2. In the case of k = 2, the problem is equivalent
to an unstructured search among n elements whose lower bound in classical
case is linear [11]. So, the presented quantum algorithm is better than classical

counterparts in the case of k = o
(

log(n)
log logn

)
.

Finding paths on a grid. The second problem that we consider is graph
connectivity on subgraphs of the 2D grid. Consider a 2D grid with vertices
(i, j), i ∈ {0, 1, . . . , n}, j ∈ {0, 1, . . . , k} and edges from (i, j) to (i + 1, j) and
(i, j + 1). The grid can be either directed (with edges in the directions of
increasing coordinates) or undirected. We are given an unknown subgraph G
of the 2D grid and we can perform queries to variables xu (where u is an edge
of the grid) defined by xu = 1 if u belongs to G and 0 otherwise. The task is
to determine whether G contains a path from (0, 0) to (n, k).

Our interest in this problem is driven by the edit distance problem. In the
edit distance problem, we are given two strings x and y and have to deter-
mine the smallest number of operations (replacing one symbol with another,
removing a symbol or inserting a new symbol) with which one can transform
x to y. Edit distance finds applications in computational biology and natural
language processing, e.g. the correction of spelling mistakes or OCR errors,
and approximate string matching, where the objective is to find matches for
short strings in many longer texts, in situations where a small number of dif-
ferences is to be expected. If |x| ≤ n, |y| ≤ k, the edit distance is solvable in
time O(nk) by dynamic programming [12]. If n = k then, under the strong
exponential time hypothesis (SETH), there is no classical algorithm comput-
ing edit distance in time O(n2−ε) for ε > 0 [13] and the dynamic programming
algorithm is essentially optimal.

However, SETH does not apply to quantum algorithms. Namely, SETH
asserts that there is no algorithm for general instances of SAT that is substan-
tially better than a naive search. Quantumly, simple use of Grover’s search
gives a quadratic advantage over naive search. This leads to the question: can
this quadratic advantage be extended to edit distance (and other problems
that have lower bounds based on SETH)?

Since edit distance is quite important in classical algorithms, the question
about its quantum complexity has attracted substantial interest from vari-
ous researchers. Boroujeni et al. [14] invented a better-than-classical quantum
algorithm for approximating the edit distance which was later superseded by
a better classical algorithm of [15]. However, there have been no quantum



Springer Nature 2021 LATEX template

Quantum Bounds for 2D-Grid and Dyck Language 5

algorithms computing the edit distance exactly (which is the most important
case).

The main idea of the classical algorithm for edit distance is as follows:

• We construct a weighted version of the directed 2D grid (with edge weights
0 and 1) that encodes the edit distance problem for strings x and y, with the
edit distance being equal to the length of the shortest directed path from
(0, 0) to (n, k).

• We solve the shortest path problem on this graph and obtain the edit
distance.

As a first step, we can study the question of whether the shortest path is of
length 0 or more than 0. Then, we can view edges of length 0 as present and
edges of length 1 as absent. The question “Is there a path of the length of
0?” then becomes “Is there a path from (0, 0) to (n, k) in which all edges are
present?”. A lower bound for this problem would imply a similar lower bound
for the shortest path problem and a quantum algorithm for it may contain
ideas that would be useful for a shortest path quantum algorithm.

Our results. We use our lower bound on the balanced parentheses lan-
guage to show an Ω(n1.5−ε) lower bound for the connectivity problem on the
directed 2D grid. This shows a limit on quantum algorithms for finding edit
distance through the reduction to shortest paths. More generally, for an n× k
grid (n > k), our proof gives a lower bound of Ω((

√
nk)1−ε).

A trivial query upper bound is O(nk), since there are O(nk) variables in
total. We show a nontrivial quantum algorithm when k is small, ie, we show
that the connectivity problem can be solved with O(

√
n logk/2 n) quantum

queries1. This bound becomes trivial when k = Ω( logn
log logn ). We also present

another algorithm that has query complexity O(
√
nkS log n), where S is the

number of segments of connected edges in the grid that cannot be extended.
Since n ≤ S ≤ nk, this complexity can be more or less effective. It varies from
O(k
√
n log n) to O(kn log n).

For the undirected 2D grid, we show a lower bound of Ω((nk)1−ε), whenever
k ≥ log n. Thus, the naive algorithm is almost optimal in this case. We also
extend both of these results to higher dimensions, obtaining a lower bound of
Ω((n1n2 . . . nd)

1−ε) for an undirected n1 × n2 × . . .× nd grid in d dimensions
and a lower bound of Ω(n(d+1)/2−ε) for a directed n × n × . . . × n grid in d
dimensions.

In a recent work, an Ω(n1.5) lower bound for edit distance was shown by
Buhrman et al. [10], assuming a quantum version of the Strong Exponential
Time Hypothesis (QSETH). As part of this result, they give an Ω(n1.5) query
lower bound for a different path problem on a 2D grid. Then QSETH is invoked
to prove that no quantum algorithm can be faster than the best algorithm for
this shortest path problem. Neither of the two results follows directly one from
another, as different shortest path problems are used.

1Aaronson et al. [1] also give a bound of O(
√
n logm−1 n) but in this case m is the rank of the

syntactic monoid which can be exponentially larger than k.



Springer Nature 2021 LATEX template

6 Quantum Bounds for 2D-Grid and Dyck Language

The algorithms presented in the paper use nested Grover search algorithm
in a recursive way, which requires manipulation of a large-scale fault-tolerant
quantum computer. Our algorithms are thus far from practical at the current
stage. In the meantime, recent developments in quantum error correction [16]
and the announcement of a 400+ qubits quantum processor [17] gives us hope
for close future progress in this area.

2 Definitions

Let Σ be an alphabet. For a word x ∈ Σ∗ and a symbol a ∈ Σ, let |x|a be the
number of occurrences of a in x. Here Σ∗ is the set of all strings of any length
of symbols from Σ.

For two (possibly partial) Boolean functions g : G → {0, 1}, where
G ⊆ {0, 1}n, and h : H → {0, 1}, where H ⊆ {0, 1}m, we define the com-
posed function g ◦ h : D → {0, 1}, with D ⊆ {0, 1}nm, as (g ◦ h) (x) =
g
(
h(x1, . . . , xm), . . . , h(x(n−1)m+1, . . . , xnm)

)
. Given a Boolean function f and

a nonnegative integer d, we define fd recursively as f iterated d times:
fd = f ◦ fd−1 with f1 = f .

For a matrix Γ, ‖Γ‖ denotes the spectral norm of Γ: ‖Γ‖ = max−→x 6=0
‖Γ−→x ‖
‖−→x ‖

where ‖−→x ‖ is the 2-norm of a vector.
Quantum query model. We use the standard form of the quantum

query model. Let f : D → {0, 1}, D ⊆ {0, 1}n be an n variable function we
wish to compute on an input x ∈ D. We have oracle access to the input
x — it is realized by a specific unitary transformation usually defined as
|i〉 |z〉 |w〉 → |i〉 |z + xi (mod 2)〉 |w〉 where the |i〉 register indicates the index
of the variable we are querying, |z〉 is the output register, and |w〉 is some
auxiliary work-space. The operation is implemented by the CNOT gate. An
algorithm in the query model consists of alternating applications of arbitrary
unitaries independent of the input and the query unitary, and measurement
in the end. The smallest number of queries for an algorithm that outputs f(x)
with probability ≥ 2

3 on all x is called the quantum query complexity of the
function f and is denoted by Q(f).

We refer the readers to [18–20] for more details on quantum computing
and [6] for recent researches on quantum query model.

Let a symmetric matrix Γ be called an adversary matrix for f if the rows
and columns of Γ are indexed by inputs x ∈ D and Γxy = 0 if f(x) = f(y). Let

Γ(i) be a similarly sized matrix such that Γ(i)
xy =

{
Γxy if xi 6= yi

0 otherwise
. Then let

Adv±(f) = max
Γ - an adversary

matrix for f

‖Γ‖
maxi ‖Γ(i)‖

be called the adversary bound and let

Adv(f) = max
Γ - an adversary matrix for f

Γ - nonnegative

‖Γ‖
maxi ‖Γ(i)‖

be called the positive adversary

bound. The following facts will be relevant to us: Adv(f) ≤ Adv±(f); Q(f) =



Springer Nature 2021 LATEX template

Quantum Bounds for 2D-Grid and Dyck Language 7

Θ(Adv±(f)) [21]; Adv± composes exactly even for partial Boolean functions
f and g, meaning, Adv±(f ◦ g) = Adv±(f) ·Adv±(g) [22, Lemma 6].

Reductions. We will say that a Boolean function f is reducible to g and
denote it by f 6 g if there exists an algorithm that given an oracle Ox for an
input of f transforms it into an oracle Oy for g using at most O(1) calls of
oracle Ox such that f(x) can be computed from g(y). Therefore, from f 6 g we
conclude that Q(f) ≤ Q(g) because one can compute f(x) using the algorithm
for g(y) and the reduction algorithm that maps x to y.

