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Recent developments in the area of probabilistic design of timber
structures

J. Köhler
Swiss Federal Institute of Technology, Zurich, Switzerland

J.D. Sørensen
Aalborg University, Aalborg, Denmark

ABSTRACT: Timber is a complex building material with properties which are highly variable both spatially
and in time. In structural engineering, the important material properties are the strength and stiffness related
properties of standard test specimen under given (standard) loading and climate conditions and the timber
density. JCSS (Joint Committee of Structural Safety) has recently developed a probabilistic model code for
timber properties for structural design, (JCSS 2006). This paper describes the main content of this probabilistic
model code and gives a short example for possible application.

1 BACKGROUND

Typical problems in structural engineering such as
design, assessment, inspection and maintenance plan-
ning are decision problems subject to a combination
of inherent, modeling and statistical uncertainties.
Recent developments in the field of structural reli-
ability together with the formulation of probabilistic
models for the structural response and for loads enable
the structural engineer to quantify these uncertainties
and establish his decisions on a consistent basis. The
results of these advances are summarized in the Prob-
abilistic Model Code (PMC) published by the Joint
Committee on Structural Safety (JCSS 2006).

The PMC contains general guidelines for uncer-
tainty modeling, reliability assessment and prob-
abilistic models for loads and material resistance
for building materials as concrete and steel. Lately,
also a probabilistic model code for structural tim-
ber has been developed by an international group
of researchers organized under the umbrella of the
European COST action E24 ‘Reliability of Timber
Structures’ (COST 2005).

2 INTRODUCTION

Timber is a rather complex building material. Its prop-
erties are highly variable, spatially and in time. In
structural engineering, material properties of timber
are defined as the stress and stiffness related proper-
ties of standard test specimen under given (standard)

Figure 1. Reference material properties and other material
properties.

loading and climate conditions and the timber den-
sity. Timber is a graded material. Due to the grading
process, the material properties are associated with
some control scheme, whereas only the so-called refer-
ence material properties are considered explicitly. The
so-called other material properties are only assessed
implicitly. The distinction between reference prop-
erties and other properties is made as illustrated in
Figure 1. The bending strength rm, the bending modu-
lus of elasticity moem and the timber density ρden are
referred to as the reference material properties.

When modeling timber material properties in a
structure, i.e. at any generic point, in time and in space,
several issues have to be taken into account. As illus-
trated in Figure 2 the cornerstone of the modeling of
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Figure 2. Outline of the modeling of timber material
properties.

Table 1. Basic material properties in different context.

[MPa] [kg/m3]

Properties of test specimen, size, climate rm,s ρden,s
and loading conditions are specified by moem,s

test standards.1,2

Properties of cross sections, climate and rm ρden
loading conditions are specified by test moem
standards.

Properties of cross sections under any moem,α ρden,α
climate and loading condition. rm,α

1 ISO 8375: symmetrical 4-point bending test, span
18h(3 · 6 · h) with h ≈ 150 mm, ramp load test duration
300 ± 120s, specimen conditioned at nominal climate,
20 ± 2◦C, 65 ± 5% relative humidity.
2 ISO 3131: from a disc of full cross section, free defects.

timber material properties is constituted by the ref-
erence material properties under test conditions. The
material property of interest at any generic point may
derivate in terms of type (‘other material properties’),
of dimensions and size (‘scale’) and of specific loading
and climate conditions (‘time (load/moisture)’).

3 PROBABILISTIC MODEL FOR TIMBER
MATERIAL PROPERTIES

3.1 Definitions

The three reference material properties are defined in
three different contexts; as illustrated in Table 1.

The reference material properties are in general
communicated in form of the properties of standard
test specimens; rm,s, moem,s, ρden,s.

