

Aalborg Universitet

HSDPA Design Space Exploration and Implementation Guidance with Design-Trotter

Šaramentovas, Aleksandras; Ruzgys, Paulius; Abildgren, Rasmus; Le Moullec, Yannick

Published in:
IEEE ICICS 2007

DOI (link to publication from Publisher):
10.1109/ICICS.2007.4449771

Publication date:
2007

Document Version
Peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Šaramentovas, A., Ruzgys, P., Abildgren, R., & Le Moullec, Y. (2007). HSDPA Design Space Exploration and
Implementation Guidance with Design-Trotter. In IEEE ICICS 2007 Electrical Engineering/Electronics,
Computer, Communications and Information Technology Association. DOI: 10.1109/ICICS.2007.4449771

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 30, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VBN

https://core.ac.uk/display/60389445?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/ICICS.2007.4449771
http://vbn.aau.dk/en/publications/hsdpa-design-space-exploration-and-implementation-guidance-with-designtrotter(cfc6ca00-4f03-11dc-a457-000ea68e967b).html

1

HSDPA Design Space Exploration and

Implementation Guidance with Design-Trotter

Rasmus Abildgren∗, Aleksandras Šaramentovas†, Paulius Ruzgys†, and Yannick Le Moullec†

email: {rab,aleksara,paulius,ylm} @es.aau.dk

∗Center for Embedded Software Systems (CISS)

Aalborg University, Selma Lagerlöfs Vej 300,

DK-9220 Aalborg East, Denmark

†Center for Software Define Radio (CSDR)

Aalborg University, Niels Jernes Vej 12,

DK-9220 Aalborg East, Denmark

Abstract—This work addresses some of the implemen-

tation challenges for recent and future wireless commu-

nication systems. More specifically this paper describes

a design methodology for design space exploration and

implementation guidance and illustrates its practical usage

and benefits by applying it to some of the most critical

sub-parts (i.e., the turbo-encoder and turbo-decoder) of

the HSDPA concept. The implementation examples and

results shows how the proposed methodology based on our

tool Design-Trotter can guide system designers in selecting

and/or building the most appropriate architecture for their

application.

I. INTRODUCTION

In order to satisfy the ever-increasing need for data-

traffic and high-speed services in the wireless domain,

new concepts have been developed to increase the spec-

tral efficiency of current third generation systems to

support high user data rates. The High Speed Downlink

Packet Access (HSDPA) concept [1], which has been

validated by the Third Generation Partnership Project

(3GPP) in the specification of the Release 5 is a sig-

nificant step to boost the WCDMA performance for

downlink packet traffic, enabling user peak data rates

up to 14 Mbps. HSDPA offers new opportunities for

wireless communications but also raises a number of

implementation challenges in terms of platform selection

(e.g., DSP-processor, FPGA, GPP), optimizations (e.g.,

time, power and area), etc.

In order to alleviate system designers from time-

consuming and error-prone design tasks which increase

the time-to-market factor, a systematic and efficient

design methodology is highly desirable. This work il-

lustrates how designers can benefit from a guidance

methodology for the implementation of the HSDPA

technique by means of design space exploration (DSE)

with the Design-Trotter tool [2]. In particular we inves-

tigate how DSE combined with the characterization of

the application by means of metrics provide a design

trajectory allowing early and right decisions for selecting

and/or building the most appropriate target architecture

according to the system specifications, and thus reducing

the time-to-market factor.

The remainder of the paper is organized as follows:

July, 2007 DRAFT

2

Step 1: Algorithm Design with MATLAB

Simulations

MATLAB to C (manual or automatic)

Algorithm

(C lanauge)

Step 2: Design Space Exploration with Design Trotter

C to HCDFG conversion

Characterisation (orientation and parallelism metrics)

Parallelism exploration

Step 3: Hardware Implementation

C to Handel-C conversion

Handel-C to VHDL or EDIF with DK suite Compiler

Backend steps

Orientation Metrics

Parallelism Metrics

Parallelism trade-off curves

Fig. 1. Our mehodology for rapid development of wireless appli-

caitons.

