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Abstract

The aim of this paper is to test different types of spatial interpolation for the material-
point method. The interpolations include quadratic elements and cubic splines. A
brief introduction to the material-point method is given. Simple liner-elastic problems
are tested, including the classical cantilevered beam problem. As shown in the paper,
the use of negative shape functions is not consistent with the material-point method
in its current form, necessitating other types of interpolation such as cubic splines
in order to obtain smoother representations of field quantities. It is shown that the
smoother field representation using the cubic splines yields a physically more realistic
behaviour for impact problems than the traditional linear interpolation.

Keywords: MPM, spatial interpolation, cubic splines, beam bending, impact.

1 Introduction

Over the last decades the material-point method (MPM) has emerged as a serious
tool for numerical modelling of continuum problems involving large deformations
and contact between multiple bodies. The method in its current form has been devel-
oped by Sulsky et al. [1, 2]. The method originates from the particle-in-cell method,
developed by Harlow [3]. Some of the early applications of the material-point method
include impact problems [4] and simulations of membranes [5, 6].

In the MPM, two descriptions are used. Material points following the deformation
of the material are utilised to track the position and the state variables while a computa-
tional background grid is employed to solve the governing equations. As the material
points carry all the information about the material, total freedom exists for choosing a
mesh. Hence, the material-point method avoids some drawbacks associated with the
traditional methods adopting a purely Lagrangian or Eulerian description.
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Recently, research has focused on the accuracy and theoretical foundation of the
method. In [7] the energy conservation in the material-point method is analysed. In
the work of Guilkey and Weiss [8], implicit time integrationis presented, and an alter-
native implicit scheme is proposed by Sulsky and Kaul [9]. Another way to obtain a
smoother field representation is given by Bardenhagen [10].Here the field quantities
are smoothed by combining shape functions associated with the computational mesh
and characteristic functions defined for each of the material points. In the work by
Love and Sulsky [11], a formulation of the material-point method is proposed using
hyperelastic materials and nonlinear elastodynamics thatis shown to preserve conser-
vative field properties.

An issue that deserves attention is the choice of computational mesh and spatial
discretization order, which is analysed in this paper. The traditional material-point
method approach has been to use a regular mesh consisting of rectangular or triangular
first-order elements. As known from the finite-element method, the use of low-order
elements can cause locking in problems where material bending is dominant. The use
of second-order elements (or computation cells) and cubic splines in the material-point
method is tested against first-order elements for simple elastic bending problems and
problems involving impact. However, the use of second-order finite elements implies
the use of shape functions that have the possibility to become negative. As shown
in the appendix, negative mass associated with grid nodes isnot consistent with the
MPM in its current form.

The scope of this paper is as follows. Firstly, an outline of the governing equations
is given in Section 2. Secondly, the material-point method is presented in Section 3,
with particular focus on the four different spatial discretizations. Finally, numerical
examples are given in Section 4.

2 Governing equations

A linear-elastic continuum is considered. A steel beam can with reasonable accuracy
be described as such a material, provided that the deformations remain small. In
this paper, only two-dimensional problems are analysed andthe initial computational
domain is denotedΩ0 ∈ R2. At the timet, the domain is denotedΩ(t). The boundary
∂Ω is divided into two disjoint sets:∂Ωu with prescribed displacements and∂Ωτ with
known traction.

The accuracy of a numerical model for an elastic continuum depends on its ability
to obey the three governing equations, i.e. balance of momentum, mass conservation,
and conservation of mechanical energy. Firstly, conservation of mass implies that

dρ

dt
+ ρ∇ · v = 0, (1)

wherev = v(x, t) is the spatial velocity andρ = ρ(x, t) is the current density. Further,
∇ is the gradient operator and∇ · a is the divergence of the vector fielda. Secondly,
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conservation of momentum involves that

ρ
dv

dt
= ∇ · σσσ + ρb, (2)

whereσσσ = σσσ(x, t) is the Cauchy stress tensor andb = b(x, t) is the specific body
force. Finally, mechanical energy conservation is ensuredby the equation

ρ
dE

dt
= σσσ :

dεεε

dt
+ ρv · b, (3)

whereE is the internal energy per unit mass in the current configuration, εεε = εεε(x, t)
is the strain anddεεε/dt the corresponding strain rate. HereA : B = aijbij in Cartesian
coordinates. The total derivatived/dt is given as

dc

dt
=

∂c

∂t

∣

∣

∣

x

+ v · ∇c, (4)

wherec is the considered field quantity andv is the velocity of the material relatively
to the coordinate system. When material points that follow the deformation of the
material are utilised, the relative velocity is zero and theconvective term does not
appear. Furthermore, the balance of mass is implicitly assured.