Dyck languages of bounded depth. Let Σ be an alphabet consisting of
two symbols: ( and ). The Dyck language L consists of all x ∈ Σ∗ that represent
a correct sequence of opening and closing parentheses. We consider languages
Lk consisting of all words x ∈ L where the number of opening parentheses
that are not closed yet never exceeds k. The language Lk corresponds to a
query problem Dyckk,n(x1, ..., xn) where x1, . . . , xn ∈ {0, 1} describe a word
of length n in the natural way: the ith symbol of x is ( if xi = 0 and ) if
xi = 1. Dyckk,n(x) = 1 iff the word x belongs to Lk. For all x ∈ {0, 1}n, we
define f(x) = |x|0 − |x|1, we call it the balance. We define a +k-substring
(resp. −k-substring) as a substring whose balance is equal to k (resp. equal to
−k). A ±k−substring is a substring whose balance is equal to k in absolute
value. For all 0 ≤ i ≤ j ≤ n−1, we define x[i, j] = xi, xi+1, · · · , xj . Finally, we
define h(x) = max0≤i≤n−1 f(x[0, i]) and h−(x) = min0≤i≤n−1 f(x[0, i]). We
also define the function sign such that sign(a) = 1 if a > 0, and sign(a) = −1 if
a < 0, sign(a) = 0 if a = 0. A substring x[i, j] is minimal if it does not contain
a substring x[i′, j′] such that (i, j) 6= (i′, j′), and f(x[i′, j′]) = f(x[i, j]).

Connectivity on a directed 2D grid. Let Gn,k be a directed version
of an n × k grid in two dimensions, with vertices (i, j), i ∈ {0, 1, . . . , n}, j ∈
{0, 1, . . . , k} and directed edges from (i, j) to (i + 1, j) (if i < n) and from
(i, j) to (i, j + 1) (if j < k). If G is a subgraph of Gn,k, we can describe it by
variables xe corresponding to edges e of Gn,k: xe = 1 if the edge e belongs
to G and xe = 0 otherwise. We consider a problem 2D-DConnectivity
in which one has to determine if G contains a path from (0, 0) to (n, k):
2D-DConnectivityn,k(x1, . . . , xm) = 1 (where m is the number of edges in
Gn,k) iff such a path exists.

Connectivity on an undirected 2D grid. Let Gn,k be an undirected
n × k grid and let G be a subgraph of Gn,k. We describe G by variables
xe in a similar way and define 2D-Connectivityn,k(x1, . . . , xm) = 1 iff
G contains a path from (0, 0) to (n, k). We also consider d dimensional
versions of these two problems, on n1 × n2 × . . . nd grids. In the directed
version (dD-DConnectivity), we have a subgraph G of a directed grid
(with edges directed in the directions from (0, . . . , 0) to (n1, . . . , nd)) and
dD-DConnectivity(x1, . . . , xm) = 1 iff G contains a directed path from
(0, . . . , 0) to (n1, . . . , nd). The undirected version is defined similarly, with an
undirected grid instead of a directed one.



Springer Nature 2021 LATEX template

8 Quantum Bounds for 2D-Grid and Dyck Language

3 A quantum algorithm for membership
testing of Dyckk,n

In this section, we give a quantum algorithm for Dyckk,n(x), where k can be
a function of n. The general idea is that Dyckk,n(x) = 0 if and only if one of
the following conditions holds:

(i) x contains a +(k + 1)-substring;
(ii) x contains a substring x[0, i] such that the balance f(x[0, i]) = −1;
(iii) the balance of the entire word f(x) 6= 0.

The main algorithm is presented in Section 3.2. It is based on a subroutine
presented in Section 3.1.

3.1 ±k-Substring Search algorithm

The goal of this section is to describe a quantum algorithm that searches for
a substring x[i, j] that has a balance f(x[i, j]) ∈ {+k,−k} for some integer
k. Throughout this section, we find and consider only minimal substrings. A
substring is minimal if it does not contain a proper substring with the same
balance. Throughout this section we use the following easily verifiable facts:

• For any two minimal ±k-substrings x[i, j] and x[k, l]: i < k =⇒ j < l. This
induces a natural linear order among all ±k-substrings according to their
starting (or, equivalently, ending) positions.

• Minimal +k-substrings do not intersect with minimal −k-substrings.
• If x[l1, r1] and x[l2, r2] with l1 < l2 are two consecutive minimal (k − 1)-

substrings and their signs are the same, then x[l1, r2] is a k-substring with
this sign.

This algorithm is the basis of our algorithms for Dyckk,n. The algorithm
works recursively. It searches for two consecutive minimal ±(k− 1)-substrings
x[l1, r1] and x[l2, r2] such that they either overlap or there are no ±(k − 1)-
substrings between them. If both substrings x[l1, r1] and x[l2, r2] are +(k −
1)-substrings, then we get a minimal +k-substring in total. If both substrings
are −(k − 1)-substrings, then we get a minimal −k-substring in total.

Our algorithm utilizes three subroutines. The first one is
FindAtLeftmostk(l, r, t, d, s) which accepts as inputs: the borders l and
r, where l and r are integers such that 0 ≤ l ≤ r ≤ n − 1; a position
t ∈ {l, . . . , r}; a maximal length d for the substring, where d is an inte-
ger such that 0 < d ≤ r − l + 1; the sign of the balance s ⊆ {+1,−1}.
+1 is used for searching for a +k-substring, −1 is used for searching for a
−k-substring, {+1,−1} is used for searching for both. It outputs a triple
(i, j, σ) such that l ≤ i ≤ t ≤ j ≤ r, j − i + 1 ≤ d, f(x[i, j]) ∈ {+k,−k}
and σ = sign(f(x[i, j])) ∈ s. The substring should be the leftmost one that
contains t, i.e. there is no other minimal x[i′, j′] such that i′ < i, t ∈ [i′, j′],
f(x[i′, j′]) = f(x[i, j]). If no such substrings have been found, the algorithm
returns NULL.



Springer Nature 2021 LATEX template

Quantum Bounds for 2D-Grid and Dyck Language 9

The second one is FindAtRightmostk. It is similar to the
FindAtLeftmostk, but finds the rightmost ±k-substring, i.e. there is no
other minimal x[i′, j′] such that j′ > j, t ∈ [i′, j′], f(x[i′, j′]) = f(x[i, j])

The third one is FindFirstk(l, r, s, direction) and accepts as inputs: the
borders l and r, where l and r are integers such that 0 ≤ l ≤ r ≤ n−1; the sign
of the balance s ⊆ {+1,−1}. a direction ∈ {left, right}. When the direction
is right (respectively left), FindFirstk finds the first ±k-substring from the
left to the right (respectively from the right to the left) in [l, r] of sign s.

These three subroutines are interdependent since FindAtLeftmostk uses
FindFirstk−1 and FindAtRightmostk−1 as subroutines, FindFirstk uses
FindAtLeftmostk and FindAtRightmostk as subroutines. A descrip-
tion of FindAtLeftmostk(l, r, t, d, s) follows. The algorithm is presented as
Algorithm 1.

The description of the subroutine FindAtRightmostk(l, r, t, d, s) is sim-
ilar and is omitted.

When k = 2, the procedure FindAtLeftmost2(l, r, t, d, s) checks that
xt = xt−1 and sign(f(x[t − 1, t])) ∈ s. If yes, it has found the substring.
Otherwise, it checks if xt = xt+1 and sign(f(x[t, t + 1])) ∈ s. If both checks
fail, the procedure returns NULL. For k > 2 the procedure is the following.

Step 1. Check whether t is inside a ±(k−1)-substring of length at most d−1,
i.e.
v = (i, j, σ)← FindAtLeftmostk−1(l, r, t, d− 1, {+1,−1}). If v 6= NULL,

then (i1, j1, σ1) ← (i, j, σ) and the algorithm goes to Step 2. Otherwise, the
algorithm goes to Step 6.
Step 2. Check whether i1 − 1 is inside a ±(k − 1)-substring of length
at most d − 1 and choose the rightmost one: v = (i, j, σ) ←
FindAtRightmostk−1(l, r, i1 − 1, d− 1, {+1,−1}).

If v = NULL, then the algorithm goes to Step 3. If v 6= NULL and σ = σ1,
then (i2, j2, σ2)← (i, j, σ) and go to Step 8. Otherwise, go to Step 4.
Step 3. Search for the first ±(k − 1)-substring on the left from i1 − 1 at dis-
tance at most d, i.e. v = (i, j, σ) ← FindFirstk−1(min(l, j1 − d + 1), i1 −
1), {+1,−1}, left). If v 6= NULL and σ1 = σ, then (i2, j2, σ2) ← (i, j, σ) and
go to Step 8. Otherwise, go to Step 4.
Step 4. Check whether j1 + 1 is inside a ±(k − 1)-substring of length at most
d− 1, i.e.
v = (i, j, σ)← FindAtLeftmostk−1(l, r, j1 + 1, d− 1, {+1,−1}).
If v 6= NULL, then (i2, j2, σ2)← (i, j, σ) and go to Step 8. Otherwise, go to

Step 5.
Step 5. Search for the first ±(k − 1)-substring on the right from j1 + 1 at
distance at most d, i.e. v = (i, j, σ) ← FindFirstk−1(j1 + 1,min(i1 + d −
1, r), {+1,−1}, right).

If v 6= NULL, then (i2, j2, σ2) ← (i, j, σ), then go to Step 8. Otherwise,
return NULL.
Step 6. Search for the first ±(k−1)-substring on the right at distance at most
d from t, i.e.