However, these properties are sensitive to the devi-
ations from the standard test conditions. The refer-
ence material properties of a cross section in situ

(i.e. at any generic point in time and in space) can be
estimated as:

Bending moment capacity in situ, rm,α :

Bending MOE in bending in situ, moem,α:

Density in situ, ρden,α:

where Ex (s, ω, τ, T ) is the exposure of the structure to
loads s, humidityω and temperature τ, in the time inter-
val [0,T ]; α(Ex (.)) is a strength modification function,
in general defined for a particular set of exposures;
δ(Ex (.)) is a stiffness modification function, in general
defined for a particular set of exposures.

rm, moem and ρden are the bending moment capacity,
the modulus of elasticity and the density of a cross
section under test (climate and loading) conditions.

Other material properties are estimated based on the
reference material properties.

Expressions for the expected values E[.] and the
coefficient of variation COV [.] are given in Table 2.
(Note that the capital letters in Table 2 indicate
that the material properties are now represented
as random variables, i.e. rm → Rm, moem → MOEm,
ρden → Pden, etc.)

The relations are derived for standard test specimen
properties tested under reference conditions. However,
it is assumed that the relations can be used at any level,
i.e. for components of any size and/or for other climate
and load conditions.

3.2 Typical limit state functions

3.2.1 Ultimate limit states
The ultimate limit state equation for a cross sec-
tion subjected to stress in one particular direction is
given as:

where zd is a design variable, e.g. cross-sectional area,
R is the resistance, e.g. tension strength, �Si is the sum
of all possible load effects, e.g. axial stresses, XM is
the model uncertainty.

Ultimate limit state equations for cross sections
subjected to combined stresses can be formulated
similarly.

2



Mori CH210.tex 5/6/2007 17: 44 Page 3

Table 2. Relation between reference properties other properties.

Property Expected values E[X ] Coef. of variation COV [X ]

rt,0 → Rt,0: E[Rt,0] = 0.6 E[Rm] COV [Rt,0] = 1.2 COV [Rm]
rt,90 → Rt,90: E[Rt,90] = 0.015E[Pden] COV [Rt,90] = 2.5COV [Pden]
moet,0 → MOEt,0: E[MOEt,0] = E[MOEm] COV [MOEt,0] = COV [MOEm]
moet,90 → MOEt,90: E[MOEt,90] = E[MOEm]/30 COV [MOEt,90] = COV [MOEm]
rc,0 → Rc,0: E[Rc,0] = 5 E[Rm]0.45 COV [Rc] = 0.8 COV [Rm]
rc,90 → Rc,90: E[Rc,90] = 0.008 E[Pden] COV [Rc,90] = COV [Pden]
mogv → MOGv: E[MOGv] = E[MOEm]/16 COV [MOGv] = COV [MOEm]
rv → Rv: E[Rv] = 0.2 E[Rm]0.8 COV [Rv] = COV [Rm]

where zd,A, zd,M are design variables, e.g. the cross
sectional area and the section modulus, Rt,0, Rm are
the tension strength and the bending moment capacity,
�St,i, �Sm,i are the sum of all possible load effects, e.g.
axial stresses and bending stresses, XM is the model
uncertainty.

Ultimate limit state equations for cross sections sub-
jected to other combined stresses can be formulated
similarly.

3.2.2 Serviceability limit states
E.g. when a deflection exceeds an allowable limit:

where δL is an allowable deflection limit and
W�(�Si, MOEm, t) is the deflection at time t, depend-
ing on load effects �Si and modulus of elasticity and
XM is the model uncertainty.

3.3 Formulation of prior models

A proposal for the quantification of probabilistic
models is presented in this section. In general this
information can be utilized for the formulation of prior
models when new information, e.g. information of test
data becomes available. However, the given specifica-
tions may also be seen as a common reference for, e.g.
code calibration procedures.

3.3.1 Reference material properties
The distribution type and the recommended coefficient
of variation (COV ) of the basic material properties for
European softwood are given in Table 3. Recommen-
ded distribution functions of other material properties
are given in Table 4. The distribution parameters can
be determined with the information given in Table 2.
and 3. If additional information about the mate-
rial property of interest of the considered population
becomes available, e.g. inform of test data, this infor-
mation should be integrated using a Bayesian updating
scheme.