In order to complete the description of the continuum, a constitutive law relating
the strain rates and the stress rates of the material is needed. The strain rate can be
determined from the equation

dεεε

dt
=

1

2

(

∇v + (∇v)T
)

, (5)

where superscriptT denotes the transpose. The stress depends on the type of material
under consideration. A general linear-elastic constitutive model can be expressed as

dσσσ

dt
= D :

dεεε

dt
, (6)

whereD is the fourth-order elasticity tensor.

3 The material-point method

3.1 Discretization

To formulate the material-point method (MPM) form of the governing equations,
Eqs. (1) to (3) must be given in a discrete form. The domainΩ0 is divided intoNp

sub-domainsΩp and all the mass is ascribed to material points located in thecentroid
of each domain. This provides the density field

ρ(x, t) =

Np
∑

p=1

mpδ(x − xp), (7)
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wheremp is the mass associated with the material point at the spatialcoordinatesxp.
The values ofmp are based on the initial configuration and they do not change during
the computation; hence, the total mass is conserved.

In order to obtain the material gradients, a computational grid is formed. Thus,
the domainΩ is divided intoNe finite elements. In the numerical examples, dif-
ferent kinds of discretization are applied, including first-order four-node rectangular
elements, second-order eight- and nine-node rectangular elements and cubic splines.
This defines a number of computational nodes,Nn, with standard nodal basis func-
tionsΦi(x) associated with nodei. By letting the nodal basis functions describe the
spatial variation, the velocity and the acceleration fieldsare represented as

v(x, t) =
Nn
∑

i=1

Φi(x)vi(t),
dv

dt
=

Nn
∑

i=1

Φi(x)
dvi

dt
, (8)

respectively, wherevi(t) are the nodal values of the velocities at the timet. The
equations are solved in an updated Lagrangian frame, ensuring that no time derivatives
of the shape functions occur.

The weak form of the balance of momentum is obtained by multiplication of Eq. (2)
by an arbitrary test functionw(x, t) and integrating over the domainΩ. Standard nodal
basis functions are also used to describe the test functionw, i.e.

w(t) =
Nn
∑

i=1

Φi(x)wi(t), (9)

wherewi(t) are the nodal values of the test function at the timet. Sincew is arbitrary,
except where displacements are prescribed, the balance of momentum reduces to

Nn
∑

j=1

mij

dvj

dt
= f int

i + fext
i . (10)

Heremij = mij(t) are the components of a consistent mass matrix formed at the time
t, whereas the internal and external forces are defined as

f int
i = −

Np
∑

p=1

mp

ρp

σσσp · Gip, fext
i = τττ i + bi, (11)

respectively, whereρp = ρp(t) andσσσp = σσσp(t) are the mass density and Cauchy
stresses at the material pointp and the timet, respectively. Further,

Gip = ∇Φi(x)|
x=xp

(12)

is the gradient of the nodal basis functions and the specific body force is given as

bi =

Np
∑

p=1

mpΦi(xp)bp(t), (13)
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wherebp(t) = b(xp, t) is the external acceleration associated with material point p.
The applied traction is found by integrating over the boundary of the domain:

τττ i =

∫

∂Ωτ

Φi(x)τττ(x, t)dx. (14)

In most of the numerical examples presented, lumped nodal masses are utilised in
Eq. (10). The lumped mass associated with nodei is expressed as

mi(t) =

Np
∑

p=1

mpΦi(xp(t)). (15)

Thereby, using lumped masses, the balance of momentum can bedefined as

mi

dvi

dt
= f int

i + fext
i . (16)

3.2 The MPM-algorithm

The general algorithm of the material point method can be given as follows. A prob-
lem is formulated with a set of material points that are givenall the relevant material
properties. Firstly including any initial conditions, theboundary conditions are im-
posed on the underlying grid and initial conditions are imposed at the material points.
Then the time integration algorithm is started. For all timesteps,

1. a computational mesh is generated,

2. the information is transferred from the material points to the grid nodes,

3. the equation of momentum is solved at the grid nodes,

4. information is transferred back to the material points,

5. the state variables are updated.

