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ABSTRACT 

Aims  

 Time series of incidence counts often show secular trends and seasonal patterns. We 

present a model for incidence counts capable of handling a possible gradual change in growth rates 

and seasonal patterns, serial correlation and overdispersion. 

Methods 

 The model resembles an ordinary time series regression model for Poisson counts. It 

differs in allowing the regression coefficients to vary gradually over time in a random fashion. 

Data 

 In the period January 1980 to 1999, 17,989 incidents of acute myocardial infarction 

were recorded in the county of Northern Jutland, Denmark. Records were updated daily. 

Results 

 The model with a seasonal pattern and an approximately linear trend was fitted to the 

data, and diagnostic plots indicate a good model fit. The analysis with the dynamic model revealed 

peaks coinciding with influenza epidemics. On average the peak-to-trough ratio is estimated higher 

using the dynamic model, and graduate changes in seasonal pattern is seen. 

 

Conclusion 

 Analyses conducted with this model provide detailed insights not available from more 

traditional analyses. The post-hoc analysis gives ideas to identify possible causal factors and 

confounders. 
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INTRODUCTION 

A number of epidemiological studies of cardiovascular disease have identified changes in long-term 

trends and a distinctive seasonal pattern, with a winter peak. Current statistical methods have been 

applied to quantify the trend and seasonal patterns1-7, but the issue of how to deal with temporally 

changing seasonal patterns remains unresolved. In this paper, we propose a statistical model that 

allows for gradual changes in both the seasonal pattern and the shape of the long-term trend. 

 

A cyclic variation in disease incidence implies a cyclic variation in one or more causes. Therefore 

the analysis of seasonal pattern is important in the search for possible causes. Corresponding 

changes over time in seasonal pattern in disease and a potential causal factor may indicate a causal 

relationship. However, interpretation of changes in seasonal pattern is not straight-forward. A 

strong seasonal pattern can appear to weaken if disease incidence from a non-seasonal cause 

increases disease occurrence.  The role of the seasonal factor may be unchanged, but the change in 

the extraneous cause could affect it indirectly. 

 

Existing methods for analysing chronobiological time series of normally distributed and Poisson-

distributed observations include Cosinor rhythmometry8 and the Edwards method9. Neither 

considers the presence of secular trends and other effects, and the seasonal pattern, a simple 
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sinusoid, remains fixed over time. A generalized linear model for Poisson observations can handle 

seasonal components via a harmonic representation, and the secular trend via a polynomial or a 

spline representation10. Even more flexible generalized additive models11 have been used to control 

for seasonality and trend in studies that link an explanatory variable (air pollution) to morbidity and 

mortality12,13. However, a harmonic representation does not allow for gradual changes over time, 

while splines and additive models do not recognize the pattern as a seasonal variation. 

 

It is possible to extend the above methods to handle both overdispersion and serial correlation in 

incidence data. The generalized estimating equation approach14 offers a method of parameter 

estimation and hypothesis testing which accounts for overdispersion and correlation. Autoregressive 

Poisson models have also been suggested15,16.  

 

Temporal changes in the seasonal pattern are not easily incorporated into such models, however, 

and literature on modelling these types of changes is scarce. A simple approach is to apply binning 

(i.e., division into subintervals) to the time axis and then to analyse subintervals separately17,18. 

Binning of the time axis in combination with spline regression has been used previously to assess 

coronary mortality19. However, the use of binning implies abrupt rather than smooth changes 

between subintervals, with the risk of residual confounding. 

 

We present a dynamic generalized linear model20 incorporating a gradual, smooth change in the 

seasonality pattern over time, as well as overdispersion and serial correlation between observations. 

To demonstrate its use, we applied the model to count data on acute myocardial infaction taken 

from a population-based hospital discharge registry. For simplicity, the model does not take into 

account explanatory variables, but such variables could easily be added. 
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METHODS 

We consider a sequence of counts of events observed at given times, for example daily occurrence 

of acute myocardial infarctions in a given region over a given period. Denote by yk the count at time 

point tk. The time points need not be evenly spaced. We assume that the count yk has a Poisson 

distribution with the expected number of events (the intensity) being λk. Secular trend and 

seasonality are related to intensity via the formula  

kkk TS +=)log(λ , 

where Sk describes the seasonal component and Tk describes the secular trend.   