Section II introduces the main steps of the proposed

design methodology and discusses some of the key issues

related to design space exploration and how to move

from high-level estimates to an actual implementation.

Then section III illustrates how the proposed methodol-

ogy can be used for guiding the implementation of some

of the most critical sub-parts of the HSDPA concept (i.e.,

the turbo-encoder and turbo-decoder) by means of design

space exploration examples and implementation results.

Finally we conclude in section IV.

II. METHODOLOGY

Modern system development requires a design

methodology which enables the designer to explore

different implementations in order to choose one which

fulfils the performance requirements to the product. In

this work we consider a design methodology build upon

the design space exploration tool Design-Trotter. The

overall design methodology is summarised in Fig.1 and

the main steps are presented hereafter. Further details

about the tool Design-Trotter can be found in [2].

The task of analysing an algorithm with a design

space exploration tool consists of characterizing the

algorithm, in such a way that the designer is able to get

useful information about the performance of different

implementations, typically in terms of a resource vs.

execution time, or area vs. time curve.

Based on the design space exploration results, a

particular solution can then be further explored and

implemented. Some tools try to do this automatically

based on the algorithm description, however this task is

still done more or less manually in many situations. Due

to the time-to-marked parameter, high-level languages

are increasingly used for implementation. It is therefore

important that the used high-level languages are able

to express the detailed needs in order to implement the

chosen design.

In the following we describe the individual tasks and

illustrate some of the issues involved when going from

DSE estimates to real implementations using high-level

languages.

A. Design Space Exploration with Design-Trotter

Design-Trotter [2] is an academic design space ex-

ploration tool conjointly developed by LESTER lab,

Université de Bretagne Sud, France and CSDR, Aalborg

University, Denmark.

For guidance purposes metrics are computed to rapidly

stress the proper architecture style for the application,

e.g., the ratio of explicit parallelism versus the pipeline

depth, the need for complex control structures, the

requirements in terms of local memories and specific

bandwidth, and the need for processing resources for

specific computations or address generation. Design-

Trotter computes three orientation metrics [3]: the Mem-

ory Orientation Metric (MOM), the Control Orientation

Metric (COM), and the criticity (average potential par-

July, 2007 DRAFT

3

allelism) of a function (γ).

Since parallelism has a direct impact on several per-

formance factors such as execution time, energy con-

sumption, area, etc., Design-Trotter explores the poten-

tial parallelism of an application in terms of i) type

(data-transfer and data processing), ii) granularity level,

and iii) type (spatial, temporal). Design-Trotter rapidly

provide dynamic exploration of an application by means

of parallelism vs. delay trade-off curves on which a point

corresponds to a potential architecture.

The analysis of the algorithm under consideration

in Design-Trotter, is done automatically, and provide

the design with the above mentioned information. The

designer use these information to identify which pos-

sible solutions in the solution space are fulfilling the

requirements. Since the solutions provided by Design-

Trotter are estimates, it is important that these estimates

are close to the performance of the real implementation.

B. Design-Trotter Solution to Handel-C

Having the algorithm and the design suggestions pro-

vided by Design-Trotter, the next task is to perform the

actual implementation. To keep the development time

short, we use the high-level language Handel-C [4].

Each solution proposed by Design-Trotter could be

implemented on an FPGA using a HDL. Ideally this

could also be the case for high-level languages however,

the main problem at this point is how to achieve this

precision. To settle it the following elements are used:

the resource schedule details provided by Desing-Trotter

and the ”par” statement in Handel-C. Firstly the C source

code used in Design-Trotter is converted to Handel-

C; secondly by referring to the schedule details of

the desired Design-Trotter solution, we can manually

express parallelism inside the top-level blocks of an

algorithm using the ”par” construct in the corresponding

2*index

index

input2[j]

alpha[j] index output1[…]

“1”

Cycles

R
A

M
 R

ea
d

R
O

M
 R

ea
d

R
A

M
 W

ri
te

M
u

l

Fig. 2. Schedule details of the interleaver, derived from Design-

Trotter.

