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Abstract 

In Natural Input Modal Analysis the modal parameters are estimated just from the responses while 

the loading is not recorded. However, engineers are sometimes interested in knowing some features 

of the loading acting on a structure. In this paper, a procedure to determine the loading from a FRF 

matrix assembled from modal parameters and the experimental responses recorded using standard 

sensors, is presented. The method implies the inversion of the FRF which, in general, is not full 

rank matrix due to the truncation of the modal space. Furthermore, some recommendations are 

included to improve the accuracy in the load estimation. Finally, the results of an experimental 

program carried out on a simple structure are presented.  

 

Nomenclature 

Stiffness matrix  [ ]k   Mass matrix   [ ]m      

Damping matrix  [ ]c   Force vector   ( ){ }tf  

 FRF matrix  ( )[ ]ωH   Displacement vector  ( ){ }tu    

Natural frequency rω   Spectral matrix  ( )[ ]ωS     

Un-scaled mode shape { }rψ   Scaled mode shape  { }rφ     

Damping factor rζ    Scaling factor  rα    

           
      

        

        

    



1 Introduction 

Operational modal analysis has become a powerful technology to estimate the modal parameters in 

a wider range of applications, mainly for big structures [ 1]. Testing is normally performed by just 

measuring the responses under the natural or operational conditions, i.e., the structure is excited by 

natural or operational loads such as wind loads, wave loads, traffic loads, etc.  When the structure is 

tested in the laboratory, artificial loads are to be used applying some random tapping on the 

structure. 

In operational modal analysis the forces are not recorded. Nevertheless, the force acting on a 

structure can still be estimated using the responses at several points of the structure together with 

the frequency response function, FRF [ 2]. The responses can be recorded using appropriate sensors 

and the FRF matrix can be constructed from the experimental modal parameters. 

In operational modal analysis we can obtain the mode shapes, the natural frequencies and the 

damping ratios. However, the mode shape scaling is arbitrary causing incorrect modal participation 

factors. Recently, different techniques to obtain the right scaling have been developed and are now 

being tested on full scale structures [3, 4, 5, 6]. The results of these tests indicate that for even 

larger structures it is possible to obtain accurate scaling factors. 

In this paper, a procedure to determine loading acting on a structure from a truncated modal model 

and the experimental responses is presented, together with some recommendations aiming to 

improve the accuracy of the results. Furthermore, an experimental program has been carried out on 

a steel cantilever beam to estimate the loading from the measurements and the experimental modal 

space. The modal parameters are obtained using natural input modal analysis and the scaling 

factors of the mode shapes by means of the mass change method [3, 4, 5, 6].   

2 The method 

As well know, the equation of motion of a structure subjected to a force ( ){ }tf  is given by: 

[ ] { } [ ] { } [ ] { } ( ){ }tfukucum =⋅+⋅+⋅ &&&  
( 1) 

 

Transforming equation (1) in frequency domain by Fourier yields: 

[ ] [ ] [ ]( ) ( ){ } ( ){ }ω=ω⋅+⋅ω+⋅ω− FUkcjm2  
( 2) 

 

After defining the frequency response function matrix (FRF) or transfer function matrix as: 

( )[ ] [ ] [ ] [ ]( ) 12 kcjmH
−

+⋅ω+⋅ω−=ω  
( 3) 

 

and substituting equation (3) in equation (2), it results: 

( ){ } ( )[ ] ( ){ }ω⋅ω=ω FHU  
( 4) 

 

Thus, the loading in frequency domain can be calculated using: 

( ){ } ( )[ ] ( ){ }ω⋅ω=ω −
UHF

1
 

( 5) 

 

To solve equation (5), the FRF matrix and the responses have to be known. On one hand, the 

experimental responses are recorded using standard sensors. On the other hand, the FRF can be 

constructed from the experimental modal parameters obtained by operational modal analysis using 



a stationary broad band excitation. Alternatively, a 

finite element model can be updated using the modal 

parameters. 

The force in time domain can be obtained applying the 

inverse Fourier transform to ( ){ }ωF . The process is 

schematically shown in Figure 1. 

The spectral density function load matrix can then be 

obtained from the spectral density function response 

matrix by means of the expression: 

( )[ ] ( )[ ] ( )[ ] ( )[ ] H
UU

1
FF HSHS −− ω⋅ω⋅ω=ω  

( 6) 

 

where the superscript 
H
 denotes complex conjugate 

transpose. 