 

We model the seasonal component Sk at each time point tk as a sum of p sinusoids of the form 

pjtTjbtTjaS kjkkjkjk ,,1),/2cos()/2sin( K=⋅⋅+⋅⋅= ππ , (1) 

where T is a pre-defined period, for example a year. Over the period from 0 to T, Sjk has j peaks and 

j troughs. This yields a flexible model for seasonality patterns in which multiple peaks and troughs 

are allowed within the same period. Using standard trigonometric formulae, the above equation can 

be rewritten as Ajkcos(j2π / T tk + φjk) where Ajk=√(ajk
2 + bjk

2) and φjk = arctan(ajk/bjk). Hence the 

ajk’s and bjk’s govern both the amplitude and phase of the sinusoids describing Sk.  

 

The secular trend evolves over time as 

kkkk tTT αΔ+= −1 , 

where Δtk = tk - tk-1 is the time elapsed since the last observation and αk is the slope. Note that the 

logarithmic scale corresponds on the original scale to an exponential secular trend. 
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In the case where ajk, bjk, and αk do not depend on k, the model reduces to a standard generalized 

linear model21.  Such a model has been used previously, with binning of the time axis, to study the 

trend and seasonal pattern of the incidence of acute myocardial infarction18. The approach presented 

in the present paper is more general, in that the parameters ajk, bjk, and αk are allowed to change 

gradually over time in a random manner. Consequently, the intensity λk also becomes random. We 

assume that each of the parameters follows a simple random walk: 

jkkk

jkkjjk

jkkjjk

bb
aa

ωαα
ν
ε

+=
+=
+=

−

−

−

1

1,

1,

 

where εjk,  νjk and  ωk   are independent normally distributed random variables with mean zero and 

variances ΔtkW (for εjk,  νjk) and  ΔtkV (for ωk). This extension of the generalized linear model to 

parameters varying over time is a special case of a dynamic generalized linear model22. In this 

model, inference can be performed using the iterated extended Kalman smoother20, which is 

implemented in the package sspir23 for R24. The iterated extended Kalman smoother approximates 

the conditional distribution of ajk, bjk, and αk,, given all the available information. The conditional 

distribution can be used subsequently to extract information regarding the seasonal component, the 

secular trend component, and derived entities. The unknown variance parameters V and W must be 

specified prior to applying the iterated extended Kalman smoother. They can be estimated using 

standard maximum likelihood methods25. 

 

In a generalized linear model in which the parameters ajk, bjk do not depend on time through k, one 

must assume a constant seasonal pattern over the entire study period. In contrast, the dynamic 

model allows for a gradually changing seasonal pattern in which the amplitude and phase of the 

sinusoids (1) are drifting. This allows investigators to quantify changes over time within seasonal 
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patterns. The same reasoning applies to the secular trend, where the random walk model for the 

growth rate αk allows the trend component to change over the long term and adapt smoothly to the 

observations.  

 

There are two additional important consequences of modelling the parameters ajk, bjk, and αk as 

randomly fluctuating. First, we have accounted for overdispersion in the count data by adding an 

‘extra layer’ of randomness. Because Var(yt | λt) = λt, we have Var(yt) = E(yt) + Var(λt), according 

to the law of total variance. Second, we have allowed for serial correlation in data by using the 

random walk model for the underlying parameters.  