Table 3. Probabilistic models for reference properties.

Distribution COV

Bending strength Rm = Rm,s Lognormal 0.25
Bending MOE MOEm = MOEm,s Lognormal 0.13
Density Pden = Pden,s Normal 0.1

Table 4. Distribution functions for other material
properties.

Property Distribution

Tension strength par. to the grain, Rt,0: Lognormal
Tension strength perp. to the grain, Rt,90: 2-p Weibull
MOE – tension par. to the grain, MOEt,0: Lognormal
MOE – tension perp. to the grain, MOEt,90: Lognormal
Compression strength par. to the grain, Rc,0: Lognormal
Compression strength per. to the grain, Rc,90: Normal
Shear modulus, MOGv: Lognormal
Shear strength, Rv: Lognormal

3.3.2 Correlation matrix
The relations to other material properties are given in
Table 2. Indicative values of the correlation coefficient
matrix are given in Table 5.

3.3.3 Strength and stiffness modification
functions

Values for the strength modification function α(.)
are quantified for discrete exposures Ex(s, ω, τ, t) as
specified in Table 6.

The particular sets of exposures are defined as in
Eurocode (EC) 5 (EN 1995-1 2004); different load
duration classes and different service classes (sc)
depending on the expected moisture content (mc)
of the timber (sc 1, 2, 3 is associated with mc
<12%, <20%, <20%). The values for α(.) are taken
from EC 5.

Values for the stiffness modification function δ(.)
are quantified for discrete exposures Ex(s, ω, τ, T ) as
specified in Table 7. The particular sets of exposures
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Table 5. Correlation coefficient matrix – indicative values.

MOEm Pden Rt,0 Rt,90 MOEt,0 MOEt,90 Rc,0 Rc,90 MOGv Rv

Rm .8 .6 .8 .4 6 .6 .8 .6 .4 .4
MOEm .6 .6 .4 .8 .4 .6 .4 .6 .4
Pden .4 .4 .6 .6 .8 .8 .6 .6
Rt,0 .2 .8 .2 .5 .4 .4 .6
Rt,90 .4 .4 .2 .4 .4 .6
MOEt,0 .4 .4 .4 .6 .4
MOEt,90 .6 .2 .6 .6
Rc,0 .6 .4 .4
Rc,90 .4 .4
MOGv .6

The values inTable 5 are quantified by judgment (COST 2005), such that 0.8 → high
correlation, 0.6 → medium correlation, 0.4 → low correlation, 0.2 → very low
correlation.

Table 6. Strength modification function table.

sc Permanent Long term Medium term Short term
( t > 10 yrs) (.5 < t < 10 yrs) (.25 < t < 6 mths) (t < 1 wks) Instant.

1/2 α = 0.6 α = 0.70 α = 0.80 α = 0.9 α = 1.1
3 α = 0.5 α = 0.55 α = 0.65 α = 0.7 α = 0.9

Table 7. Stiffness modification function table.

sc Permanent Long term Medium term Short term
(t > 10 yrs) (.5 < t <10 yrs) (.25 < t < 6 mths) (t < 1 wks) Instant.

1 δ = 0.6 δ = 0.5 δ = 0.25 δ = 0.0 δ = 0.0
2 δ = 0.8 δ = 0.5 δ = 0.25 δ = 0.0 δ = 0.0
3 δ = 2.0 δ = 1.5 δ = 0.75 δ = 0.3 δ = 0.0

are defined as in EC 5. The values for δ(.) are taken
from EC 5.

3.3.4 Model uncertainties for different ultimate
limit states

The model uncertainties cover deviations and sim-
plifications related to the probabilistic modeling and
the limit state equations. The reference properties are
determined by standardized tests. Therefore, model
uncertainties related to estimation of other material
parameters (e.g. tension and compression strengths)
have to be accounted for. Geometrical deviations from
specified dimensions, durations of load and mois-
ture effects (damage accumulation) also contribute
to model uncertainties if not explicitly accounted for
in the probabilistic modeling. Furthermore, the ide-
alized and simplified limit state equations introduce
model uncertainties. In Table 8 indicative values for
model uncertainties are shown. The model uncertainty
depends on the limit state (bending or e.g. combined
stress effects) and how much the actual condition
deviates from the standard test conditions.