Different implementations are possible. The algorithm used in this paper is given as:

1. Initialisation of state variables at the material pointsat the timetk = 0.

2. At each time step: Generation of a computational background mesh.

3. Nodal velocities are calculated by solving the system

Nn
∑

j=1

mk
ijv

k
j =

Np
∑

p=1

mpv
k
pΦi(xp), (17)

where
∑Nn

j=1
mk

ijv
k
j = pk

i is identified as the nodal momentum.
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4. The strain increments∆εεεp at material pointp and the timetk are found by

∆εεεk
p =

∆tk

2

Nn
∑

i=1

(

Gk
ipv

k
i + (Gk

ipv
k
i )

T
)

. (18)

5. The strains are updated at the material points, i.e.εεεk+1
p = εεεk

p + ∆εεεk
p.

6. The stresses at the material points are found according toa chosen strain-driven
constitutive model and based on the updated strainεεεk+1

p .

7. The vectors of internal and external nodal forces are found by Eq. (11).

8. Updated velocities at the material points are found usinginternal forces:

vk+1
p = vk

p + ∆tk
Nn
∑

i=1

Nn
∑

j=1

m−1
ij Φj(x

k
p)f

int,k
j . (19)

9. The new position of the material points are found by

xk+1
p = xk

p + ∆tk
Nn
∑

i=1

Nn
∑

j=1

m−1
ij Φj(x

k
p)p

k
j . (20)

10. The material density is updated at the material points as

ρk+1
p = ρk

pe
−∇·v∆t. (21)

11. Finally, settk+1 = tk + ∆tk andk = k + 1 and repeat from item 1.

Typically, the time step is constant, i.e.∆tk = ∆t = constant. The interpolation from
the material points to the computational mesh defined by Eq. (17) is a weighted-least-
squares approach [2]. Several choices have been made in order to obtain the above
algorithm. For instance, for momentum-based updates, Eq. (19) has been made in
order to reduce the numerical dissipation and increase the stability of the method.

Still a number of critical choices are to be made, regarding

• the size of the computational cells,

• the use of an adaptive grid or a uniform grid,

• the number of material points per cell,

• the application of implicit or explicit time integration,

• the use of a forward leap-frog algorithm or higher-order time integration,

• the use of consistent or lumped mass,

• the type of background mesh to use.

The first three items regarding the spatial discretization are problem specific and will
not be addressed here in more detail. The two next issues relate to the accuracy of
the method for a given computational cost. Here, an explicitformulation with forward
leap-frog integration is used. The two last issues regarding the type of background
mesh and the use of consistent or lumped masses are analysed in this paper.
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3.3 Setting of the problem

As mentioned, the field variables are represented by the nodal basis functions. Thereby
also the stress increments will vary according to the shape functions used. When linear
shape-functions are applied, the gradient of the shape functions in either direction are
constant within an element. Hence, when more material points are located within
an element, stress-increments for all these material points are identical. With regard
to beam problems in structural mechanics, the stress is known to vary according to
Navier’s equation:

σx(x, y) =
M(x)

Ix(x)
y, (22)

whereσx(x) is the normal stress,M(x) is the moment about the neutral axis,x is the
coordinate along the neutral axis,y is the perpendicular distance to the neutral axis
andIx is the second moment of inertia about the neutral axis. The classical problem
of a cantilevered beam with the lengthL and exposed to a single force,F , is illustrated
in Figure 1. In this particular case, the moment is given byM(x) = (x − L)F . This
suggests that using quadratic shape functions, where the stress increments are varying
linearly within each element, is better suited for the solution of beam problems. Also
it is known from finite-element theory that the use of first-order elements can cause
locking for this kind of problem. In the following, the elements used for the numerical
experiments are presented.