Springer Nature 2021 LATEX template

10 Quantum Bounds for 2D-Grid and Dyck Language

Algorithm 1 FindAtLeftmostk(l, r, t, d, s).

v = (i1, j1, σ1)← FindAtLeftmostk−1(l, r, t, d− 1, {+1,−1})
if v 6= NULL then . if t is inside a ±(k − 1)-substring

v′ = (i2, j2, σ2)← FindAtRightmostk−1(l, r, i1 − 1, d− 1, {+1,−1})
if v′ = NULL then

v′ = (i2, j2, σ2) ← FindFirstk−1(min(l, j1 − d + 1), i1 −
1, {+1,−1}, left)

end if
if v′ 6= NULL and σ2 6= σ1 then

v′ ← NULL
end if
if v′ = NULL then

v′ = (i2, j2, σ2)← FindAtLeftmostk−1(l, r, j1 + 1, d− 1, {+1,−1})
if v′ = NULL then

v′ = (i2, j2, σ2) ← FindFirstk−1(j1 + 1,min(i1 + d −
1, r), {+1,−1}, right)

end if
end if
if v′ = NULL then

return NULL
end if

else
v = (i1, j1, σ1)← FindFirstk−1(t,min(t+ d− 1, r), {+1,−1}, right)
if v = NULL then

return NULL
end if
v′ = (i2, j2, σ2)← FindFirstk−1(max(l, t− d+ 1), t), {+1,−1}, left)
if v′ = NULL then

return NULL
end if

end if
if σ1 = σ2 and σ ∈ s and max(j1, j2)−min(i1, i2) + 1 ≤ d then

return (min(i1, i2),max(j1, j2), σ1)
else

return NULL
end if

v = (i, j, σ)← FindFirstk−1(t,min(t+ d− 1, r), {+1,−1}, right)
If v 6= NULL, then (i1, j1, σ1)← (i, j, σ) and go to Step 7. Otherwise, returns

NULL.
Step 7. Search for the first ±(k − 1)-substring on the left from t at distance
at most d, i.e.
v = (i, j, σ)← FindFirstk−1(max(l, t− d+ 1), t), {+1,−1}, left)
If v 6= NULL, then (i2, j2, σ2)← (i, j, σ) and go to Step 8. Otherwise, returns

NULL.



Springer Nature 2021 LATEX template

Quantum Bounds for 2D-Grid and Dyck Language 11

Step 8. If σ1 = σ2, σ1 ∈ s and max(j1, j2)−min(i1, i2)+1 ≤ d , the subroutine
returns (min(i1, i2),max(j1, j2), σ1), otherwise returns NULL.

By construction and induction on k, the two ±(k − 1)-substrings x[i1, j1]
and x[i2, j2] (if they exist) involved in the procedure FindAtLeftmostk
are always consecutive and minimal. FindAtLeftmostk thus returns a
±k-substring, if both substrings have the same sign.

Using this basic procedure, we then search for a ±k−substring by searching
for a t and d such that FindAtLeftmostk(l, r, t, d, s) returns a non-NULL
value. Unfortunately, our algorithms have two-sided bounded error: they can,
with small probability, return NULL even if a substring exists or return a
wrong substring instead of NULL. In this setting, Grover’s search algorithm
is not directly applicable and we need to use a more sophisticated search [23].
Furthermore, simply applying the search algorithm naively does not give the
right complexity. Indeed, if we search for a substring of length roughly d (say
between d and 2d), we can find one with expected running time O(

√
(r − l)/d)

because at least d values of t will work. On the other hand, if there are no such
substrings, the expected running time will be O(

√
r − l). Intuitively, we can

do better because if there is a substring of length at least d then there are at
least d values of t that work. Hence, we only need to distinguish between no
solutions, or at least d. This allows us to stop the Grover iteration early and
make O(

√
(r − l)/d) queries in all cases.

Lemma 1 (Modified from [23]) Given n algorithms, quantum or classical, each com-
puting some bit-value with bounded error probability, and some T > 1, there is a
quantum algorithm that uses O(

√
n/T ) queries and with constant probability: returns

the index of a “1”, if there are at least T “1s” among the n values; returns NULL if
there are no “1”; returns anything otherwise.

Proof The main loop of the algorithm of [23] is the following, assuming the algorithms
have an error at most 1/9:

• for m = 0 to dlog9 ne-1 do:

1. run Am 1000 times,
2. verify the 1000 measurements, each by O(log n) runs of the corresponding

algorithm,
3. if a solution has been found, then output a solution and stop

• Output “no solutions”

The key of the analysis is that if the (unknown) number t of solutions lies in the
interval [n/9m+1, n/9m], then Am succeeds with constant probability. In all cases, if
there are no solutions, Am will never succeed with high probability (ie the algorithm
only applies good solutions).

In our case, we allow the algorithm to return anything (including NULL) if t < T .
This means that we only care about the values of m such that n/9m > T , that is



Springer Nature 2021 LATEX template

12 Quantum Bounds for 2D-Grid and Dyck Language

m 6 log9
n
T . Hence, we simply run the algorithm with this new upper bound for d

and it will satisfy our requirements with constant probability. The complexity is
blog9 nT c∑
m=0

1000 ·O(3m) + 1000 ·O(logn) = O(3log9
n
T ) = O(

√
n/T ). �

The algorithm that uses the above ideas is presented in Algorithm 2.

Algorithm 2 FindFixedLenk(l, r, d, s). Search for any ±k-substring of
length ∈ [d/2, d]

Find t such that vt ← FindAtLeftmostk(l, r, t, d, s) 6= NULL using
Lemma 1 with T = d/2.
return vt or NULL if none.

We can then write an algorithm FindAnyk(l, r, s) that searches for any
±k-substring. We consider a randomized algorithm that uniformly chooses a
of power 2 from [2dlog2 ke, (r− l)], i.e. d ∈ {2dlog2 ke, 2dlog2 ke+1, . . . , 2dlog2(r−l)e}.
For the chosen d, we run Algorithm 2. So, the algorithm will succeed with
probability at least O(1/ log(r − l)). We can apply Amplitude amplification
and ideas from Lemma 1 to this and get an algorithm that uses O(

√
log(r − l))

iterations.

Algorithm 3 FindAnyk(l, r, s). Search for any ±k-substring.

Find d ∈ {2dlog2 ke, 2dlog2 ke+1, . . . , 2dlog2(r−l)e} such that:
vd ← FindFixedLenk(l, r, d, s) 6= NULL using amplitude amplification.
return vd or NULL if none.

Finally, we present the algorithm that finds the first ±k-substring –
FindFirstk. Let us consider the case direction = right. We first find the
smallest segment from the left to the right such that its length w is a power
of 2 and it contains a ±k-substring. We do so by doubling the length of the
segment until we find a ±k-substring. We now have a segment that contains a
±k-substring and we want to find the leftmost one. We do so by the following
variant of binary search. At each step let mid = b(lBorder + rBorder)/2c be
the middle of the search segment [lBorder, rBorder]. There are three cases:

• There is a k-substring in [lBorder,mid], then the leftmost k-substring is in
this segment.

• There are no k-substrings in [lBorder,mid], but mid is inside a k-substring.
Then the leftmost k-substring that contains mid is the required substring.

• There are no k-substrings in [lBorder,mid] and mid is not inside a
k-substring. Then the required substring is in [mid+ 1, rBorder].

In each iteration of the loop, the algorithm halves the search space or finds
the first k-substring itself if it contains mid. If direction = left, we replace



Springer Nature 2021 LATEX template

Quantum Bounds for 2D-Grid and Dyck Language 13

FindAtLeftmostk by FindAtRightmostk that finds the rightmost ±k-
substring that containts mid.

Let us present a detailed description of this algorithm. The FindFirstk
procedure calls FindLeftFirstk or FindRightFirstk depending on the
direction. Since both version are essentially symmetric, we only present the
search from the left below (i.e. when the direction is right). For reasons that
become clear in the proof, we need to boost the success probability of some
calls. We do so by repeating them several times and taking the majority: by
this, we mean that we take the most common answer, and return an error in
case of a tie.

Algorithm 4 FindRightFirstk(l, r, s). The algorithm for searching for the
first ±k-substring.

lBorder ← l, rBorder ← r
d← 1 . depth of the search
while lBorder + 1 < rBorder do

mid← b(lBorder + rBorder)/2c
vl ← FindAnyk(lBorder,mid, s) . repeat 2d times and take the

majority
if vl 6= NULL then

rBorder ← mid
end if
if vl = NULL then

vmid ← FindFixedPosk(lBorder, rBorder,mid, s, left) . majority
of 2d runs

if vmid 6= NULL then
v ← vmid
Stop the loop.

end if
if vmid = NULL then

lBorder ← mid+ 1
end if

end if
d← d+ 1

end while
return v

Proposition 2 For any ε > 0 and k, algorithms FindAtLeftmostk,
FindFixedLenk, FindAnyk and FindFirstk have two-sided error probability ε <
0.5 and return, when correct:

• If t is inside a ±k−substring of sign s of length up to d in x[l, r], then
FindAtLeftmostk will return such a substring, otherwise, it returns
NULL. The running time is O(

√
d(log(r − l))0.5(k−2)).



Springer Nature 2021 LATEX template

14 Quantum Bounds for 2D-Grid and Dyck Language

• FindFixedLenk either returns a ±k−substring of sign s and length at most
d in x[l, r], or NULL. It is only guaranteed to return a substring if there
exists ±k−substring of length at least d/2, otherwise, it can return NULL.
The running time is O(

√
r − l(log(r − l))0.5(k−2)).