Table 8. Model uncertainties XM for different component
limit states.

mean st.dev. Distribution

Short term 1 0.05 0.10 Lognormal
Long term 1 0.10 Lognormal

4 REFINEMENTS OF THE PROBABILISTIC
MODELS

4.1 Modeling the spatial variation of timber
properties

4.1.1 Bending moment capacity
Following a model proposed by Isaksson (1999), the
bending strength rm,ij at a particular point j in the
component i of a structure can be modeled by:
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Figure 3. Section model for the longitudinal variation of
bending strength.

where ν is the unknown logarithm of the mean strength
of all sections in all components (compare with
Figure 3), 	i is the difference between the logarithm
of the mean strength of the sections within a com-
ponent i and ν. 	i is normal distributed with mean
value equal to zero and standard deviation σ	 , χij is the
difference between the strength weak section j in the
beam i and the value ν + 	i. χij is normal distributed
with mean value equal to zero and standard deviation
σχ. 	i and χij are statistically independent. The bend-
ing strength rm,ij can be seen as the bending strength
of a particular cross section rm,0; rm,ij is a realization
of the random variable Rm,ij which is the lognormal
distributed bending strength of a cross section.

It is assumed that the bending strength of a cross
section Rm,0 is related with the bending strength of a
test specimen Rm,s as:

whereϑ is a constant depending on the applied bending
test standard and the type of timber.

The bending moment capacity Rm,0 is assumed to
be constant within one section. The discrete section
transition is assumed to be Poisson distributed, thus
the section length follows X an exponential distribu-
tion with mean value 1/λ. A realization of X , xj is
illustrated in Figure 3.

For Nordic spruce the following information basis
can be given (Isaksson 1999): The variation of the log-
arithm of the bending capacity ln (Rm,0) is related by
40% to the variable 	 and by 60% to the variable χ.
The expected length of a section is 1/λ = 480 mm.

4.2 Duration of load effect

The mechanism leading to strength reduction of a tim-
ber member under sustained load is referred to as
creep rupture and is modeled by so-called cumulative
damage models with the general form:

where t is time, αD is the damage state variable which
commonly ranges from 0 (no damage) to 1 (failure),
the function h(.) contains parameters θ that must be
determined from experiment observations, s(t) is the
applied stress and r0 the failure stress under short term
ramp loading.

The following long term limit state function is
utilized:

where αD is the damage state variable at time t and XM
is the model uncertainty. More information about dam-
age accumulation modeling can be found in the JCSS
Probabilistic Model Code, section 3.5 (JCSS 2006).

4.3 Updating scheme for the basic properties

When information has been collected about the basic
material properties the new knowledge implicit in that
information might be applied to improve any previous
(prior) estimate of the material property. For the type of
information e.g. it can be differentiated between direct
and indirect information; i.e. direct measurements of
the material property and the measurement of some
indicator of the property respectively.

In the proposed framework new information can be
introduced at any stage of modeling. In the following
the principle of considering new direct information
e.g. in form of test results is presented. The utiliza-
tion of new indirect information, e.g. information from
grading indications, is illustrated with two different
methods.

In the following updating is illustrated with three
different methods based on Bayesian updating as
described in JCSS Probabilistic Model Code (JCSS
2006), section 3.0.

4.3.1 Updating – direct information
The bending strength Rm and the bending modulus of
elasticity Em are modelled by lognormal distributed
random variables which can be represented through
the normal distributed random variables R∗

m = ln (Rm)
and E∗

m = ln (Em). All basic properties may be repre-
sented with the uncertain mean value M and standard
deviation � as illustrated by:

The parameters M and � of R∗
m, E∗

m and ρden are quan-
tified with a Normal-Inverse-Gamma-2 distribution
with the parameters m, s, n, v which is equivalent to

5
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the natural conjugate prior of a normal distribution
with unknown mean and standard deviation. Given the
parameters m, s, n, v the predictive distribution of R∗

m,
E∗

m and ρden can be derived as:

where Tv(.) is the student-t-distribution with v degrees
of freedom.