(a)

(b) (c)

A

A

L

H

P

x

x

y

y

σn

M(x)

M(0) = PL
M(L) = 0

y = H/2

Figure 1: A classical problem in structural mechanics: (a) Geometry and boundary
conditions, (b) distribution of the bending moment,M(x), and (c) distribution of the
normal stress,σn, at cross-sectionA−A.
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3.4 Different interpolations used

The four types of elements utilised in the background mesh are shown in Figure 2.
Standard normalised coordinates are used. For the linear elements as well as the nine-
node quadratic elements and the eight-node serendipity element,ξ andη vary between
−1 and1, i.e. ξ ∈ [−1, 1] andη ∈ [−1, 1]. Lagrangian interpolation functions are
applied, defined by:

• Linear element with four nodes:

N1(ξ, η) = 1

4
(ξ − 1)(η − 1), N2(ξ, η) = −1

4
(ξ + 1)(η − 1),

N3(ξ, η) = 1

4
(ξ + 1)(η + 1), N4(ξ, η) = −1

4
(ξ − 1)(η + 1).

• Quadratic element with nine nodes:

N1(ξ, η) = 1

4
(ξ2 − ξ)(η2 − η), N2(ξ, η) = 1

2
(1 − ξ2)(η2 − η),

N3(ξ, η) = 1

4
(ξ2 + ξ)(η2 − η), N4(ξ, η) = 1

2
(ξ2 + ξ)(1 − η2),

N5(ξ, η) = 1

4
(ξ2 + ξ)(η2 + η), N6(ξ, η) = 1

2
(1 − ξ2)(η2 + η),

N7(ξ, η) = 1

4
(ξ2 − ξ)(η2 + η), N8(ξ, η) = 1

2
(ξ2 − ξ)(1 − η2),

N9(ξ, η) = (1 − ξ2)(1 − η2).

• Serendipity element with eight nodes:

N1(ξ, η) = 1

4
(1 − ξ)(1 − η)(−ξ − η − 1), N2(ξ, η) = 1

2
(1 − ξ2)(1 − η),

N3(ξ, η) = 1

4
(1 + ξ)(1 − η)(ξ − η − 1), N4(ξ, η) = 1

2
(1 + ξ)(1 − η2),

N5(ξ, η) = 1

4
(1 + ξ)(1 + η)(ξ + η − 1), N6(ξ, η) = 1

2
(1 − ξ2)(1 + η),

N7(ξ, η) = 1

4
(1 − ξ)(1 + η)(−ξ + η − 1), N8(ξ, η) = 1

2
(1 − ξ)(1 − η2).

The last type of interpolation employs cubic splines that for the one-dimensional
case are given by

S3(ξ) =











0 for |ξ| > 2,
1

6
(2 − |ξ|)3 for 1 < |ξ| < 2,

2

3
− |ξ|2 + 1

2
|ξ|3 for 0 < |ξ| < 1.

(23)

This cubic-spline interpolation is used for each individual material point and maps the
material-point values to nodes a maximum distance of two grid nodes away in either
direction. In two dimensions, this provides the 16-point stencil shown in Figure 2.
Thereby the local coordinates are restrained byξ ∈ [0, 1] andη ∈ [0, 1], and the shape
functions become:

8



( 1, 1)--( 1, 1)--( 1, 1)--( 1, 1)--

(1, 1)

(1, 1) (1, 1)

2 3

4

567

8 10

11

12

13

14

15

16

12

34

1

2

3

4

5

6

7

8

912 3

4

567

8 9

1

(1, 1)

ξ

ξ ξ ξη

η η η

(a) (b) (c) (d)

Figure 2: The different elements used: (a) Linear interpolation, (b) serendipity ele-
ments, (c) quadratic interpolation and (d) cubic splines.