3 The FRF matrix from modal 

parameters 

When the modal space is used, the expression of the FRF matrix for complex modes is given by 

(see [7]): 

( )[ ] { } { } { } { }
∑
= 
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where: 

• { }rψ  is the r-th un-scaled mode shape, 

• 2
rrrrr 1j ζ−ω+ωζ−=λ   is the  pole of the r-th mode 

•  rQ  is a factor which takes into account the scale of the mode [ 7 ], and is related to the 

scaling factor rα  through 
r

2
r

r
j2

Q
ω

α
=   , and 

• the superscript * denotes complex conjugate 

From the natural input modal analysis all modal parameters are known except the scaling factors   

because the mode shapes are arbitrary scaled.  In the last years, several methods have been 

proposed to estimate the scaling factors by the mass change method. This method consists of 

attaching several masses to the structure and performing operational modal analysis on both the 

modified and the unmodified structures [3, 4, 5, 6].The modification is carried out by attaching 

masses to the points of the structure where the mode shapes of the unmodified structure are known. 

In order to facilitate the mass modification and the calculation of the scaling factors, lumped 

masses are often used, so that the mass change matrix becomes, in general, diagonal. 

Simple formulas can be used to estimate the scaling factors, such as [4, 6]: 

Figure 1. Process to estimate the 

loading.  
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or [6]: 
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(9) 

 

Where the subscript 0 indicates original structure, subscript 1 indicates modified structure and the 

matrix [ ]m∆  is the mass change matrix. 

The accuracy on the scaling factor estimation depends on both the accuracy obtained in the modal 

analysis and the mass change strategy (magnitude, number and location of the masses) used to 

modify the dynamic behaviour of the structure [6]. 

3.1 Inversion of the FRF matrix:  

Equations ( 5) and ( 6) imply the inversion of the FRF matrix frequency by frequency, but this 

inversion can only be performed using standard methods when the FRF matrix is full rank, i.e., 

when the number of modes is equal to the number of observation points. Otherwise, when a 

truncated modal space is used, the FRF matrix is singular and normal inverse does not apply 

anymore.  

However, the inversion of the FRF matrix may still be done using singular value decomposition 

(SVD), which for a complex matrix [ ]H  is given by: 

[ ] [ ] [ ] [ ]HVUH ⋅∑⋅=  
( 10) 

 

where: 

• [ ]U  and [ ]V   are unitary matrices (orthogonal in case of real matrices), and 

•  [ ]∑  is a diagonal matrix containing the singular values. The number of non-zero singular 

values is equal to the number of modes active at the frequency considered, and  

• the superscript 
H
 denotes complex conjugate transpose. 

Using equation ( 10) the inverse of the matrix [ ]H   can be obtained as: 

[ ] [ ] [ ] [ ] 11H1
UVH

−−−− ⋅∑⋅=  
( 11) 

 

and taking in account the properties of unitary matrices, i.e.: 

[ ] [ ] [ ] [ ] 1H1H
VVandUU

−− ==  
( 12) 

 

the equation ( 11) becomes: 

[ ] [ ] [ ] [ ]H11
UVH ⋅∑⋅= −−

 
( 13) 

 

where only the non-zero singular values should be used in the calculation. 



Equation ( 13) provides the exact solution when all modes are considered, but due to the truncation 

effect, the calculated FRF matrix and its inverse is only representing an approximation. As soon as 

more modes are considered, better accuracy is achieved. However, it must be taken into account 

that the singular matrix has to be inverted so that small errors in the singular values can be highly 

amplified by the inversion process. Therefore, only the biggest singular values in the inversion 

process should be taken into consideration. 

3.2 The  FRF matrix from modal updating.  

An alternative to the method proposed in the last paragraph is to update a finite element model. The 

mass and the stiffness matrices can be estimated using standard modal updating procedures. 

On the other hand, a proportional damping matrix can be constructed from the experimental modal 

damping parameters. In case of normal modes, the modal damping can be obtained from the 

damping matrix by: 

[ ] [ ] [ ] [ ]Φ⋅⋅Φ= cC
T

ii  
( 14) 

 

If the damping matrix is full rank, the inverse of the damping matrix can be obtained by: 

 [ ] [ ] [ ] [ ]T1
ii

1
Cc Φ⋅⋅Φ= −−  

( 15) 

 

where [ ]iiC   is a diagonal matrix with iiii 2C ω⋅ζ⋅=  . 

The matrix  [ ] 1c
−
can be estimated from equation (13) using the experimental mode shapes and 

modal damping parameters, but it can not be inverted by standard procedures because of the 

truncation effect. However, the 

damping matrix can still be obtained 

when inverting the matrix [ ] 1c
−
 by 

singular value decomposition (the 

same method as was proposed to 

invert the FRF matrix). 

It has to be noticed that an updated 

finite element modal is always 

useful. Both the FRF matrix from 

modal parameters and the FRF from 

the updated finite element model can 

be used to evaluate the importance of 

the truncated modes. A similar and 

easier interpretation can be done 

when comparing the singular values 

of both models (Figure 2).  