Handel-C code parts; thirdly the Handel-C code in DK

Suite [4] is compiled to an EDIF design file, used for

further implementation on the FPGA.

The structure of the compiled Handel-C code depends

on the assignments in the Handel-C code, meaning that

every assignment in the Handel-C code have a corre-

sponding circuit which takes a clock cycle to execute.

Due to this fact, one can imagine that the Design-

Trotter result in terms of cycle-budget will differs from

the corresponding Handel-C result.

As an example, lets depict the schedule details of

the encoders interleaver block, shown in Fig 3, of the

example, which we consider later on.

The C source code of this interleaver is shown below:

/* interleave output of the upper RSC encoder */

for(j=0; j<FrameLength; j++){

index = alpha[j]; // statement #1

input2[j] = output1[2*index]; // statement #2

}

As we see in Fig 2, one iteration of the interleavers

loop body takes 6 cycles in Design-Trotter, where state-

ment #1 in the code above takes only 2 cycles to

be performed: it takes 1 cycles to read from memory

the constant 2 and alpha[j] values, then 1 cycle

to write alpha[j] to index variable. Statement #2

July, 2007 DRAFT

4

takes 4 cycles to be performed: 1 cycle to read index

value, 1 cycle to perform 2*index multiplication, 1

cycles to read output1[j] value, and 1 cycles to store

output1[2*index] in input2[j].

In Handel-C, one iteration of this loop body takes only

2 cycles: 1 cycle both for statements #1 and #2.

The difference in cycle-budget between the Design-

Trotter result and the corresponding Handel-C results,

will in most cases, have a overweight of cycles in the

Design-Trotter solution. The reason is that assignments

and control statements in Handel-C are incorporated

in the cycle circuit, whereas they have their individual

cycle in Design-Trotter. This means that in practice the

implemented solution typically is more efficient in terms

of timing performance than the corresponding solution,

shown in the Design-Trotter trade-off curves between

resource usage and cycle-budget.

If we use Design-Trotter as a guidance tool and want

to implement the Design Trotter solution as precisely as

possible in hardware, in terms of timing performance, we

need to cope with this difference by trying to minimize

it as much as possible.

C. Timing mis-match between Design-Trotter and

Handel-C

If we consider the nature of these differences, it is

clear that the reduction in the cycle budget, in the

Handel-C case comes from the assignments. Not that it

a constant reduction for all assignment but the reduction

are more or less equal for the individual assignments

whether they are executed in parallel or sequential.

Let us therefore consider the purely sequential so-

lution. If we denote the number of cycles taken from

the Design-Trotter estimate cDT and the corresponding

hardware implementations execution time (in cycles)

cHW (i.e. the code without any parallel constructs in the

Interleaver

Parallel to serial
converter

Data input

Output

Lower
Encoder

Upper
Encoder

Block #2

Block #3

Block #4

Block #1

Fig. 3. Different blocks of the turbo encoder analysed.

code). We can the calculate the ratio p = cDT

cHW
. Finally,

we divide the cycle-budget axes of the Design-Trotter

execution time vs resources trade-off by the obtained

p ratio. The new cycle axes incorporate the differences

between Design-Trotter and Handel-C, and makes the

Design-Trotter estimates applicable.

Out tests shows that the new axes will to some extent

match, the timing performance between Design-Trotter

and Handel-C.

It should also be notice that when matching the timing

performance in this way, it is important that all complex

code assignments in the Handel-C code should be split

into simpler assignments if possible, and that the same

code should be used for the Design-Trotter analysis.

III. EXAMPLES

In the following we will illustrate the methodology

applied on the turbo coder part of the HSDPA scheme.

The turbo encoder and turbo decoder consist of different

parts which are illustrated in Fig 3 and Fig 4 respectively.

A. Design-Trotter Characteristics

The characterization results derived by Design-Trotter

for the turbo-encoder and turbo-decoder are given in

Table I and Table II, respectively. The block numbers

referring to the numbers shown in Fig 3 and Fig 4.