N1(ξ, η) = 1

36
(1 − ξ)3(1 − η)3, N2(ξ, η) = 1

6
(1 − ξ)3(2

3
− η2 + 1

2
η3),

N3(ξ, η) = 1

6
(1 − ξ)3(1

6
+ 1

2
η + 1

2
η2 − 1

2
η3), N4(ξ, η) = 1

36
(1 − ξ)3η3,

N5(ξ, η) = (2

3
− ξ2 + 1

2
ξ3)1

6
(1 − η)3, N6(ξ, η) = (2

3
− ξ2 + 1

2
ξ3)(2

3
− η2 + 1

2
η3),

N7(ξ, η) = (2

3
− ξ2 + 1

2
ξ3)(1

6
+ 1

2
η + 1

2
η2 − 1

2
η3),

N8(ξ, η) = (2

3
− ξ2 + 1

2
ξ3)1

6
η3, N9(ξ, η) = (1

6
+ 1

2
ξ + 1

2
ξ2 − 1

2
ξ3)1

6
(1 − η)3,

N10(ξ, η) = (1

6
+ 1

2
ξ + 1

2
ξ2 − 1

2
ξ3)(2

3
− η2 + 1

2
η3),

N11(ξ, η) = (1

6
+ 1

2
ξ + 1

2
ξ2 − 1

2
ξ3)(1

6
+ 1

2
η + 1

2
η2 − 1

2
η3),

N12(ξ, η) = (1

6
+ 1

2
ξ + 1

2
ξ2 − 1

2
ξ3)1

6
η3,

N13(ξ, η) = 1

36
ξ3(1 − η)3, N14(ξ, η) = 1

6
ξ3(2

3
− η2 + 1

2
η3),

N15(ξ, η) = 1

6
ξ3(1

6
+ 1

2
η + 1

2
η2 − 1

2
η3), N16(ξ, η) = 1

36
ξ3η3.

Since each material point interpolates to all grid nodes up to two cells away, it is not
clear how to interpolate near the boundary. For the three other types of interpolation,
a rigid boundary is enforced by setting the velocity of the grid nodes to zero at the
boundary. Here a simple approach is made for the cubic splines. Rigid boundaries are
imposed by having an extra column of grid nodes where the velocities are set to zero.

4 Numerical examples

In order to test the accuracy of the different types of interpolation, the free vibrations
of a linear-elastic bar are analysed. The geometry of the problem is shown in Figure 3.
In the present analysis, the length of the bar isL = 5 and the height ish = 1. Young’s
modulus isE = 104, while Poisson’s ratio isν = 0.3 and the initial mass density
is ρ0 = 103. A discretization with 180 material points and 45 grid nodesis applied,
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using3 × 3 uniformly distributed material points in each computationcell. The total
time of the simulation isttot = 8 and the fixed time step∆t = 0.003 is utilised. The
bar is given a cosine-shaped initial velocity field

v(x) = A cos
(πx

L

)

, (24)

A small velocity amplitude ofA = 0.01 is applied in order for the grid masses to
remain positive when quadratic nine-node elements are used. With the other three
types of elements, large amplitudes can be prescribed without such problems.

The velocity gradients stemming from the initial velocity field yield strains, and
therefore stresses, thus leading to an interchange from kinematic into potential energy.
Since no material dissipation is present in the model, undamped free vibrations should
occur with no loss of mechanical energy. Therefore, the quality of the different types
of interpolation may be tested by their ability to conserve mechanical energy.

The energy of the system is most naturally measured by the energy of the material
points, as they carry all the information about the problem at all stages of the compu-
tational cycle. As only mechanical energy is considered, the total energy of the system
is given by

Etot = Ekin + Epot (25)

whereEkin denotes the kinetic energy andEpot denotes the potential energy. The
kinetic energy is defined as

Ekin =
1

2

Np
∑

p=1

mpvp · vp (26)

and, provided that no gravitational fields or other potential fields exist, the potential
energy is solely the strain energy of the material points, i.e.

Epot =
1

2

Np
∑

p=1

mp

ρp

σσσp : εεεp (27)

Here it is noted that the strain energy is mathematically well defined, as the calculation
of stress increments according to Eq. (6) yields a hypo-elastic model. Hence, only the
incremental form of the constitutive model is valid and the relationσσσ = D : εεε is gen-
erally not valid. However for small deformations it is presumed that the expression for

0 1 2 3 4 5 6 7
0

0.5

1

x

y

Figure 3: The discretization for the vibrating-bar problem
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the potential energy is sufficiently accurate to provide information about the accuracy
of the different elements.