The prior predictive distribution can be quantified
with parameters (m, s, n, v) = (m′, s′, n′, v′).

New measurements on the material properties can
be used for updating the parameters given above. For a
sample of n observations (x̂1, x̂2, . . . , x̂n), the posterior
predictive distribution function of X is obtained using
the JCSS Probabilistic Model Code (JCSS 2006),
section 3.0.

4.3.2 Indirect information I – machine grading
In this section a simple model for updating the statis-
tical parameters of the Lognormal distribution for e.g.
the bending strength of a given timber grade when new
information becomes available in the form of machine
grading results is described.

The Lognormal distributed strength parameter R is
assumed to have a coefficient of variation COVR. Then
X = ln R is Normal distributed with expected value
MX and standard deviation σ2

X = ln (COV 2
R + 1). σX is

assumed to be known and MX is assumed to be Nor-
mal distributed with expected value µ0 and standard
deviation σ0.

When machine grading is based on a measured indi-
cator i, typically related to the stiffness of a timber test
specimen, the following relation between the indica-
tor i and the strength parameter can initially be fitted
to tests results where both the indicator value and the
strength R are measured:

where b0 and b1 are constants and ε is an error term
which is assumed Lognormal distributed. ln (ε) is then
Normal distributed and is assumed to have zero mean
value and standard deviation σln (ε). The parameters b0,
b1 and σln (ε) can be estimated from the tests using the
Maximum Likelihood method.

Next, it is assumed that n new observations
î1, î2, . . . , în of the indicator is obtained from n spec-
imens from a given timber grade. The mean value of
these can be estimated as

and the updated (predictive) distribution function for
X = ln R is then Normal with expected value µ′′ and
standard deviation σ ′′′:

The updated predictive distribution for the
strength R is then Lognormal with expected
value µ′′

R = exp (µ′′ + 0.5σ ′′′2) and standard deviation
σ ′′′

R = µ′′
R( exp (σ ′′′2) − 1)0.5.

4.3.3 Updating – indirect information II –
calibration of grading rules

The probabilistic model for bending strength described
in this section can be used for machine graded timber
and is based on the model described in Faber et al.
(2004). The probabilistic model can be described by
the following steps:

For a given geographic region and a given type of
specie (e.g. Nordic Spruce) an initial (prior) distribu-
tion function FRm (x) can be established for the bending
strength Rm for non-graded timber. The recommended
distribution function is Lognormal. The statistical
parameters in the distribution function can be obtained
using e.g. the Maximum Likelihood method. For the
identification of lower grades it is recommended to fit
the initial (prior) distribution function FRm (x) to the
data in the lower end (e.g. 30% of the data with low-
est strengths); in order to obtain good models in the
lower tail of the distribution function for the graded
timber strength. This can be done using the Maximum
Likelihood method, see e.g. in Faber et al. (2004).

Machine grading is based on a measured indicator
i, typically related to the stiffness of a timber test spec-
imen. For each grading technique the following linear
relation with the bending strength is assumed:

where a0 and a1 are constants and ε is the lack-
of-fit quantity which is assumed Normal distributed
with zero mean value and standard deviation σε. The
parameters a0, a1 and σε can be estimated using the
Maximum Likelihood method which also gives the sta-
tistical uncertainty in form of standard deviations and
correlation coefficients of the parameters a0, a1 and
σε. It is noted that in Eq. (15) the logarithms are fitted
with a Lognormal distributed lack-of-fit error, whereas
in Eq. (18) a linear model with a Normal distributed
lack-of-fir error is used.