• FindAnyk returns any ±k−substring of sign s in x[l, r], otherwise it returns
NULL. The running time is O(

√
r − l(log(r − l))0.5(k−1)).

• FindFirstk returns the first ±k−substring of sign s in x[l, r] in the specified
direction, otherwise it returns NULL. The running time is O(

√
r − l(log(r−

l))0.5(k−1)).

Proof We prove the result by induction on k. The base case of k = 2 is obvious
because of the simplicity of FindAtLeftmost2 and FindAtRightmost2 proce-
dures. We first prove the correctness of all the algorithms, assuming there are no
errors. In the end, we explain how to deal with the errors.

We start with FindAtLeftmostk: there are different cases to be considered
when searching for a +k-substring x[i, j] of length ≤ d.

1. Assume that there are j1 and i2 such that i < j1 < i2 < j, |f(x[i, j1])| =
|f(x[i2, j])| = k − 1 and sign(f(x[i, j1])) = sign(f(x[i2, j])) ∈ s. If
t ∈ {i2, . . . , j}, then the algorithm finds x[i2, j] in Step 1 and the first
invocation of FindFirstk−1 in Step 3 finds x[i, j1]. If t ∈ {i, . . . , j1},
then the algorithm finds x[i, j1] in Step 1 and the second invocation of
FindFirstk−1 in Step 5 finds x[i2, j]. If j1 < t < i2, then the third invo-
cation of FindFirstk−1 in Step 6 finds x[i2, j] and the forth invocation of
FindFirstk−1 in Step 7 finds x[i, j1].

2. Assume that there are j1 and i2 such that i < i2 < j1 < j, |f(x[i, j1])| =
|f(x[i2, j])| = k − 1 and sign(f(x[i, j1])) = sign(f(x[i2, j])) ∈ s. If t ∈
{i, . . . , j1}, then the algorithm finds x[i, j1] in Step 1. After that, it finds
x[i2, j] in Step 4. If t ∈ {j1 + 1, . . . , j}, then the algorithm finds x[i2, j] in
Step 1. After that, it finds x[i, j1] in Step 2.

By induction, the running time of each FindAtLeftmostk−1 invocation is

O(
√
d(log(r − l))0.5(k−3)), and the running time of each FindFirstk−1 invocation

is O(
√
d(log(r − l))0.5(k−2)).

We now look at FindFixedLenk: by construction and definition of
FindAtLeftmostk, if the algorithm returns a value, it is a valid substring (with
high probability). If there exists a substring of length at least d/2, then any query
to FindAtLeftmostk with a value of t in this interval will succeed, hence there
are at least d/2 solutions. Therefore, by Lemma 1, the algorithm will find one

with high probability and make O
(√

r−l
d/2

)
queries. Each query has complexity

O(
√
d(log(r − l))0.5(k−2)) by the previous paragraph, hence the running time is

bounded by O(
√
r − l(log(r − l)0.5(k−2)).

We can now analyze FindAnyk: Assume that the shortest ±k-substring
x[i, j] is of length g = j − i + 1. Therefore, there is a d such that d ≤ g ≤ 2d
and the FindFixedLenk procedure returns a substring for this d with constant suc-
cess probability. So, the success probability of the randomized algorithm is at least



Springer Nature 2021 LATEX template

Quantum Bounds for 2D-Grid and Dyck Language 15

O(1/ log(l − r)). Therefore, the amplitude amplification does O(
√

log(r − l)) iter-

ations. The running time of FindFixedLenk is O(
√
r − l(log(r − l))0.5(k−2)) by

induction, hence the total running time is O(
√
r − l(log(r−l))0.5(k−2)

√
log(l − r)) =

O(
√
r − l(log(r − l))0.5(k−1)).

Finally, we analyze FindFirstk: Let us prove the correctness of the algorithm
for direction = right and s = {+1}. The proof for other parameters is similar.

First, we show the correctness of the algorithm assuming there are no errors.
The algorithm is essentially a binary search. At each step, we find the middle of the
search segment [lBorder, rBorder] that is mid = b(lBorder + rBorder)/2c. There
are three options.

• There is a k-substring in [lBorder,mid], then the leftmost k-substring is in
this segment.

• There are no k-substrings in [lBorder,mid], but mid is inside a k-substring.
If we find the leftmost substring containing min, it is the required substring.

• There are no k-substrings in [lBorder,mid] and mid is not inside a
k-substring. Then the required substring is in [mid+ 1, rBorder].

In each iteration of the loop, the algorithm finds a smaller segment containing the
leftmost k-substring or finds it if it contains mid. We find the k-substring in the
iteration that corresponds to the [lBorder, rBorder] segment such that (rBorder −
lBorder)/2 ≤ j − i or earlier.

Second, we compute complexity of the algorithm (taking into account
the repetitions and majority votes). The u-th iteration of the loop consid-
ers a segment [lBorder, rBorder]. The length of this segment is at most

w · 2−(u−1) where w = r − l. The complexity of FindAnyk(lBorder,mid, s)

is at most O

(√
w · 2−(u−1)−1

(
log (w · 2−(u−1)−1)

)0.5(k−1)
)

=

O
(√

w · 2−(u−1)−1 (log (r − l))0.5(k−1)
)

. Also, FindFixedPosk(lBorder, rBorder,mid, s, left)

has complexity O

(√
w · 2−(u−1)

(
log (w · 2−(u−1))

)0.5(k−1)
)

=

O
(√

w · 2−(u−1) (log (r − l))0.5(k−1)
)

. So the total complexity of the u-th iteration

is O
(
u
√
w · 2−(u−1) (log (r − l))0.5(k−1)

)
, since at the u-th iteration, we repeat

each call 2u times to take a majority. The number of iterations is at most log2 w.
Let us compute the total complexity of the binary search part:

O

log2 w∑
u=1

2u
√
w · 2−(u−1) (log (r − l))0.5(k−1)


= O

√w (log (r − l))0.5(k−1)
log2 w∑
u=1

u(
√

2)−(u−1)


= O

(
√
w (log (r − l))0.5(k−1)

∞∑
u=0

(u+ 1)(
√

2)−u
)

= O

(
√
w (log (r − l))0.5(k−1)

√
2

2

(
√

2− 1)2

)



Springer Nature 2021 LATEX template

16 Quantum Bounds for 2D-Grid and Dyck Language

= O
(√

w (log (r − l))0.5(k−1)
)
.

Finally, we need to analyze the success probability of the algorithm: at the uth

iteration, the algorithm will run each test 2u times and each test has a constant
probability of failure ε. Hence for the algorithm to fail (that is make a decision that
will not lead to the first ±k-substring) at iteration u, at least half of the 2u runs
must fail: this happens with probability at most(

2u

u

)
εu 6

(
2ue

u

)u
εu 6 (2eε)u.

Hence the probability that the algorithm fails is bounded by

log2 w∑
u=1

(2eε)u 6
∞∑
u=1

(2eε)u 6
2eε

1− 2eε
.

By taking ε small enough (say 2eε < 1
3 ), which is always possible by repeating the

calls a constant number of times to boost the probability, we can ensure that the
algorithm has a probability of failure less than 1/2. An extended version of this proof
technique is presented in [24].

We now turn to error analysis. The case of FindAtLeftmostk is easy: the
algorithm makes at most 5 recursive calls, each having a success probability of 1− ε.
Hence it will succeed with probability (1 − ε)5. We can boost this probability to
1−ε by repeating this algorithm a constant number of times. Note that this constant
depends on ε.

The analysis of FindFixedLenk follows from [23] and Lemma 1: since
FindAtLeftmostk has two-sided error ε, there exists a search algorithm with
two-sided error ε. �

3.2 The Algorithm for Dyckk,n

To solve Dyckk,n, we modify the input x. As the new input, we use x′ = 1kx0k.
Dyckk,n(x) = 1 iff there are no ±(k+1)-substrings in x′. This idea is presented
in Algorithm 5.

Algorithm 5 Dyckk,n(x). The Quantum Algorithm for Dyckk,n.

x← 1kx0k

v = FindAny(k+1)(0, n+ 2k − 1, {+1,−1})
return v == NULL

Theorem 3 Algorithm 5 solves Dyckk,n and the running time of Algorithm 5 is

O(
√
n(logn)0.5k). The algorithm has two-side error probability ε < 0.5.

Proof Let us show that if x′ contains ±(k+1)-substring then one of three conditions
of Dyckk,n problem is broken.



Springer Nature 2021 LATEX template

Quantum Bounds for 2D-Grid and Dyck Language 17

Assume that x′ contains (k+1) substring x′[i, j]. If j ≥ k+n, then f(x[i−k, n−
1]) > 0, because f(x′[n, j]) = j − n + 1 ≤ k < k + 1. Therefore, prefix x[0, i − k]
is such that f(x[0, i − k − 1]) < 0 or f(x[0, n − 1]) > 0 because f(x[0, n − 1]) =
f(x[0, i− k]) + f(x[i− k− 1, n− 1]). So, in that case, we break one of the conditions
of Dyckk,n problem.

If j < k + n then x[i− k, j − k] is (k + 1) substring of x.
Assume that x′ contains −(k+1) substring x′[i, j]. If i < k, then f(x[0, j−k]) < 0,

because f(x′[i, k− 1]) = −(k− i) ≥ −k > −(k+ 1) and f(x[0, j − k]) = f(x′[k, j]) =
f(x[i, j])−f(x[i, k−1]). So, in that case, the second condition of the Dyckk,n problem
is broken.