July, 2007 DRAFT

5

Higher
SISO

Interleaver

Lower
SISO

Deinterleaver

+

+

Output decision

+

Block #4Block #2 Block #5

Block #1

Block #3

Fig. 4. Different blocks of the turbo decoder analysed.

TABLE I

METRIC OF THE ENCODER DERIVED FROM DESIGN TROTTER.

Block # Block description COM MOM γ

1 Interleaver 0.071 0.786 1.273

2 Upper RSC encoder 0.018 0.667 2.237

3 Lower RSC encoder 0.018 0.667 2.237

4 P/S converter (1 of 2) 0.03 0.636 3.286

5 P/S converter (2 of 2) 0.017 0.525 5.028

As seen in Table I and Table II, all blocks have

relatively low COM metric values denoting easily condi-

tioned data-flows, i.e., with almost no nondeterministic

control operations in the algorithms. This is due to the

fact that the loop indices are almost not data-dependent.

The MOM metric values, greater than 2/3, indicate an

important data accesses frequency: these blocks require

high memory bandwidth in hardware. Finally, we ob-

TABLE II

METRIC OF THE DECODER DERIVED FROM DESIGN TROTTER.

Block # Block description COM MOM γ

1 Upper SISO processor 0.059 0.73 8.276

2 Lower SISO processor 0.059 0.73 8.276

3 Interleaver 0.077 0.846 1.183

4 Deinterleaver 0.143 0.793 1.473

5 Output formation 0.001 0.576 1.405

0

2

4

6

8

10

12

14

16

18

20

Clock cycles

11
21

11
81

20
33

20
36

20
79

21
22

21
61

22
04

31
57

32
39

33
38

33
80

35
09

35
95

R
es

o
u

rc
es

Turbo Encoder: Resources vs. Execution Speed

Add
Multipliers
Logic
Memory Access

Fig. 5. Resource vs. Exec. Time graph for turbo encoder.

0 50000 100000 150000 200000 250000 300000 350000
0

50

100

150

200

250

Clock cycles

R
es

o
u

rc
es

Turbo Decoder: Resources vs. Execution Speed

Add+sub
Multipliers
Logic
Memory Access

Fig. 6. Resource vs. Exec. Time graph for turbo decoder.

serve high parallelism (high γ value) in the encoders

P/S converter, and in the decoders SISO processors. It

means that these blocks can benefit from an architecture

offering high parallelism capabilities (e.g., FPGA).

Design-Trotter also generates the resource vs. cycle-

budget trade-off curves of the turbo-encoder and of the

turbo-decoder as shown in Fig 5 and Fig 6 respectively.

For the turbo-encoder case, Fig 5 shows that the most-

July, 2007 DRAFT

6

right solution (3595 cycles) is purely sequential, i.e.,

at this point all of the turbo encoder operations are

performed in a sequential manner using the minimum

number of different operation resources.

With the most-left solution (1121 cycles), the maxi-

mum available parallelism for the encoder is achieved,

where therefore this encoder operates in the fastest way

as compared with other solutions. However, this solution

is the most expensive in terms of resources. Finally the

solutions in between offer different level of trade-off

between the most sequential and most parallel ones.

For the decoder case, Fig 6 shows that there are more

solutions than for the turbo-coder. This is mainly due

to the fact that there is more processing and are less

data-dependencies, thus more flexibility for scheduling

the individual operations.

B. The Handel-C implementaion

Different versions, in terms of parallelism and split of

complex statements are implementations of the encoder

and decoder. These are shown in Table III.

The implementation results in terms of timing perfor-

mance are presented in Table IV, and the implementation

results in terms of resource usage are shown in Table V.

By examining the results of the different implemen-

tation of the turbo encoder, i.e., implementations #1, #2

and #3, from Table III, we see the following:

With implementation #1, the original sequential C

source code of the encoder without complex statement

splitting was used. Here we can observe (Table IV) that

the cycle-budget of this encoder in Handel-C differs from

the cycle-budget of the same encoder in Design-Trotter:

in Handel-C it is about five times less (3595 cycles / 735

cycles) than the in Design-Trotter.