6
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After grading the updated (predictive) distribution
function for the bending strength in grade no. j is
obtained from:

where bL,j and bU ,j are lower and upper limits of the
grading indicator i for grading no. j.The updated distri-
bution function FU

Rm,j
(x) can then be used in reliability

analyses. A detailed description of the method can be
found in Faber et al. 2004 and Köhler 2003.

5 EXAMPLE – RELIABILITY BASED CODE
CALIBRATION

In Faber & Sørensen (2003) the principles of relia-
bility based code calibration is demonstrated. In the
following the approach followed there is illustrated
along with an example on code calibration for a timber
design code.

Reliability analysis of structures for the purpose
of code calibration in general or for the reliability
verification of specific structures requires that the rel-
evant failure modes be represented in terms of limit
state functions. The limit state functions define the
realizations of resistance parameters, i.e. the material
properties and the load variables resulting in structural
failure.

In code based design formats such as the Eurocodes
(EN 1990 2002), design equations are prescribed for
the verification of the capacity of different types of
structural components in regard to different modes of
failure. The typical format for the verification of a
structural timber component in Eurocode 5 (1990-1
2004) is given as a design equation in the following
form:

where rk is the characteristic value for the resistance,
zd is the design variable (e.g. the cross section of a
timber beam), si,k are the characteristic values of load
effects which are considered in the design, γM and
γs,i are partial safety factors for the resistance and the
loads respectively. When more than one variable load
is acting, load combination factors ψi are multiplied
on one or more of the variable load components to
take into account the fact that it is unlikely that all
variable loads are acting with extreme values at the
same time. kmod is a modification factor taking into
account the effect of the duration of load and moisture.
In this example kmod is assumed to be unity, i.e. no load
duration and moisture effects are considered.

The partial safety factors together with the char-
acteristic values are introduced in order to ensure a

certain minimum reliability level for the structural
components designed according to design equations
as e.g. given in Eq. (20). As different materials have
different uncertainties associated with their material
parameters the partial safety factors are in general
different for the different materials.

In accordance with a given design equation, such as
e.g. Eq. (20) a reliability analysis may be performed
based on a limit state function of similar form as:

where R and Si are the resistance and the load effects
as random variables and X a the model uncertainty.
According to Eq. (21) failure F corresponds to an
event defined by F = {g ≤ 0}. With given probabilistic
models for X , R and Si the reliability of a structural
timber component designed according to Eq. (20) with
a given set of partial safety factors and characteristic
values can be checked by using standard procedures
as e.g. FORM/SORM (see e.g. Melchers 2002).

The aim of reliability based code calibration is
the calibration of partial safety factors such that the
reliability corresponding to different typical design
situations are as close as possible to a specified
value for the target reliability. Recommendations for
suitable target reliabilities are provided by e.g. the
JCSS (2006) or ISO 2394. Different design situation
might be considered e.g. through different contribu-
tions of different load effects, in the case of the limit
state functions in Eqs. (22) and (23), and consider-
ing two load effects due to permanent and variable
load respectively, this might be introduced through a
factor αi = i/L i = 1, 2, . . . , L modeling the relative
importance of permanent and variable load as:

sG,k and sQ,k are the characteristic values of the load
effects due to permanent and variable load respec-
tively, SG and SQ are the two load effects as random
variables.

Accordingly, the following optimization problem
can be formulated, (Faber & Sørensen 2003):

where βt is the reliability index corresponding to the
target reliability, βi(γ) is the reliability index corre-
sponding to a design performed with a set of partial
safety factors γ and wi, i = 1, 2, . . . , L are factors indi-
cating relative frequency / importance of the different
design situations.
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Table 9. Parameters used in the example and results.

Part.safety factors
From the JCSS 2006

Optimized,
COV Dist. Type Quantile EC 5 β = 4.2 (yrly)

Resistance 0.25 Lognor. 5% 1.3 1.38
Model uncertainty 0.05 Lognor. – – –
Effect of perm. load 0.1 Normal 50% 1.35 1.39
Effect of var. load 0.4 Gumbel 98% 1.5 1.41

Figure 4. Reliability index corresponding to different
design situations.