When lumped masses are used, the kinetic energy of the nodes is defined as

Enodes
kin =

1

2

Nn
∑

i=1

mivi · vi. (28)

When consistent mass is used, the nodal kinetic energy is given by

Enodes
kin =

1

2

Nn
∑

j=1

mijvj · vi. (29)

For conservative systems, where the mechanical energy is toremain constant, a total
error is defined as the change in total energy:

Etot = Etot − Einit
tot . (30)

Alternatively, the total error is defined as

Etot = ∆Ekin + ∆Epot, (31)

where∆Ekin and∆Epot express the changes in kinetic and potential energy, respec-
tively, between the initial and the current configuration ofthe system. In accordance
with the definitions by Bardenhagen [7], this error is divided into an error due to inter-
polation of kinetic energy from the grid to the material points,Eint, and an algorithmic
error associated with everything else,Ealg, i.e.

Etot = −Eint − Ealg, (32)

where
Eint = ∆Enodes

kin − ∆Ekin, Ealg = −∆Enodes
kin − ∆Epot.

In order to test the accuracy of the different elements used,the quantitiesEkin,
Enodes

kin , Epot, Etot, Eint andEalg are calculated at each time step of the simulation. The
results are shown in Figures 4 to 7 using lumped masses.

It is seen that linear elements, the 9-node quadratic elements and the cubic splines
all yield smooth vibrations, while the 8-node serendipity elements perform very poorly.
This is likely due to the negative grid masses associated with corner nodes. Also, it
is observed that the total energy is almost conserved for allthe simulations. Hence,
the interpolation error and the algorithm error cancel. This is observed very clearly
for the eight-node elements, where the errors are large, buttotal energy is neverthe-
less conserved. Comparing the magnitude of the interpolation error, it is smallest for
the nine-node interpolation, followed by the linear elements. Somewhat surprisingly,
the interpolation error is larger using cubic splines than using linear elements. When
consistent masses are used, the interpolation error becomes zero. In Figure 8 the in-
terpolation error is compared for the linear and the quadratic 9-node elements and it
is clearly observed that the quadratic interpolation reduces the interpolation error.
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Figure 4: Energy measures for the vibrating-bar problem using 4-node elements.
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Figure 5: Energy measures for the vibrating-bar problem using 8-node elements.
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Figure 6: Energy measures for the vibrating-bar problem using 9-node elements.
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Figure 7: Energy measures for the vibrating-bar problem using cubic-splines.
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Figure 8: Comparison of the interpolation errors.

4.1 Bending of a cantilevered beam

Next, the problem presented in Subsection 3.3 is analysed for a beam with the length
L = 8 and the heightH = 1. In [12] an analytical solution for the deflections is given
for linear-elastic materials. The horizontal deflection isgiven by

u(x, y) = −
Px2y

2EI
−

νPy3

6EI
+

Py3

6GI
+ (

PL2

2EI
−

Pc2

2GI
)y (33)

and the vertical deflection is given by

v(x, y) =
νPxy2

2EI
+

Px3

6EI
−

PL2x

2EI
+

PL3

3EI
. (34)

It is basically a quasi-static problem where equilibrium ispresumed for the bar during
the deformation. This leaves the question on how to simulateit using the dynamic
framework of the material-point method as presented above.Many solutions to this
probably exist. Here it is chosen to gradually apply a force as a material acceleration
b(xP , t). The force is linearly increased starting from zero during the simulation.

The material point in the upper right-hand corner is given a material acceleration
corresponding to the downward forceF applied as

bp,y =
−F

mp

mp

mtot

, (35)

wherebp,y denotes they-component of acceleration of the material point,mp is the
mass associated with the material point, at which the acceleration is applied, andmtot

is the total mass of the beam. The undeformed model is shown inFigure 9 and the
material parameters for the beam are:E = 3 · 105, ν = 0 andρ0 = 103. The number
of material points is 288, whereas 133 grid nodes are used. Inthe initial configuration,
3 × 3 uniformly distributed material points are applied within each computation cell.
The total simulation time isttot = 20 with the time step∆t = 0.003.

Only a force ofF = 100, corresponding to very small deformations, is applied.
This is done for two reasons: Firstly, in order for the analytic solution to be valid,
small deflections are presumed; secondly, small deflectionsare necessary to avoid a
change in sign of the nodal mass for the quadratic 9-node elements.
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Figure 9: The discretization of the cantilevered beam.
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Figure 10: Horizontal normal stresses in the cantilevered beam at the end of the simu-
lation and with different kinds of interpolation: (a) linear interpolation; (b) serendipity
elements; (c) quadratic interpolation; (d) cubic splines.