With implementation #2, all complex statements of the

encoders code, used in implementation #1, are splitted

TABLE III

DIFFERENT IMPLEMENTATION USED IN THE EXAMPLE.

Algorithm Solution Statement

splitting

1 Turbo encoder Purely sequential No

2 Turbo encoder Purely sequential Yes

3 Turbo encoder Internal parallelism is

max exploited

Yes

4 Turbo decoder Purely sequential No

5 Turbo decoder Purely sequential Yes

into simpler statements. Here we see that the cycle-

budget of the splitted code in Handel-C is now about

three times less (5470 cycles / 1880 cycles) than the

one of the same splitted code in Design-Trotter. It

means that splitting of statements in some extent matches

the timing performance between the related Handel-C

and Design-Trotter codes. With implementation #3, the

internal parallelism is expressed inside all blocks of the

encoders code, used in implementation #2.

At this point we notice that the cycle-budget both in

Handel-C and Design-Trotter is reduced about the same

number of times (as compared with implementation #2),

so using another solution from the trade-off curve gives

the same trend in both Design-Trotter and Handel-C

implementation.

Considering the implementation results of the turbo

decoder, i.e., implementations #4 and #5, shown in

Table IV. With implementation #4, the original C source

code of the turbo decoder is implemented. With im-

plementation #5, this code is splitted, i.e., all complex

statements of this code are broken up into simpler

statements.

When comparing implementations #4 and #5, we

notice that splitting of complex statements increases the

hardware clock speed.

July, 2007 DRAFT

7

TABLE IV

ESTIMATED EXECUTION TIME FROM DESIGN-TROTTER, AND

EXECUTION TIME FROM HANDEL-C IMPLEMENTATION.

DT Handel-C HW clock Exec. time

[Cycles] [Cycles] [MHz] [μs]

1 3595 735 70.1 10.49

2 5470 1880 83.6 22.49

3 4357 1714 83.6 20.51

4 319691 39928 37.5 1066

5 249903 48213 57.6 836.7

TABLE V

RESOURCES USE OF THE DIFFERENT IMPLEMENTATIONS.

of 4-input LUT # slices # RAM blocks

1 593 330 6

2 685 416 6

3 597 363 6

4 6348 3547 4

5 5662 3222 4

IV. CONCLUSION

In this paper some of the implementation challenges

raised by recent and future wireless communication

systems have been addressed. More specifically we

have described a design methodology for design space

exploration and implementation guidance for wireless

systems. By applying the proposed methodology to the

HSDPA concept we have illustrated its practical usage

and benefits. The implementation examples and results

have shown how the proposed methodology based on

our tool Design-Trotter can alleviate system designers

from time-consuming and error-prone design tasks, and

thus reducing the time-to-market factor. In particular

we have discussed the design space exploration and

characterization of the turbo-encoder and turbo-decoder

for HSDPA and illustrated how the exploration results

can be used to guide the back-end implementation phase.

REFERENCES

[1] ETSI Mobile Competence Centre, “Overview of 3gpp release 5 -

summary of all release 5 features - version 0.10,” 2003.

[2] Yannick Le Moullec, Jean Philippe Diguet, Thierry Gourdeaux,

and Jean-Luc Philippe, “Design-trotter: System-level dynamic es-

timation task - a first step towards platform architecture selection,”

In Journal of Embedded Computing (IOSPRESS), vol. 1, no. 4, pp.

565–586, 2005.

[3] Y. Le Moullec, N. Ben Amor, J.-Ph. Diguet, M. Abid, and J-

L. Philippe, “Multi-granularity metrics for the era of strongly

personalized SOCs,” in Proceedings of the Design, Automation

and Test in Europe Conference and Exhibition, 2003.

[4] “Dk-design suite datasheet,” http://www.celoxica.com, 2007.

July, 2007 DRAFT