The complexity of Algorithm 5 is the same as the complexity of FindAnyk+1

for x′ that is O(
√
n+ 2k(log(n+ 2k))0.5k) due to Proposition 2.

We can assume n ≥ 2k (otherwise, we can update k ← n/2). Hence,

O(
√
n+ 2k(log(n+2k))0.5k) = O(

√
2n(log(2n))0.5k) = O(

√
n(2 logn)0.5k) = O(

√
n(logn)0.5k)

The error probability is the same as the complexity of FindAnyk+1. �

4 Lower bounds for Dyck languages

Theorem 4 There exist constants c1, c2 > 0 such that Q
(
Dyckc1`m,c2(2m)`

)
=

Ω
(
m`
)

.

Proof We will use the partial Boolean function Ex
a|b
m =

{
1, if |x|0 = a

0, if |x|0 = b.

We prove the theorem by a reduction
(
Ex

m|m+1
2m

)`
6 Dyckc1`m,c2(2m)` .

Before we describe the reduction in detail, we sketch the main idea. Recall that
f(x) = |x|0 − |x|1. Note that

Ex
m|m+1
2m (x) = 0 ⇐⇒ f(x) = 2

Ex
m|m+1
2m (x) = 1 ⇐⇒ f(x) = 0

whereas

Dyckk,n(x) = 1 ⇐⇒ ( max
p – prefix of x

f(p) ≤ k)∧( min
p – prefix of x

f(p) ≥ 0)∧(f(x) = 0).

If we could make sure that the minimum and maximum constraints are satisfied,

Dyckk,n could be used to compute Ex
m|m+1
2m . To ensure the minimum constraint,

we map each 0 to 00 and 1 to 01. However, this increases f(x) by 2m which can
be fixed by appending 12m at the end. Importantly, the resulting sequence x′ has
f(x′) = f(x). The first constraint (maximum over prefixes) can be fulfilled by having
a sufficiently large k; k = 2m + 3 would suffice here. The same idea can be applied

iteratively to Ex
m|m+1
2m where the inputs, which could now be the results of functions(

Ex
m|m+1
2m

)`−1
= xi, have been recursively mapped to sequences x′i with f(x′i) ={

2 if xi = 0

0 if xi = 1
.



Springer Nature 2021 LATEX template

18 Quantum Bounds for 2D-Grid and Dyck Language

The reduction formally is as follows.
We call a string B ∈ {0, 1}w of even length a (w, h)-sized block with width w and

height h iff for any prefix x of B: 0 ≤ f(x) ≤ h and either f(B) = 0 or f(B) = 2.

We establish a correspondence between inputs to
(
Ex

m|m+1
2m

)`
that satisfy

the promise and (w, h)-sized blocks B for appropriately chosen w, h, so that(
Ex

m|m+1
2m

)`
= 1 iff f(B) = 0.

For l = 0 (the input bits), we have 0 corresponding to a (2, 2)-sized block of 00
and 1 to a (2, 2)-sized block of 01.

For l > 0, let us have input bits x = (x1, x2, . . . , x2m) of Ex
m|m+1
2m sat-

isfying the input promise. Assume that the bits (that could be equal to values

of
(
Ex

m|m+1
2m

)`−1
) correspond to (w, h)-sized blocks B1, B2, . . . , B2m. Define the

sequence B′ = B1B2 . . . B2m12m. Then it is easy to verify the following claims:

1. B′ is a (2m(w + 1), 2(m+ 1) + h)-sized block;

2. The output bit of Ex
m|m+1
2m (x) corresponds to B′ because

f(B′) =

2m∑
i=1

f(Bi) + f(12m) =

{
2 if Ex

m|m+1
2m (x) = 0

0 if Ex
m|m+1
2m (x) = 1

.

For l = 0, the inputs correspond to (2, 2)-sized blocks. Each level adds 2(m+ 1)
to the height of the blocks reaching 2 + 2`(m + 1) = O(m`). The width of blocks
reaches O((2m)`).

Since for all (w, h)-sized blocks B: Dyckh,w(B) = 1 ⇐⇒ f(B) = 0 one can

solve the
(
Ex

m|m+1
2m

)`
problem by running Dyckh,w on the corresponding block.

See Figure 1.



Springer Nature 2021 LATEX template

Quantum Bounds for 2D-Grid and Dyck Language 19

0

m

2m

3m

4m

2m · 6m 2m

Ex
m|m+1
2m

Ex
m|m+1
2m

Ex
m|m+1
2m

. . .

Ex
m|m+1
2m

Ex
m|m+1
2m

Ex
m|m+1
2m

Fig. 1: The reduction Ex
m|m+1
2m ◦Exm|m+1

2m 6 Dyck4m+6,12m2+2m. The line of
the graph follows the input word along the x -axis and shows the number of yet-
unclosed parenthesis along the y-axis (i.e., a zoomed-out version of Figure 2).

The input word B1B2 . . . B2m12m corresponds to the outer function Ex
m|m+1
2m

with Bj being a block corresponding to the output of an inner Ex
m|m+1
2m . The

ticks at the starts and ends of blocks depict that if the line enters the block at
height i, it exits at height i or i+2. In the block, the line never goes below 0 or
above h+ i. The red dashed part then forms a new block B′. By replacing the

blocks Bj with blocks B′ we can further iterate Ex
m|m+1
2m to get the reduction

Ex
m|m+1
2m ◦

(
Ex

m|m+1
2m

)`−1

6 DyckO(`m),O((2m)`).

It is known that Adv±
(
Ex

m|m+1
2m

)
≥ Adv

(
Ex

m|m+1
2m

)
> m [25, Theorem 5.4].

The Adversary bound composes even for partial Boolean functions [22, Lemma 1],

therefore Q

((
Ex

m|m+1
2m

)`)
= Ω

(
m`
)

. Via the reduction the same bound applies

to Dyckc1`m,c2(2m)` . �

Theorem 5 For any ε > 0, there exists c > 0 such that Q
(
Dyckc logn,n

)
=

Ω
(
n1−ε

)
.

Proof For any ε > 0, there exists an m such that Adv±
(
Ex

m|m+1
2m

)
≥ (2m)1−ε.

Without loss of generality, we may assume that (2m)` = n. From Theorem 4 with

` = log2m n we obtain c2 (2m)` = c2n and height c1m` = Θ (logn). The query com-

plexity is at least
(

(2m)1−ε
)`

=
(

(2m)`
)1−ε

= n1−ε. Therefore Q
(
Dyckc logn,n

)
=

Ω
(
n1−ε

)
. �

For constant depths, the following bound can be derived:

Theorem 6 There exists a constant c1 > 0 such that Q(Dyckc1`,n) = Ω(2
`
2
√
n).



Springer Nature 2021 LATEX template

20 Quantum Bounds for 2D-Grid and Dyck Language

Proof Let m = 4 in the Theorem 4. Then, Q
(
Dyckc1`,c28`

)
= Ω

(
4`
)

for some

constants c1, c2 > 0. Consider the function And n

c28`
◦Dyckc1`,c28` with a promise

that Andk has as an input either k or k − 1 ones. Then,

Q

(
And n

c28`
◦Dyckc1`,c28`

)
= Θ

(
Adv±

(
And n

c28`
◦Dyckc1`,c28`

))
and

Adv±
(
And n

c28`
◦Dyckc1`,c28`

)
≥ Adv±

(
And n

c28`

)
Adv±

(
Dyckc1`,c28`

)
= Ω

(
2
`
2
√
n
)
,

with the second step following from the composition of Adv± for partial functions
[22]. This implies the same lower bound on Dyckc1`,n because the computation of the
composition And n

c28`
◦Dyckc1`,c28` can be straightforwardly reduced to Dyckc1`,n

by a simple concatenation of Dyckc1`,c28` instances. �

5 Quantum complexity of st-Connectivity in
grids

5.1 Quantum complexity of 2D-DConnectivityn,k

Theorem 7 For any n ≥ k and ε > 0, Q(2D-DConnectivityn,k) =

Ω
(

(
√
nk)1−ε

)
.

In particular, if we have a square grid then

Corollary 8 For any ε > 0, Q(2D-DConnectivityn,n) = Ω
(
n1.5−ε

)
.

Proof of Theorem 7 For any sequence w of m opening and closing parentheses, it is
possible to plot the changes of depth, i.e., the number of opening parentheses minus
the number of closing parentheses, for all prefixes of the sequence, see Figure 2.

( ( ) ) ( ( ( ) ) ( ) )

x

y y = d = 4

(0, 0)

Fig. 2: Representation of the Dyck word “(())((())())”



Springer Nature 2021 LATEX template

Quantum Bounds for 2D-Grid and Dyck Language 21

We can connect neighboring points by vectors (1, 1) and (1,−1) corresponding to
the opening and closing parentheses respectively. Clearly, w ∈ Ld if and only if the
path starting at the origin (0, 0) ends at (m, 0) and never crosses y = 0 and y = d.
Consequently a path corresponding to w ∈ Ld always remains within the trapezoid
bounded by y = 0, y = d, y = x, y = −x + m. This suggests a way of mapping
Dyckd,m to the 2D-DConnectivityn,k problem:

1. An opening parenthesis in position i corresponds to a “column” of upwards
sloping available edges (i− 1, l)→ (i, l+ 1) for all l ∈ {0, 1, . . . , d− 1} such
that i − 1 + l is even. A closing parenthesis in position i corresponds to
downwards sloping available edges (i−1, l)→ (i, l−1) for all l ∈ {1, . . . , d}
such that i− 1 + l is even. See Figure 3.