The main advantage of the updated 

FRF matrix is that it is full rank and 

can be easily inverted. However, the natural frequencies of the updated model will not coincide 

exactly with the natural frequencies of the modal model, i.e., the peaks in the responses and in the 

FRF matrix will not be exactly the same at the same frequency, which could influences a lot in the 

final results. 

Figure 2. Singular values of a FRF matrix corresponding 

to a cantilever beam 
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4 Responses  

If the responses are recorded with accelerometers, the displacement vector ( )tu  can be obtained by 

double integration in time domain using standard numerical procedures.  

Alternatively, the integration can be performed in the frequency domain by means of the 

expression: 

( ){ } ( ){ }
2

U
U

ω

ω
=ω

&&

 
( 16) 

 

and the response spectral density matrix by means of : 

( )[ ]
( )[ ]
4

UU
UU

S
S

ω

ω
=ω

&&&&

 
( 17) 

 

4.1 Numerical integration.  

When a signal is integrated numerically, only the frequencies in the range ss f1.0ff02.0 <<  , 

where sf   is the sampling frequency, will be treated accurately [8]. Below this range we will have 

gain and above this range we will have attenuation. Furthermore, when the integration approaches 

to zero frequency, the gain tends to infinity.  The aforementioned problems are amplified because 

the acceleration has to be integrated twice. 

The only solution consists in eliminating the low frequencies using a high pass filter. If it is 

necessary to determine the integration at very low frequencies, as it is the case of civil structures, 

then the best solution is to decimate the signal [8]. 

4.2 Noise in the responses.  

When performing experimental measurements, some noise is always present in the signals. This 

type of error can be reduced using better sensors but can not be removed. 

The noise present in the responses affects all the previous stages in the load estimation (modal 

identification, scaling factor calculation, inversion of the FRF matrix, signal processing, etc.). 

When using accelerometers as sensors, the acceleration has to be integrated twice to calculate the 

force. If the integration is performed in the frequency domain, we have to use equation (14). This 

equation show that the noise presents in the responses is highly amplified at low frequencies which, 

on the other hand, represent the most important frequency range for civil structures. The singular 

value decomposition of the responses provides us useful information to determine qualitatively the 

noise present in the signals. In general, the first singular values correspond to the real responses 

meanwhile the rest of singular values represent the noise. Thus, a way to reduce the noise effect in 

the load calculation is to use only the first singular values. The method consists on the singular 

value decomposition of the responses, i.e.: 

( )[ ] ∑ ⋅⋅=ω
i

H
iiiUU VSUS  ( 18) 

 

and then to reassemble a response spectral density matrix using only the first singular values. This 

new matrix will be used in the load calculation. If we only consider two singular values, the new 

matrix becomes: 



( )[ ] H
222

H
111newUU VSUVSUS ⋅⋅+⋅⋅=ω  

( 19) 

 

where N321 S...SSS >>> . 

Figure 3 shows the singular value 

decomposition of the responses 

recorded on a cantilever beam 

when an impact is applied. It can 

be observed that the responses are 

mainly represented by the first 

singular value whereas the rest of 

the singular values depict the 

noise. 

 

5 Load calculation 

Once the inverse of the FRF 

matrix and the responses in 

displacement format have been 

estimated, the load calculation can 

be performed. The calculation is 

carried out in the frequency 

domain taking segments with an appropriate length (figure 4). The length of the segments must be 

large enough to allow for a low leakage effect. 

The force and the spectral density can be calculated using equations (5) and (6), respectively. If the 

modal parameters of the structure are known and the responses are measured in real time, then the 

procedure proposed in this paper can be applied in real time. 

Due to the errors in the modal analysis, mainly the damping and the scaling factors, some peaks can 

appear in the estimated force 

spectral density. If this type of 

irregularity is known not be present 

in load spectral density, a smooth 

technique can be used to improve 

the spectral density estimation. 

 

5.1 Leakage reduction.  

Equations (5) and (6) involve the 

Fourier transform of the responses 

so that the analysis of a finite time 

record can cause leakage.   

Leakage can be minimized by 

increasing the size of each data 

segment. If the force corresponding Figure 4. Leakage reduction with 2=β . 
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to N points is calculated, a way to reduce the leakage consists in calculating the force for a larger 

segment, i.e., a segment of  Nβ  points, where 1≥β  . The so defined segment of data is at the ends 

of each calculation appended with ( )1−βN   points. Finally, we select the central N points.  Thus, 

the 
( )

2

N1−β
 points of the estimated load on both the right and left sides are discarded. In Figure 2, 

the load calculation for 2=β  is shown.  

The only disadvantage of this method is 

that more numerical operations have to 

be performed to obtain the load. 

The aforementioned procedure can be 

improved combining a larger segment 

together with an appropriate window. 