 

The peak-to-trough-ratio (PTR) of the seasonal component is a measure of the relative risk of 

disease in the peak period relative to the trough and is often of primary interest when quantifying 

seasonality in incidence studies. Note that since the PTR is derived from parameters which vary 

over time, it is itself time-varying and also can be estimated in our dynamic model. It can be 

interpreted as the peak-to-trough ratio of a window of size T centred at the current time point tk. In 

the simple case where only one sinusoid is used in (1), it can be calculated directly as PTR = 

exp(2Ak), where Ak = √(ak
2 + bk

2). In the general case, where p sinusoids are used, it can be 

calculated at time tk by evaluating the seasonal component Sk at a grid of time points in a window of 

width T centred at tk and letting the peak-to-through ratio be the exponential function applied to the 

range. Prediction intervals for the peak-to-trough ratio can be approximated in either case using all 

available samples from the conditional distribution. 

 

Concerning model diagnostics, a simple check of model adequacy may be based on diagnostic plots 

of residuals of the type rk = yk – exp(E(λk | data), where E(λk | data) is available from the iterated 
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extended Kalman smoother26. A more detailed discussion of diagnostics for the dynamic 

generalized linear model is beyond the scope of the present paper. 

 

MODELLING DATA ON ACUTE MYOCARDIAL INFARCTION 

 

We illustrate the application of the dynamic generalized linear model using data on hospitalizations 

for acute myocardial infarction in the county of North Jutland, Denmark during the 1980-1999 

period. The analysis is based on essentially complete data on discharges from seven local hospitals, 

available from the County Hospital Discharge Registry. This Registry was established in 1977 and 

achieved complete coverage of hospital discharges as of 1 January 1980.  

 

All persons with the index episode, defined as the first registered admission to hospital with a 

diagnosis of acute myocardial infarction (ICD-8: 410-410.99, and ICD-10: I 21-21.9), were 

included in our model application. During the 1980-1999 period, North Jutland County had an 

average population of 490,000, corresponding to roughly 10 percent of the Danish population, and 

17,989 cases of incident acute myocardial infarction were registered. Observations took the form of 

daily counts of incident acute myocardial infarctions obtained from Hospital Discharge Registry 

data from all hospitals in the county. Additional details are provided by Fischer et al.18 We analyzed 

the total incidence of acute myocardial infarction, without stratification or age standardization. 

 

We applied the model described above using four sinusoids (p=4), with T equal to one year (365.25 

days). Variances for time-varying parameters were estimated using the maximum likelihood 

method. The R-package sspir was used to perform iterated extended Kalman smoothing. 

Uncertainty in the estimated secular trend and seasonal variation was quantified with exact 95% 



 9

prediction bands. The peak-to-trough ratio was quantified using 95% prediction bands 

approximated using samples from the conditional distribution of the parameter based on all 

available data. We compare results from our dynamic model with those obtained using a 

generalized linear model, to illustrate the differences between the two approaches. 

 

RESULTS OF THE DYNAMIC MODELLING 

Figure 1 presents a plot of the estimated secular trend component Tk with 95% prediction bands and 

the corresponding trend component obtained from the generalized linear model. During the course 

of the study period, the dynamic model shows deviations from the smooth decline of the 

generalized linear model. Of particular note are peaks around 1985 and 1989. During the winter 

season of both years, above-average influenza A activity was recorded in Denmark both by general 

practitioners and by the Virology Department, Statens Serum Institut (Copenhagen, Denmark). We 

did not formally test whether these observations were coincidental. Figure 2 shows the estimated 

seasonal component Sk in 1985 (solid line) and 1998 (dashed line), compared with the estimate from 

the generalized linear model (dotted line). The seasonal component for 1985 shows bimodal peaks 

around May and November and a trough in July. The seasonal component for 1998 looks similar, 

with peaks and a trough in the same months. However, two additional peaks (March and August) 

become visible in 1998. 

 

Figure 3 presents a plot of the estimated peak-to-trough ratio (thick line) as a function of time, 

together with the peak-to-trough ratio obtained from the generalized linear model (thick dashed 

line). There is an apparent increase in the peak-to-trough ratio during the 1985-1990 period, 

followed by a decrease in the 1990-1995 period. Throughout the study period, the peak-to-trough 
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ratio estimated using the dynamic model is larger than that obtained from the generalized linear 

model.  