2. The edges outside the trapezoid adjacent to the trapezoid are forbidden
(see Figure 4), i.e., it is sufficient to “insulate” the trapezoid by a single
layer of forbidden edges. The only exception is the edges adjacent to the
(0, 0) and (m, 0) vertex as those will be used in the construction (step 4).

( =⇒ ) =⇒

Fig. 3: Mapping of Dyckd,m variables to 2D-DConnectivity



Springer Nature 2021 LATEX template

22 Quantum Bounds for 2D-Grid and Dyck Language

( ( ) ) ( ( ( ) ) ( ) )

Available edges

Available edges reachable from origin

Forbidden edges

Fig. 4: Mapping of a complete input corresponding to Dyck word
“(())((())())” to 2D-DConnectivity

3. Rotate the trapezoid by 45 degrees counterclockwise. This isolated trape-
zoid can be embedded in a directed grid and its starting and ending vertices
are connected by a path if and only if the corresponding input word is valid.

4. Finally we can lay multiple independent trapezoids side by side and connect
them in parallel forming an Ort of Dyckd,m instances; see Figure 5.



Springer Nature 2021 LATEX template

Quantum Bounds for 2D-Grid and Dyck Language 23

Fig. 5: Reduction
Ort ◦Dyck 6 2D-DConnectivity

Fig. 6: Folding of a long Dyck
instance in an undirected grid

This concludes the reduction Ort ◦Dyckd,m 6 2D-DConnectivityn,k, where
n = (d + 1)(t − 1) + m

2 + 1 and k = m
2 + 1. By the well known composition result

of Reichardt [21] we know that Q(Ort ◦Dyckd,m) = Θ(Q(Ort) ·Q(Dyckd,m)). All
that remains is to pick suitable t, d, and m for the proof to be complete. Let k be
the vertical dimension of the grid and k ≤ n. Then we take m = Θ(k), d = logm
and t = n

d . �

Constructing a non-trivial quantum algorithm appears to be difficult and
we conjecture that the actual complexity may be Ω(nk), except for the case
when k is small, compared to n. For very small k (up to k = Θ( logn

log logn )), a
better quantum algorithm is possible.

Theorem 9 Q(2D-DConnectivityn,k) = O
(√

n log
k/2
2 n

)
. Moreover, there is a

time-efficient quantum query algorithm that solves 2D-DConnectivityn,k in time

O
(√

n log
k/2+O(1)
2 n

)
.

Proof We prove the claim by constructing a quantum algorithm for
2D-DConnectivityn,k. The main idea is to construct an AND-OR formula for
2D-DConnectivityn,k and to use one of quantum algorithms for AND-OR for-
mula evaluation. To achieve the optimal query complexity, we use the algorithm by
Reichardt [26] which evaluates an AND-OR formula of size L with O(

√
L) queries.

To achieve a time-efficient quantum algorithm, we can use quantum algorithms from
[27] or [21] for which the number of queries is slightly larger (O(

√
Ld) for [27] and



Springer Nature 2021 LATEX template

24 Quantum Bounds for 2D-Grid and Dyck Language

O(
√
L logL) for [21]) and the number of non-query steps is O(logc L) per one query

step. For the formula that we construct, d = logL and either of those quantum
algorithms uses O(

√
L logL) queries and O(

√
L logc L) time steps.

We first deal with the case when n = 2m for some non-negative integer m. The
idea for the construction of the AND-OR formula is to split the grid in two: any path
from (0, 0) to (n, k) must pass through a vertex (n2 , r) for some r : 1 ≤ r ≤ k. For
the paths to and from (n2 , r) we can apply this reasoning recursively. Let us denote
by Fµ,κ,i,j our formula for the path from vertex (i, j) to (i+ 2µ, j + κ), and by Lµ,κ
its size (the number of variable instances it has; it does not depend on i, j). Thus
we have the recurrent formulae

Fµ,κ,i,j =

κ∨
r=0

(
Fµ−1,r,i,j ∧ Fµ−1,κ−r,i+2µ−1,j+r

)
,

Lµ,κ =

κ∑
r=0

(
Lµ−1,r + Lµ−1,κ−r

)
= 2

κ∑
r=0

Lµ−1,r.

For the base case F0,κ,i,j (i. e. for a 1×κ grid) we simply use an OR of all the paths
(represented as an AND of all its edges). There are κ+ 1 paths, each of length κ+ 1,
thus L0,κ = (κ+ 1)2.

It follows by induction on µ that Lµ,κ < 2µ+1 ·
(κ+µ+2

κ

)
. For the induction basis

we have L0,κ < (κ+ 1)(κ+ 2) = 2
(κ+2
κ

)
, and for the induction step:

Lµ,κ = 2

κ∑
r=0

Lµ−1,r < 2µ+1
κ∑
r=0

(
r + µ+ 1

r

)
= 2µ+1

(
κ+ µ+ 2

κ

)
.

Using a well-known upper bound for binomial coefficients we obtain: Lm,k < 2m+1(e·
(k + m + 2)/k)k = O

(
n(e(1 +

log2 n
k ))k

)
. There exists a quantum algorithm with

O(
√
L) queries for a formula of size L [26], thus we obtain the complexity mentioned

in the theorem statement.
For an arbitrary n we can find the smallest m for which n ≤ 2m and use the

formula for the 2m×k grid obtained by adding ancillary edges from the vertex (n, k)
to (2m, k) (using the edge variables of the added part of the grid as constants). Since
the value of n thus increases no more than two times, the complexity estimation
increases by at most a constant multiplier. �

Another case where we have an algorithm is when there is a specific restric-
tion on the sparseness of the grid. Let a segment be a sequence of connected
points in a line that cannot be extended. In other words, for 0 ≤ l < r ≤ n,
we have a segment between (i, l) and (i, r) iff (i, l) and (i, r) are connected,
(i, l−1) and (i, l) are not connected and (i, r) and (i, r+ 1) are not connected.
Let Si be the number of segments in the line i.

For some i ∈ {0, . . . , k − 1}, l, r ∈ {0, . . . , n}, let us call “a segment of
vertical edges” a sequence of vertical edges from the edge between (i, l) and
(i + 1, l) to the edge between (i, r) and (i + 1, r) such that all edges in the
sequence exist, but there are no edges between (i, l − 1) and (i+ 1, l − 1) and
between (i, r + 1) and (i + 1, r + 1). Let S ′i be the number of “segments of

vertical edges” between lines i and i+ 1. Let S =
∑k

i=1 Si +
∑k−1

i=0 S ′i.
We can define SV in a similar way to S but by using horizontal edges. This

is equivalent to rotating the grid by π/2.



Springer Nature 2021 LATEX template

Quantum Bounds for 2D-Grid and Dyck Language 25

Theorem 10 Q(2D-DConnectivityn,k) = O
(√

nk ·min(S,SV ) logn
)

.

Proof The algorithm performs a breadth-first search.
For i ∈ {0, . . . , k}, let A2i be the set of segments on the line i that can be reached

from the point (0, 0). We can implement it as a self-balanced binary search tree, for
example, it can be a Red-Black tree or an AVL tree. Such an implementation allows
us to add segments to the set in O(logn) running time. Additionally, we can check
whether a point (i, j) is in one of segments forming the set in O(logn) running time.

If (n, k) belongs to one of the segments from A2k, then it is reachable from (0, 0).
For i ∈ {0, . . . , k−1}, let A2i+1 be the set of “segments of vertical edges” between

lines i and i+ 1 such that all edges of a segment from the set can be achieved from
(0, 0).

The set A0 contains only one segment that contains (0, 0). We can find the second
border of the segment using the first one search algorithm of [24, 28, 29] with O(

√
r)

expected query complexity, if the right border of the segment is (0, r). The algorithm
searches for the first r such that there is an edge between (0, r − 1) and (0, r), but
there is no edge between (0, r) and (0, r + 1). We then add the segment (0, 0), (0, r)
to the set A0.

For i ∈ {1, . . . , k}, we show how to construct A2i if we already constructedA2i−1.
Firstly, we search for l1 the left border of the first segment. It is the minimal

element such that the points (i, l1) and (i, l1 +1) are connected and the edge between
(i− 1, l1) and (i, l1) belongs to one of the “segments of vertical edges” from A2i−1.
We do it with an expected O(

√
l1 logn) number of queries because of the complexity

of the first one search algorithm and the complexity of checking the existence of an
element in a self-balanced search tree. Then, we search for the minimal element r1
such that r1 > l1, (i, r1 − 1) and (i, r1) are connected, and (i, r1) and (i, r1 + 1) are
not connected. We can do it using the first one search algorithm with O(

√
r1 − l1)

expected number of queries. Then, we add the segment between (i, l1) and (i, r1) to
A2i.