The normal stresses at the material points at the end of the simulation with the
different element types are shown in Figure 10. It is seen that the correct variation of
the stress, linearly in both directions, is obtained for theeight- and nine-node elements.
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Figure 11: Vertical deflection of the beam neutral axis at theend of the different MPM
simulations compared with the analytical solution.

The stresses are of the same magnitude for the two types of elements. For the linear
elements, as determined by the gradients of the shape functions, the horizontal stresses
within an element are constant while the correct linear variation is observed in thex-
direction, i.e. along the beam. For the simulation using cubic splines it is seen that
the combination of the cubic splines in the interior and linear elements at the border
introduces an nonphysical stress variation.

In order to display the deflection of the neutral beam axis, the average deflection
of the two material points near the neutral beam axis is calculated and plotted against
the x-coordinate. The result is shown in Figure 11. The analytical solution is also
plotted. As seen there is a considerable difference in the magnitude of the deflections.
The smaller deflections are observed for the linear interpolation while the simulation
using the cubic splines yields the largest deformations. The deflections found using
the eight- and nine-node elements are almost identical. Thecubic splines yield a result
that is closest to the analytical solution, while the linearand the quadratic interpola-
tions yield deflections significantly lower than the analytical solutions.

In order to show the variation of the deflections, another simulation is performed
using cubic splines. The force is increased by an order of magnitude toF = 800. The
final positions of the material points are plotted along withthe analytical deflection
calculated from Eq. (33) and (34). The result is shown in Figure 12. Clearly, the
simulation correctly captures the basic features of the analytic solution.

4.2 A box impacting on a rigidly supported beam

A rigidly supported beam is hit by a falling box. The setting of the problem is shown
in Figure 13. The beam has the material propertiesE = 105, ν = 0.3 andρ0 = 103,
whereas the box has the propertiesE = 106, ν = 0.3, ρ0 = 103. As illustrated in
Figure 13, 864 material points with3 × 3 material points per cell are applied, and
there are 441 grid nodes in the model. The total time of the simulation isttot = 3,
using a time step of∆t = 0.005, and the initial velocity of the box isvinit

box = (0;−2),
i.e. the box moves downwards.
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Figure 12: The deflection of the beam obtained using cubic splines compared to the
analytic solution (F = 800).

A change of sign of the grid masses occurs when the nine-node elements with
quadratic interpolation are employed. Hence, this kind of element is not able to sim-
ulate the problem. For the remaining element types, Figures14, 15 and 16 show the
energy and the computational errors. The shared velocity field for the two bodies leads
to a funny-looking final configuration, where the bar has got an upward deflection as
shown in Figure 17. The energy measures do not give a very clear picture of what is
going on. Therefore, the averagey-position of the material points that make up the
box is plotted as a function of time in Figure 17.

The collision modelled using the cubic splines gives a much smoother collision
than the linear elements or the eight-node serendipity elements. The upward velocity
is considerably lower, indicating that the initial kineticenergy of the box has been
transformed to kinetic energy in the beam and strain energy during the collision. Also,
the figure indicates that the larger amount of kinetic energyin the box is maintained
in the simulations with the eight-node elements.

l

h

L

Hx

y v
init
box

Figure 13: A box falling on a beam: Definition of geometry and boundary conditions
(left) and initial discretization (right).
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Figure 14: Energy measures for the impact problem using four-node elements.
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Figure 15: Energy measures for the impact problem using eight-node elements.
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Figure 16: Energy measures for the impact problem using cubic splines.

5 Conclusion

Different types of interpolation for the material-point method have been tested. As
shown in the first numerical example, the vibration of a linear-elastic bar, quadratic
interpolation provides the most accurate results for the same number of material points
and the same global number of grid nodes. However, when largedeformations occur,
the sign of the mass interpolated to the grid nodes changes for some of the nodes and
the use of quadratic elements breaks down.