The code calibration procedure as described above
is already included in the software package CodeCal, a
MS EXCEL based software, which is provided as free-
ware by the JCSS (2006). In the following, the partial
safety factors γT = (γM , γG , γQ) are calibrated using
CodeCal.The calibration takes basis in Eqs. (22)–(23).
The probabilistic model of the random variables of the
problem are chosen as proposed in the JCSS PMC
(JCSS 2006) and shown in Table 9.

L = 10 design situations are considered (see Eqs.
(22), (eq23)).

For a chosen target reliability index βt = 4.2 (yearly,
as recommended in the JCSS PMC (JCSS 2006)) the
partial safety factors are calibrated by solving Eq.(24).
The calibrated set of partial safety factors together with
the partial safety factors prescribed in EC5 (2004) is
given in Table 9.

In Figure 4 the reliability index β is plotted over the
different design situations represented by different val-
ues of αi. It is shown that the set of partial safety factors
prescribed in EC5 is not corresponding to the optimal
set if all partial safety factors are subject to calibration.
In load and resistance factor design (LRFD) formats as
EC5, however, partial safety factors for load effects are
in general similar and independent from the structural
material which is utilized. Therefore, code calibration
procedures should involve all possible building mate-
rials, i.e. calibrate partial safety factors considering all
relevant design situations and materials. The software
package CodeCal facilitates this option.

For the validity of the results of a code calibration
procedure, it is of utmost importance that the basic
random variables utilized in the analysis are quanti-
fied based on the best knowledge available. The JCSS
PMC provides a set of probabilistic models, which can
be used if no other information about the variables
is available. E.g. for the timber bending strength, a
lognormal distribution with COV = 0.25 is suggested.
However, if new information (direct or indirect) is
available, the suggested distribution should be con-
sidered as a prior distribution in a Bayesian updating
scheme (as described in more detail in the JCSS PMC).

6 CONCLUSIONS, DISCUSSION AND
OUTLOOK

A framework for probabilistic modeling of timber
material properties is presented. The basic reference
properties for timber strength parameters are described
and some limit state equations are formulated.The rec-
ommended probabilistic model for the basic properties
is presented and indicative numerical values for the
parameters are given. Refinements related to updating
of the probabilistic model given new information, spa-
tial variation of strength and duration of load effects
are described.

The proposal can be seen as a guideline and com-
mon reference for probability based code calibration of
timber design codes as it is illustrated with an example.
The parameters of the proposed models, however, need
to be quantified on a broad and representative data
base. Comprehensive experimental data concerning
the basic timber phenomena already exist, especially
resulting from research projects in North America,
Europe and Australia. One major task for develop-
ing further the presented model code is to collect and
assess existing experimental data. The timber research
community is asked to contribute by making avail-
able experimental data for the quantification of model
parameters for timber predominantly used for timber
design.

The present version of the ‘JCSS – Timber Prob-
abilistic Model Code’ does not cover all aspects of
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the design of timber structures. An attempt to model
the spatial variability of the timber bending strength
is presented in this document. More experimental
work should be performed or reviewed to quantify
the parameters of the presented model. The descrip-
tion of size effects in regard to the modeling of other
material properties has earned considerable recogni-
tion in the past research; no general consensus has been
reached and future research should be directed in the
development of a consistent framework for the descrip-
tion of size effects in structural timber elements. For
timber structures, the structural performance depends
to a considerable part on the connections between
different timber structural members; connections can
govern the overall strength, serviceability and fire
resistance. Beside solid timber other timber materials
are utilized in timber engineering. Glued laminated
timber is an example of an interesting timber mate-
rial, frequently used in high performance load carrying
structures. It is of utmost importance to develop con-
sistent probabilistic models for these timber materials
and for timber connections, especially in the perspec-
tive of their potential competitiveness to other building
materials such as steel and reinforced concrete.

The further development of the probabilistic model
code for timber should constitute an important future
task for the timber research community.
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