 

To assess model fit, we constructed a box plot of the standardized residuals versus binned fitted 

values (Figure 4). The binning is necessary since residuals from Poisson models with low counts 

may exhibit a ‘banded’ structure which makes interpretation difficult. The box plot of the 

standardized residuals versus binned fitted values showed no obvious associations, indicating that 

the dynamic model adequately describes the observed data (Figure 4). 

 

 

 

DISCUSSION 

We have presented a dynamic generalized linear model for Poisson count data (population-based 

hospital discharge data on acute myocardial infarction), with two evolving components: a seasonal 

variation and a secular trend. 

 

The strength of our model is its flexibility. It can easily include relevant explanatory variables such 

as interventions, other seasonal patterns (weekday effects etc.) and covariates which may contribute 

to variations in seasonality over time.. Each component can be static or dynamic, depending on 

whether or not its relationship with the outcome varies quantitatively over time. It is possible to 

assess model fit by means of residual plots. Analyses can be performed with the R-package sspir23 

which is freely available from CRAN, cran.r-project.org. Alternatives to sspir are the Ox package in 

combination with SsfPack27 or the R-package StructTS28 for cases with simple time structures in 

normally distributed observations. In general, however, estimation of variance parameters is not 
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implemented in the latter package. It also can be computationally intensive, especially when the 

model contains many time-varying terms. A formal test to decide if a covariate enters the model as 

a static or a dynamic variable, for example along the lines of Nyblom29, is not implemented. 

 

The dynamic generalized linear model yields a more detailed picture of a trend component as 

shown in the myocardial infarction example. The trend of incident cases of acute myocardial 

infarction analyzed with the static generalized linear model represents an average over the whole 

study period and results in a smooth line. Using the dynamic model, the trend curve becomes more 

detailed and shows peaks for the incidence of myocardial infarction around 1985 and 1989.  

 

New hypotheses about associations with possible explanatory factors can be examined by including 

relevant variables in the model. For example, the model could be used to test the association of 

peaks in MI incidence with peaks in the incidence of influenza A in the same years.   

 

  

The seasonal patterns of incident acute myocardial infarction delineated using the linear and the 

dynamic models look quite similar with peaks around May and November and a trough in July for 

the years 1985 and 1998. However, the generalized linear model averages data over the entire study 

period and therefore shows only one, fixed seasonal pattern. In contrast, the dynamic model is 

capable of identifying small changes in the seasonal pattern appearing between the years 1985 and 

1998 (Figure 2).  

 

The study of incident cases of acute myocardial infarction is an example of a retrospective analysis. 

The dynamic generalized linear model approach is equally useful in prospective analyses where the 
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Kalman filter technique can be used to obtain the predictive distributions necessary for monitoring. 

The possibility of using this methodology to generate early warnings of epidemic outbreaks of 

Mycoplasma pneumoniae is suggested in an unpublished study by Engebjerg et al.30 

 

 

CONCLUSION 

Dynamic generalized linear modelling provides more detailed results than static modelling of 

secular trend and seasonality in count data. This method can be used to study relevant associations 

between various sets of data and potentially explanatory factors in both retrospective and 

prospective study designs. 
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FIGURE LEGENDS 

Figure 1: The secular trend of the total incidence of myocardial infarction in Northern Jutland and 

95% prediction band estimated using a dynamic generalized linear model. Superimposed is the 

trend estimated using a static generalized model. 

 

Figure 2: The seasonal component estimated for the years 1985 and 1998 using the dynamic 

generalized linear model. Superimposed is the seasonal component for the entire study period 

estimated based on the static generalized linear model. 

 

Figure 3: The peak-to-trough ratio with 95% prediction band estimated by using the dynamic 

generalized linear model. The horizontal line at 1.17 is the peak-to-trough ratio of the seasonal 

component obtained from the static generalized linear model. 

 

Figure 4: Box plot of residuals versus expected incidence levels obtained from the dynamic 

generalized linear model. The expected incidence levels are binned in 5 bins from 2 to 4.5. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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