For j > 1, if we have already found rj−1, then we search for the minimal lj such
that lj > rj−1, the points (i, lj) and (i, lj + 1) are connected and the edge between
(i− 1, l1) and (i, l1) belongs to one of the “segments of vertical edges” from A2i−1.
Then, we search for the minimal element rj such that rj > lj , (i, rj − 1) and (i, j1)
are connected, and (i, rj) and (i, rj+1) are not connected. Then, we add the segment
between (i, lj) and (i, rj) to A2i. The total complexity of this step is similar to the
first step. It is O(

√
lj − rj−1 logn+

√
rj − lj).

Assume that r0 = 0. Then, the total complexity of constructing A2i is

O

|A2i|∑
j=1

(
√
lj − rj−1 logn+

√
rj − lj)

 ≤ O
|A2i|∑
j=1

(
√
lj − rj−1 logn+

√
rj − lj logn)

 =

= O

logn

|A2i|∑
j=1

(
√
lj − rj−1 +

√
rj − lj)


According to Cauchy-Bunyakovsky-Schwarz inequality, we have

≤ O

logn

√√√√√|A2i|
|A2i|∑
j=1

(lj − rj−1 + rj − lj)

 ≤ O (logn
√
|A2i| · n

)
≤ O

(
logn

√
Si · n

)
.



Springer Nature 2021 LATEX template

26 Quantum Bounds for 2D-Grid and Dyck Language

For i ∈ {0, . . . , k − 1}, we show how to construct A2i+1 if we have already
constructed A2i and A2i−1. Assume that A−1 is the empty set.

Firstly, we search for l1 the left border of the first “segment of vertical edges”. It is
an element such that the points (i, l1) and (i+1, l1) are connected and (i, l1) belongs
to one of segments from A2i or the edge between (i − 1, l1) and (i, l1) belongs to
one of “segments of vertical edges” from A2i−1. We do it with expected O(

√
l1 logn)

number of queries by the argument similar to the previous step. Then, we search for
the minimal element r1 such that r1 > l1, and (i, r1) belongs to one of segments
from A2i or the edge between (i − 1, r1) and (i, r1) belongs to one of “segments of
vertical edges” from A2i−1. We can do it using the first one search algorithm with
expected O(

√
r1 − l1 logn) queries. Then, we add the segment between (i, l1) and

(i, r1) to A2i−1.
For j > 1, if we have already found rj−1, then we search for the minimal lj such

that

1. lj > rj−1,
2. (i, lj) and (i+ 1, lj) are connected,
3. one or both conditions are true:

• (i, lj) belongs to one of segments from A2i or
• the edge between (i − 1, lj) and (i, lj) belongs to one of “segments of

vertical edges” from A2i−1.

4. For lj − 1 either condition 2 or condition 3 is wrong.

Then, we search for the element rj similar to r1 with respect to lj . We can do it with
O(logn(

√
lj − rj−1 +

√
rj − lj)) expected number of queries.

Similarly to the proof of the complexity of constructing A2i we can show that

the complexity of constructing A2i+1 is O
(

logn
√
S′i · n

)
.

The expected query complexity of the whole algorithm is

O

(
k∑
i=0

(logn
√
Si · n+ logn

√
S′i · n)

)
= O

(
√
n logn

k∑
i=0

(
√
Si +

√
S′i)

)
=

= O

√n logn

√√√√k

k∑
i=0

(Si + S′i)

 ≤ O (√n logn
√
kS
)

= O
(√

nkS logn
)
.

We can invoke the same algorithm, but for the grid rotated by π/2. We invoke
these algorithms in parallel and return the answer of the algorithm that reaches the

last level first. The total expected query complexity is O
(√

nk ·min(S,SV ) logn
)

.

Note that everywhere we use the Grover search algorithm (the first one search
algorithm), we use it in the form that is presented in Lemma 1. �

Since k ≤ S ≤ nk, the complexity can vary from O(k
√
n log n) to

O(kn log n).

5.2 Lower bounds for 2D-Connectivityn,k

Even though it is possible to use the construction from Section 5.1 to give a
lower bound of Ω

(
(
√
nk)1−ε) for the undirected case because the paths for each



Springer Nature 2021 LATEX template

Quantum Bounds for 2D-Grid and Dyck Language 27

instance of Dyck never bifurcate or merge, this lower bound can be further
improved to a nearly tight estimate.

Theorem 11 For any n ≥ k, k = Ω(logn), ε > 0, Q(2D-Connectivityn,k) =

Ω
(

(nk)1−ε
)

.

Proof We start off by representing an input as a path in a trapezoid, see Figure 4.
But now instead of connecting multiple instances of Dyck in parallel, we will embed
one long instance by folding it when it hits the boundary of the graph. To implement
a fold we will use simple gadgets depicted in Figure 6.

This way a Dyck instance of length m and depth logm can be embedded in
an n × k grid such that nk

logm = Θ(m). Using Theorem 5 we conclude that solving

2D-Connectivityn,k requires at least Ω
(

(nk)1−ε
)

quantum queries. �

5.3 Lower bounds for d-dimensional grids

For undirected d-dimensional grids we give a tight bound on the number of
queries required to solve connectivity.

Theorem 12 For any ε > 0, for undirected d-dimensional grids of size n1 × n2 ×
. . . × nd that are not “almost-one-dimensional”, i.e., there exists i ∈ [d] such that∏d
j=1 nj
ni

= Ω(logni):

Q(dD-Connectivityn1,n2,...,nd) = Ω((n1 · n2 · . . . · nd)1−ε).

Proof For the purposes of this theorem, it is more convenient to refer to n1× . . .×nd
sized grids as n′1 × . . . × n′d sized where n′i = ni + 1. Then the theorem follows
from the 2D case by iteratively using the fact that a d-dimensional grid of size
n′1 × n′2 × . . . × n′d−1 × n′d contains as a subgraph a (d − 1)-dimensional grid of

size n′1 × n′2 × . . . × n′d−2 × n
′
d−1n

′
d. One way to see this is to consider a bijective

mapping of the vertices (x1, . . . , xd−1, xd) to (x1, . . . , xd−2, xdn
′
d−1 + xd−1) if xd is

even and to (x1, . . . , xd−2, xdn
′
d−1 + n′d−1 − 1− xd−1) if xd is odd. It is a bijection

because xd and xd−1 can be recovered from xdn
′
d−1 +n′d−1−1−xd−1 by computing

the quotient and remainder on division by n′d−1. One can view this procedure as
“folding” where we take layers (vertices corresponding to some xd = l) and fold them
into the (d − 1)-st dimension alternating the direction of the layers depending on
the parity of the layer l. For this procedure to place the starting and ending vertices
the furthest apart, it requires that n′d is an odd number. Otherwise we embed a
smaller subgraph n′1 × . . .× n′d−1 × (n′d − 1) and add an edge (n1, . . . , nd−1, nd − 1)

to (n1, . . . , nd−1, nd). In the end we obtain a lower bound of Ω(((((((n′d − 1)n′d−1 −
1)n′d−2 − 1) . . .)n′2 − 1)n′1)1−ε) = Ω((n1 · n2 · . . . · nd)1−ε). �

For directed d-dimensional grids we can only slightly improve over the n
d
2

trivial lower bound.



Springer Nature 2021 LATEX template

28 Quantum Bounds for 2D-Grid and Dyck Language

Theorem 13 For directed d-dimensional grids of size n1 × n2 × . . . × nd such
that n1 ≤ n2 ≤ . . . ≤ nd and ε > 0, Q(dD-DConnectivityn1,n2,...,nd) =

Ω((nd−1
∏d
i=1 ni)

1
2−ε).

Corollary 14 For directed d-dimensional grids of size n× n× . . .× n and ε > 0,

Q(dD-DConnectivityn,n,...,n) = Ω(n
d+1
2 −ε).

Proof of Theorem 13 For each I ∈ {0, 1, . . . , n1} × {0, 1, . . . , n1} × . . . ×
{0, 1, . . . , nd−2} we take take a 2-dimensional hard instance GI of

2D-DConnectivitynd−1,nd having query complexity Ω(n1−ε
d−1n

1
2−ε
d ). We then

connect them in parallel like so:

• Include the entire (d − 2)-dimensional subgrid from (0, . . . , 0) to
(n1, n2, . . . , nd−2, 0, 0) and similarly the subgrid from (0, 0, . . . , 0, nd−1, nd)
to (n1, n2, . . . , nd−2, nd−1, nd);

• For each I ∈ {0, 1, . . . , n1}×{0, 1, . . . , n1}× . . .×{0, 1, . . . , nd−2} embed the
instance GI in the subgrid (I, 0, 0) to (I, nd−1, nd);

• Forbid all other edges.

This construction computes Or∏d−2
i=1 (ni+1)

◦ 2D-DConnectivitynd−1,nd whose

complexity is at least Ω(

√∏d−2
i=1 (ni + 1)n1−ε

d−1n
1
2−ε
d ) = Ω((nd−1

∏d
i=1 ni)

1
2−ε). �

6 Directions for future works

Some directions for future work are:

1. Better algorithm/lower bound for the directed 2D grid? Can we
find an o(n2) query quantum algorithm or improve our lower bound? A
nontrivial quantum algorithm would be particularly interesting, as it may
imply a quantum algorithm for edit distance.

2. Quantum algorithms for directed connectivity? More generally, can
we come up with better quantum algorithms for directed connectivity? The
span program method used by Belovs and Reichardt [30] for the undirected
connectivity does not work in the directed case. As a result, the quantum
algorithms for directed connectivity are typically based on Grover’s search
in various forms, from simply speeding up depth-first/breadth-first search to
more sophisticated approaches [31]. Developing other methods for directed
connectivity would be very interesting.

