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Abstract

The paper deals with the subharmonic response of a shallol dae to random chord length
variations, caused by time varying motions of the suppomiscof the cable. Under deter-
ministic harmonic support point motions the stable subloaiicymotion of order 2 consists of
a harmonically varying component in the equilibrium plamel @ large subharmonic out-of-
plane component with a fixed phase lag producing a trajecidtye midpoint with a shape like
the symbol used for infinity. A more realistic excitation istained by replacing the harmonic
chord length variation by a narrow-banded process withdhgesvariance and centre frequency.
In this case a very different response pattern is observed far a very small band width of
the excitation process. The phase between the in- and gui&oé displacements is no longer
locked at a fixed value, causing the trajectory to rotate Isi@anound the chord line. As a con-
sequence a substantial in-plane subharmonic responseocemps brought forward. Further,
the time-varying amplitudes of the elongation variatiogsd to enhance chaotic behaviour of
the response, which is detectable via extreme sensitinithe initial conditions or via the sign
of a numerical calculated Lyapunov exponent. The deperedefihese findings on the specific
stochastic modelling is investigated by analysing two drelongation processes with almost
identical auto-spectral densities, i.e. the statistieabsid moment properties of the processes
are almost identical, whereas higher order moments diiggifecantly. In one case, the chord
elongation is modelled as a filtration of a Gaussian whits@dirough a linear second order
differential filter. The Gaussian output process has raatins with slowly varying phases and
amplitudes slowly varying around the amplitude of the corapke harmonic excitation. In the
other case the excitation process is modelled by a harmenictame-lag transformation of a
Wiener process. All realizations have constant amplitietpsal to the purely harmonic exci-
tation, but with a slowly varying phases. The two stochastoxlels provide qualitatively and
guantitatively identical results. The conclusion is tleg thaotic response caused by stochastic
excitation mainly is due to time variation of the phases, iehe the amplitude variations are of
minor importance.
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1. INTRODUCTION
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Figure 1. Trajectory at the midpoint of the cable. (a) Harioaord elongation. (b) Stochastic chord
elongation, unstable response.

Cable systems are of great interest in a wide range of apiplisain civil engineering to
supply both support and stability to large structures. dgiby, cables used as support of cable-
stayed bridges, masts and TV-towers are characterizeddxy-toschord-length ratio below say
0.01, which means that the natural frequencies for theangkigenvibrations, wy, . . ., and
the out-of-plane eigenvibrations, ws, . . . are pairwise close. The primarily external excitation
of such cables is caused by the motion of the support poirttseeatable rather than by external
distributed dynamic wind or aeroelastic loads. Especi#itlg component of the support point
motion along the chord of the equilibrium suspension inticeEs both additive and parametric
excitation terms in the nonlinear modal equations of matioato the elongation and shortening
of the chord length.

Dangerous situations arise when the chord elongation mdwacally varying with a cir-
cular frequencyy, in certain disjoint intervals. Especially, wheg is about twice the funda-
mental out-of-plane circular eigenfrequengy, large subharmonic vibrations with the circular
frequencyw,/2 may take place. It turns out that the single mode in-planéaurbonic of the
order 2 is unstable for arbitrarily small excitation amydies. Instead a coupled vibration oc-
curs, in which large subharmonic vibrations out of the stagjuilibrium plane take place with
the circular frequencyy, /2, whereas the in-plane vibrations are harmonically varyuitg the
circular frequencyy, and with a relatively small amplitude. The out-of-planspiacement is
brought forward by nonlinear couplings, and has a well-@éefiphase leading to the in-plane
harmonic component. The indicated phase locking betwestwtb vibration components pro-
duces a trajectory of shape like an infinity sign as showngufa 1a.

In reality the supported structure is performing narrowded stochastic vibrations with
a centre frequency, close tow,. Hence, the chord elongation will also be narrow-banded
stochastic varying. The resulting subharmonic respongaattatively very different from the
comparable harmonic excitation as shown in Figure 1b. k¢hse the phase between the two
displacement components is no longer locked at a certaureValt becomes slowly varying
with time. This phase variation causes the trajectory ofrédsponse to rotate slowly around
the chord line, introducing a large subharmonic responsepoment also in the static equi-
librium plane. This phenomena was investigated by Zhou.dtlhbased on extensive Monte
Carlo simulations, modelling the stochastic variationh& thord elongation as a filtered white
noise process. It was concluded that the unlocking of thegs#)and hence the rotation of the
trajectory, was caused by the slowly varying amplitudeshefriarrow-banded excitation pro-
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cess. Another finding was that the stochastic variationdi®fchord elongation enhanced the
tendency to chaotic response relative to the comparabladrac excitation. Still, it is open
whether these findings are entirely caused by the variafitmecamplitudes of the chord elon-
gation process, or similar effects may occur due to the sanabus slowly variation of the
phase of the excitation process. In the present paper thiwvestigated by comparing with
an alternative Monte Carlo simulation approach due to ®Gdam P]. All realizations of the
underlying stochastic process have constant amplitudal égithe referential harmonic excita-
tion, and the randomness is completely caused by a slowjyngphase, which is modelled as
a Wiener process.