The main advantage of the material-point method is the ability to handle large de-
formations, so therefore the use of quadratic elements is very limited. This leads to the
study of interpolation using cubic splines. As shown for thevibrating-bar problem, the
order of accuracy using cubic splines is only comparable to the linear interpolation.
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Figure 17: Vertical position of the box during the simulation (left) and the deformation
in the final configuration using cubic splines (right).

The main advantage of using the cubic splines is the smootherfield representation.
The advantage is demonstrated by a third numerical simulation, a falling box impact-
ing with a beam. When linear interpolation is used, the box oscillates on the beam
upon collision before it finally bounces off. Using cubic splines, the box hits the bar
and bounces off in one smooth movement as physically expected. Therefore, although
computationally more expensive, the cubic splines are better suited for problems in
which the modelled field quantities vary in a complex way.

Perhaps the main conclusion is that, as the quadratic interpolation is unstable and
the cubic splines do not observe a higher order of accuracy for this implementation of
the MPM, the means to obtain higher accuracy for the MPM lies elsewhere. Things to
explore could be other ways of calculating internal forces by using another integration
than the Riemann sum over material points.
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Appendix: Material-point method with negative mass

In the traditional version of the material-point method (MPM) using linear interpola-
tion, the shape functions are always positive. This is not the case for the nine-node
quadratic element and the eight-node serendipity element.Here it is analysed, how
the method behaves, when negative grid masses are encountered. It is presumed that
lumped masses are used and that all the material points have the same mass. Without
any loss of generality, only a rigid-body motion is considered.

Step 1: A negative grid massmk
i is encountered at nodei and time stepk.

Step 2: The grid velocities are found according to the definition

vk
i =

1

mi

Np
∑

p=1

mpv
k
pΦi(x

k
p), i = 1, 2, . . . , Nn. (36)

This yields the correct sign of the velocity relatively to the velocity of the material
points as the negative mass is cancelled by the negative shape function value.
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Step 3: The strain increments at the material points are calculatedas

∆εεεk
p =

∆tk

2

Nn
∑

i=1

(

Gk
ipv

k
i + (Gk

ipv
k
i )

T
)

, p = 1, 2, . . . , Np. (37)

If the gradients of the shape functions are correct, this is expected to yield the correct
result. The update of stains and stress does not cause any problems in this context.

Step 4: Calculation of the internal forces in the background grid bymeans of

f
int,k
i = −

Np
∑

p=1

mp

ρk
p

σσσk
p · G

k
ip, i = 1, 2, . . . , Nn. (38)

Again, this is to be correct if the gradients of the shape functions are correct.

Step 5: Update the velocity of the material points as

vk+1
p = vk

p + ∆tk
Nn
∑

i=1

Nn
∑

j=1

m−1
ij f

int,k
j Φj(x

k
p), p = 1, 2, . . . , Np. (39)

Here the negative sign of the mass and the negative sign of theshape-function also
cancel each other, leading to the a consistent velocity update.

Step 6: Update the position of the material points,

xk+1
p = xk

p +
∆tk

mp

Nn
∑

i=1

pk+1
i Φi(x

k
p), p = 1, 2, . . . , Np, (40)

where the updated momentum is given bypk+1
i = vk+1

i mk
i + f

res,k
i ∆tk. Here it is

observed that the momentum is directed opposite to the material momentum. In the
update of the material point positions, three quantities are directed opposite to the
material quantities:pk+1

i , mk
i andΦi(x

k
p). Therefore, the material-point update is

inconsistent when negative mass is encountered.
In the testing of the eight- and nine-node elements, two characteristic features are

observed. The nine-node quadratic element yields very goodresults when the grid
masses do not change sign, but breaks down immediately when the masses change
sign. For the eight-node element, the shape functions associated with the four corner
nodes are always negative, while the shape functions associated with the four side
nodes are always positive. The results obtained with the eight-node element are very
inaccurate, but it does not get unstable, as does the nine-node element. These two
observations are probably due to the ‘self restoration’ inherent in the material-point
method. The incorrect material-point update is to a certainextent compensated for
in the next time step, when the new internal forces are calculated. If the sign of the
nodal mass at a grid node changes between two time steps, thisrestoration becomes
a destabilisation instead. Consequently, the simulationsbecome unstable, as observed
for the nine-node quadratic element.
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