3. Quantum speedups for dynamic programming. Dynamic program-
ming is a widely used algorithmic method for classical algorithms and it
would be very interesting to speed it up quantumly. This has been the moti-
vating question for both the connectivity problem on the directed 2D grid
studied in this paper and a similar problem for the Boolean hypercube in
[31] motivated by algorithms for Travelling Salesman Problem. There are



Springer Nature 2021 LATEX template

Quantum Bounds for 2D-Grid and Dyck Language 29

many more dynamic programming algorithms and exploring their quantum
speedups of them would be quite interesting.

Data Availability Statement

Data sharing is not applicable to this article as no new data were created or
analyzed in this study.

References

[1] Aaronson, S., Grier, D., Schaeffer, L.: A quantum query complexity tri-
chotomy for regular languages. Electronic Colloquium on Computational
Complexity (ECCC) 26, 61 (2018)

[2] Ambainis, A., Balodis, K., Iraids, J., Khadiev, K., Kļevickis, V., Prūsis,
K., Shen, Y., Smotrovs, J., Vihrovs, J.: Quantum Lower and Upper
Bounds for 2D-Grid and Dyck Language. In: 45th International Sympo-
sium on Mathematical Foundations of Computer Science (MFCS 2020).
Leibniz International Proceedings in Informatics (LIPIcs), vol. 170, pp.
8–1814 (2020)

[3] Shor, P.W.: Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer. SIAM Journal on Computing
26(5), 1484–1509 (1997). https://doi.org/10.1137/s0097539795293172

[4] Cirac, J.I., Zoller, P.: Goals and opportunities in quantum simulation.
Nature Physics 8(4), 264–266 (2012). https://doi.org/10.1038/nphys2275

[5] Georgescu, I.M., Ashhab, S., Nori, F.: Quantum simulation. Rev. Mod.
Phys. 86, 153–185 (2014). https://doi.org/10.1103/RevModPhys.86.153

[6] Ambainis, A.: Understanding quantum algorithms via query complexity.
In: Proc. Int. Conf. of Math. 2018, vol. 4, pp. 3283–3304 (2018)

[7] Hopcroft, J.E., Motwani, R., Ullman, J.D.: Automata theory, languages,
and computation. International Edition 24(2), 171–183 (2006)

[8] Davis, M., Sigal, R., Weyuker, E.J.: Computability, Complexity, and Lan-
guages: Fundamentals of Theoretical Computer Science. Elsevier, ???
(1994)

[9] Khadiev, K., Kravchenko, D.: Quantum algorithm for dyck language with
multiple types of brackets. In: Unconventional Computation and Natural
Computation, pp. 68–83 (2021)

[10] Buhrman, H., Patro, S., Speelman, F.: The Quantum Strong Exponential-
Time Hypothesis (2019)

https://doi.org/10.1137/s0097539795293172
https://doi.org/10.1038/nphys2275
https://doi.org/10.1103/RevModPhys.86.153


Springer Nature 2021 LATEX template

30 Quantum Bounds for 2D-Grid and Dyck Language

[11] Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and
weaknesses of quantum computing. SIAM journal on Computing 26(5),
1510–1523 (1997)

[12] Wagner, R.A., Fischer, M.J.: The string-to-string correction problem.
Journal of the ACM (JACM) 21(1), 168–173 (1974)

[13] Backurs, A., Indyk, P.: Edit distance cannot be computed in strongly
subquadratic time (unless SETH is false). In: Proceedings of the Forty-
seventh Annual ACM Symposium on Theory of Computing, pp. 51–58
(2015). ACM

[14] Boroujeni, M., Ehsani, S., Ghodsi, M., HajiAghayi, M., Seddighin, S.:
Approximating edit distance in truly subquadratic time: Quantum and
MapReduce. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 1170–1189 (2018). SIAM

[15] Chakraborty, D., Das, D., Goldenberg, E., Koucký, M., Saks, M.E.:
Approximating edit distance within constant factor in truly sub-quadratic
time. In: 59th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), Paris, France, Oct 7-9, 2018, pp. 979–990 (2018)

[16] Krinner, S., Lacroix, N., Remm, A., Paolo, A.D., Genois, E., Ler-
oux, C., Hellings, C., Lazar, S., Swiadek, F., Herrmann, J., Norris,
G.J., Andersen, C.K., Müller, M., Blais, A., Eichler, C., Wallraff, A.:
Realizing repeated quantum error correction in a distance-three sur-
face code. Nature 605(7911), 669–674 (2022). https://doi.org/10.1038/
s41586-022-04566-8

[17] Collins, H., Nay, C.: IBM Unveils 400 Qubit-Plus
Quantum Processor and Next-Generation IBM Quan-
tum System Two (2022). https://newsroom.ibm.com/
2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two

[18] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Infor-
mation: 10th Anniversary Edition, 10th edn. Cambridge University Press,
New York, NY, USA (2011)

[19] Ablayev, F., Ablayev, M., Huang, J.Z., Khadiev, K., Salikhova, N., Wu,
D.: On quantum methods for machine learning problems part i: Quantum
tools. Big Data Mining and Analytics 3(1), 41–55 (2019)

[20] Khadiev, K.: Lecture notes on quantum algorithms. arXiv preprint
arXiv:2212.14205 (2022)

https://doi.org/10.1038/s41586-022-04566-8
https://doi.org/10.1038/s41586-022-04566-8
https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two
https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two


Springer Nature 2021 LATEX template

Quantum Bounds for 2D-Grid and Dyck Language 31

[21] Reichardt, B.W.: Reflections for quantum query algorithms. In: Pro-
ceedings of the Twenty-second Annual ACM-SIAM Symposium on
Discrete Algorithms. SODA ’11, pp. 560–569. Society for Indus-
trial and Applied Mathematics, Philadelphia, PA, USA (2011).
http://dl.acm.org/citation.cfm?id=2133036.2133080

[22] Kimmel, S.: Quantum adversary (upper) bound. In: International Collo-
quium on Automata, Languages, and Programming, pp. 557–568 (2012).
Springer

[23] Høyer, P., Mosca, M., de Wolf, R.: Quantum search on bounded-error
inputs. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J.
(eds.) Automata, Languages and Programming, pp. 291–299. Springer,
Berlin, Heidelberg (2003)

[24] Kapralov, R., Khadiev, K., Mokut, J., Shen, Y., Yagafarov, M.: Fast clas-
sical and quantum algorithms for online k-server problem on trees. CEUR
Workshop Proceedings 3072, 287–301 (2022)

[25] Ambainis, A.: Quantum lower bounds by quantum arguments. Journal of
Computer and System Sciences 64(4), 750–767 (2002)

[26] Reichardt, B.W.: Span programs are equivalent to quantum query algo-
rithms. SIAM J. Computing 43(3), 1206–1219 (2014). https://doi.org/10.
1137/100792640

[27] Ambainis, A., Childs, A.M., Reichardt, B., Spalek, R., Zhang, S.: Any

AND-OR formula of size N can be evaluated in time n1/2+o(1) on a
quantum computer. SIAM J. Comput. 39(6), 2513–2530 (2010). https:
//doi.org/10.1137/080712167

[28] Lin, C.Y.-Y., Lin, H.-H.: Upper bounds on quantum query complex-
ity inspired by the elitzur–vaidman bomb tester. Theory of Computing
12(18), 1–35 (2016)

[29] Kothari, R.: An optimal quantum algorithm for the oracle identification
problem. In: 31st International Symposium on Theoretical Aspects of
Computer Science, p. 482 (2014)

[30] Belovs, A., Reichardt, B.W.: Span programs and quantum algorithms
for st-connectivity and claw detection. In: Algorithms - ESA 2012
- 20th Annual European Symposium, Ljubljana, Slovenia, September
10-12, 2012. Proceedings, pp. 193–204 (2012). https://doi.org/10.1007/
978-3-642-33090-2 18. https://doi.org/10.1007/978-3-642-33090-2 18

[31] Ambainis, A., Balodis, K., Iraids, J., Kokainis, M., Prusis, K., Vihrovs,

https://doi.org/10.1137/100792640
https://doi.org/10.1137/100792640
https://doi.org/10.1137/080712167
https://doi.org/10.1137/080712167
https://doi.org/10.1007/978-3-642-33090-2_18
https://doi.org/10.1007/978-3-642-33090-2_18


Springer Nature 2021 LATEX template

32 Quantum Bounds for 2D-Grid and Dyck Language

J.: Quantum speedups for exponential-time dynamic programming algo-
rithms. In: Proceedings of the Thirtieth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2019, San Diego, California, USA,
January 6-9, 2019, pp. 1783–1793 (2019). https://doi.org/10.1137/1.
9781611975482.107. https://doi.org/10.1137/1.9781611975482.107

https://doi.org/10.1137/1.9781611975482.107
https://doi.org/10.1137/1.9781611975482.107

	Acknowledgments
	Introduction
	Definitions
	A quantum algorithm for membership testing of DYCK_{n,k}
	±k-Substring Search algorithm
	The Algorithm for DYCK_{n,k}

	Lower bounds for Dyck languages
	Quantum complexity of st-Connectivity in grids
	Quantum complexity of 2D-DConnectivity
	Lower bounds for 2D-Connectivity
	Lower bounds for d-dimensional grids

	Directions for future works