2. THEORY

, u(L, 1)

Figure 2. Cable in static equilibrium configuration

Figure2 shows a cable in the static equilibrium state with the chergythZ and the sag
f. Although depicted in a horizontal position the cable stdag thought of as inclined with
the chord making an angtewith a horizontal line. The sag is caused by the componensd
of the acceleration of gravity in the orthogonal directidrttee chord. The plane equilibrium
state is maintained by a prestress fof€¢elong the chord line. The sag-to-chord-length ratio
f/L is assumed to be sufficiently small that a parabolic appration may be used for the
suspension. The dynamic displacement componentst), v(z, t), w(x,t) of a material point
of the cable along the axes of the indicatedy, z)-coordinate system are caused by the chord
elongationu(L,t) — «(0, ¢) induced by the motion of the two support points. Convenyetite
chord elongation may be described by the following non-disn@nal parameter

_ EAu(L,t) —u(0,t)

e(t) 7 7 1)

where E is the elasticity modulus and is the cross-sectional area. The in-plane and
out-of-plane displacement components, t) andw(x,t) are dominated by the fundamental
eigenmodes. The second in-plane and second out-of-pladesvase not exposed by the chord
elongation, because the corresponding modes are antisyimmiénen, the following single
mode expansions of the in-plane and out-of-plane displaoésturns out to be appropriate

v(w, 1) = By(x)ga(t) ,  wlx,t) = Py(2)q(t) (2)

The eigenmode$, () and ®,(x) are normalized to 1 at the midpoint, so that the cor-
responding modal coordinates(t) andqg,(t) are measures of the actual displacements at this
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position. The related out-of-plane circular eigenfreauyen; is slightly smaller than the in-
plane eigenfrequency, due to effect of the suspension. Retaining up to cubic noeali terms
in the equations of motion the following highly reduced 2 e&g-of-freedom system may be
formulated, Zhou et al]]

G+ 2Gwigr + wi (1+ e(t)) g + Brge + @1 (ai +7245) =0 (3)
Go + 2Cwads + wi (1 + ae(t))go + Bogi + Ba3a5 + g2 (V347 + 74a3) = —ne(t)

(1 and(, are the modal damping ratios, and 3, 52, 33, V1, V2, 73, Y4, 7 @re all non-
dimensional parameters of magnitude 1, which depends arighamode®, (z) and®d,(z). As
seen the chord elongatiefy) is exposing the system both to external and parametricatiarit
Based on simulations with a full non-linear finite differenmodel it was demonstrated by
Zhou et al. 1] that the indicated two degree-of-freedom model was adeguapredicting
gualitatively and quantitatively as well as the dynamicpmesse and stability as the chaotic
response of the cable.

The referential harmonic varying chord elongation is gigsn

e(t) = ep cogwot + Wy) (4)

wherew, denotes the circular frequeney,is a non-dimensional amplitude of magnitude
1, andW, is a constant deterministic phase. The corresponding adloryation obtained by
the filtration of a unit intensity white noise through a setonder filter is given

€ + 2uéwy + wie = 1/ 2uwieqw(t) (5)

wherey is the band width (damping ratio) of the filter, andr) is a zero mean unit
intensity Gaussian white noise with the auto-covarianoetion

Fuwn (T) = Elw(t)w(t +7)] = 6(7) (6)

The auto-covariance function of the out-put process besohie [3]

o
V1= p?

Alternatively, the chord elongation may be modelled as anloaic zero-time lag trans-
formation of a Wiener process (the integral of a white noisess) modelled by Griesbaum
[2] wherew, signifies the damped circular eigenfrequency of the filter,

1 -
ee(T) = 560 e*uwo|7\<cos(wdr) + S|n(wd\r|)> C wa=wo/1— 2 (7)

e(t) = e cos(wot + W (t)) (8)

W (t) = \/2uwp /Otw(r)dT 9)
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After a transient phase the auto-covariance function o€é8)be shown to approach the
stationary value

1
Ree(T) = §e3 g HwolTl coqwyT) (20)
a) b)
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Figure 3. (a) Filtered white noise process. (b) Varying pha®cessy = 0.01,¢9 = 0.3.