 

6 Experimental tests 

A steel cantilever beam was used to 

perform the tests. The beam was 1.85 m 

long, showing an 80x50x4 tube 

rectangular section. The responses were 

measured in 8 degree of freedoms, 

regularly distributed along the beam 

(Figure 5). Two types of excitation were 

used: Stationary broad banded and 

impact. 

6.1 Stationary broad band tests 

In order to determine the modal 

parameters, a stationary broad 

banded excitation was applied 

to the structure. The loading 

was not measured so that a 

natural input modal analysis 

software was used to estimate 

the natural frequencies, the 

mode shapes and the damping. 

Only the first 5 modes were 

considered in the analysis. The 

modal identification, performed 

by the enhanced frequency 

domain decomposition (EFDD) 

[9], is shown in figure 6. 

The scaling factors were 

determined using the mass 

change method [3, 4, 5, 6]. A 

proportional mass change was 

Figure 5. Cantilever beam used in the tests reduction 

with 2=β . 
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Figure 6. Frequency domain decomposition of 

measurements. 
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applied to the structure attaching masses of 180 grams to each degree of freedom (except at the free 

border of the cantilever beam to which a 90 gram mass was attached). Finally, a new stationary 

broad banded excitation was applied to the modified structure.  

The modal parameters are shown in table 1. As it can be seen, the damping remains very low. The 

scaling factors shown in the table correspond to mode shapes normalized to unity. 

 

Table 1. Modal parameters of the cantilever beam. 

Mode 1 2 3 4 5 

Original 

structure 
15.65 97.46 269.71 517.41 830.43 

Modified 

structure 
15.078 93.46 258.3 494.95 793.93 

Natural 

frequencies 

(Hz) 

Frequency 

shift (%) 
3.654 4.10 4.23 4.34 4.40 

Damping (%) 0.24 0.13 0.18 0.10 0.12 

Scaling factors 0.450 0.425 0.391 0.354 0.354 

6.2 Impact tests 

In order to check the accuracy of the proposed method, several impacts were applied to each degree 

of freedom of the unmodified structure. Only one hit was applied every time, using an impact 

hammer with a rubber tip. The experimental responses, together with the FRF matrix estimated 

from the modal parameters, were used to estimate the load with the method proposed in this paper. 

The force auto spectral density of both the estimated with the proposed method and the recorded 

from the hammer, corresponding to the 8th degree of freedom, are shown in Figure 7. 4096 

frequency lines were used in the calculations. As can be seen, the estimation is reasonable good 

excepting at the peaks in the resonances which appear due to the errors in the modal parameter 

estimation.  

The experimental responses were recorded at a sampling frequency Hz5000f s = , so that only the 

results in the frequency range Hz500fHz100 << are treated accurately due to the numerical 

integration and noise present in the responses. It can be seen that the error increases at low 

frequencies. 

Figure 8 shows the force spectral density, corresponding to the 8
th
 degree of freedom, estimated 

applying decimation of order 10 ( Hz500fs = ). It can be seen that the spectral density estimation 

is improved when decimation is used but removing the errors at frequencies below 40 Hz are not 

possible. 

The singular values of the responses corresponding to noise (figure 3) are very low compared with 

the first singular value so that there is no significant differences between the spectral density 

obtained using one singular value or using eight singular values (figure 8), except in the 

uncertainty. 



The force spectral density estimation can be improved when removing or reducing the peaks in the 

spectrum by means of a smoothing technique, but this has not been applied. 

The real force in time domain applied on the 8th degree of freedom is shown in Figure 9a whereas 

the estimated force is shown in Figure 9b. A high pass filter was applied to reduce the effect of 

numerical integration at low frequencies.  

Due to the fact that the damping is very low, a large number of points (32768 points) were used to 

reduce the leakage effect. The calculations were carried out with a leakage factor 2=β . Windows 

to reduce the leakage effect were not applied 
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 As can be observed, the impacts can be detected and the error is reasonable low. Due to the noise 

present in the responses, the numerical integration effect at low frequencies and the errors in the 

modal parameters (amplified in the inversion process) a low level force is estimated in all channels 

(Figure 9b). When the impact force is applied on a certain degree of freedom, a small peak is 

estimated in the adjacent degree of freedoms, due to the same reasons. Figure 9b shows a small 

peak estimated in the 8th degree of freedom when the impact is applied on the 7th degree of 

freedom. 

7  Conclusions  

• A procedure is proposed to estimate the loading acting on a structure, using the 

experimental responses and the modal parameters estimated by Natural Input Modal 

Analysis. 

• The main sources of errors have been identified and some recommendations are proposed 

to remove or reduce the errors.  

• The proposed methodology has been applied to a steel cantilever beam. The modal 

parameters were estimated by natural input modal analysis using the enhanced frequency 

domain decomposition (EFDD). The FRF matrix estimated from the modal parameters 

together with the experimental responses were used to estimate the impact forces applied 

to the structure with an impact hammer. 
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