The models (4), (5) and (8) all have zero mean, vari%m@ and the dominating circular
frequencyw,. The amplitudes of (4) and (8) are both constant and equal,tahereas the
amplitude of (5) is slowly varying aroung.
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Figure 4. One-sided auto-spectral density function fotweestochastic chord elongation processes. (*)
Filtered white-noise proces8lf Varying phase procesgs.= 0.1,¢5 = 0.3.

Despite the apparently completely different realizatioh§s) and (8) as shown on Fig-
ures 3a and 3b the corresponding auto-covariance fundffjred (8) are identical within an
error of magnitude.:. This has been illustrated in Figu#eby a numerical calculation of the
corresponding auto-spectral densities based on obtagadidation of the processes.

3. NUMERICAL EXAMPLE

Figure5 shows the variation of the variancé&%q?] and E/[¢?] of the out-of-plane and in-plane
modal coordinates as a function of the band width paramefEne amplitude parameter is fixed
at the valuezy = 0.3, and the central circular frequencyus = 2w;. As seenk[q?] decreases,
andE[q?] increases withu. Especially, the out-of-plane response ceaseg for0.11. Hence, a
bifurcation in the stochastic response takes place at tig.p/Nithin the sampling error of the
monte Carlo simulations the results produced by the two tsdde the chord elongation are
quite identical.
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Figure 5. Varians variation with. (*) Filtered white-noise procesglj Varying phase process; = 0.3,
wo = 2 wi-
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Figure 6. Lyapunov exponent variation with, wp = 2wy . (*) Filtered white-noise procesglj Varying
phase process. (bottom) = 0.1. (middle)ey = 0.2. (top) eg = 0.3.

Chaotic behaviour is characterized by exponential grovetivben two neighboring dy-
namic states exposed to the same external excitation. @hibe analysed by the sign of the
so-called Lyapunov exponents, where a positive value atdgexponential growth of the dis-
tance between the two states, whereas a negative valuatesliexponential approach of the
states with time. Hence, predictability, is related witlgatve Lyapunov exponents, whereas
positive Lyapunov exponents indicate chaotic behavioumHrically, the Lyapunov exponent
may be sampled by the algorithm of Wolf et &].[The designation "stochastic chaos" means
that the response behaves chaotic for almost all realimbbthe response (chaotic behaviour
with probability 1). The chaotic behaviour of the two choldrgation processes have been
compared by comparing the Lyapunov exponent of the resgoceleulated by exactly the
same realization of the underlying unit intensity whitesgoprocess (7). Figure6 shows the
estimated Lyapunov exponents as a function ahd discrete values of the amplitude parameter
eo. (*) indicates results obtained from the filtered white ®9ig]) those obtained from the vary-
ing phase process. As seen, no noticeable differences &etthese curves are obtained. The
results for the referential harmonic chord elongation pssas obtained in the limit — 0. As
seen, these are all negative. Hence, the response is pi@diet least for the non-dimensional
chord elongation amplitudg < 0.3. By contrast, the stochastic response looses predidtabili
at a critical value of: even for the relative small amplitude valege= 0.1. If ¢, is not too large
predictability is eventually recovered at sufficientlygarvalues of the band width parameter.
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4. CONCLUSIONS

The stochastic response and chaotic behaviour of a shallble ©iave been analysed by two
comparable stochastic models for the chord elongation ndel the chord elongation process
is obtained by linear filtration of Gaussian white noise tlylo a second order filter. The other
model is based on a zero-time lag harmonic transformati@Wfener process. The processes
have zero mean value, and almost identical auto-covarimmotions. The former process has
both slowly varying amplitudes and phases, whereas theitdes$ of the latter is constant,
and only the phases are varying. Based on Monte Carlo siongatith the two models almost
identical results were obtained for the variance respomfidbeomodal coordinates. Neither,
did the Lyapunov exponents obtained by numerical samplitheresponse, using the same
input white noise in the two models, show much differencanfrthis it is concluded that
the completely different subharmonic response comparetabof the referential harmonic
excitation, is primarily caused by the phase variationc8jithe two stochastic chord elongation
models have completely different higher order statisticaments, it is further concluded that
the indicated phenomena is embedded in the second ordestisgitmoments, i.e. the auto-
variance function or auto-spectral density function.
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