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~ RILEM TC 162-TDF: 'Test and design methods for steel fibre reinforced concrete' 

Round-robin analysis of the R I L E M  TC 162-TDF beam- 
bending test: Part 2 - Approximation of 8 from the C M O D  
response 
Prepared by B.I.G. Barr ~ and M.K. Lee ~, with contributions from E.J. de Place Hansen 3, 

4 5 2 5 3 4 D. Dupont, E. Erdem, S. Schaerlaekens, B. Schntitgen, H. Stang and L. Vandewalle 
(1) Cardiff University, Wales 
(2) Belgian Research Institute, Belgium 
(3) Technical University of Denmark, Denmark 
(4) Katholieke Universiteit Leuven, Belgium 
(5) Ruhr-University of Bochum, Germany 

ABSTRACT 
A round robin test progrmmne was carried out using the 

beam-bending test recommended by RILEM TC 162-TDF [1]. 
The test programme included both plain and steal fibre 
reinforced concrete (SFRC) beams. A detailed analysis was 
carried out to investigate the influence of different test 
configurations on measurements of the crack mouth opening 
displacement (CMOD). Linear elastic fracture mechanics 
(LEI?]VI) and non-linear fracture mechanics (NLFM)methods 
were utilised to investigate the problem analytically. From the 
analytical studies carried out, it is proposed that the CMOD 
should not be measured at a distance more than 5mm from the 
bottom fibre of the beam. A larger distance than 5mm will cause 
the deviation between the measured CMOD and the mac CMOD 
to reach an unacceptable level. A simple rigid body model has 
been proposed to relate the CMOD to the mid-span deflection. 
The NLFM analysis and experimemtal results were compared for 
both the plain and SFRC beam results and it was tbund that 
results based on the basis of CMOD can be compared to those 
based on deflections, tbr practical purposes, using the simple 
rigid body model. The experimeaatal results strongly suggest that 
the rigid body model could be effectively applied for all the 
types of materials tested in the round robin test programme. In 
addition it was fotmd that the conversion from CMOD to the 
equivalent mid-span deflection, 8~, revealed good agreement 
between the load-average mid-span deflection (P-6) curve and 
the load-equivalent mid-span deflection (P-8r curve especially 
~br the SFRC specimens. It is proposed that the load-CMOD (P- 
CMOD) curve be used to calculate the proposed RILEM design 
parameters (as opposed to the P-6 curve) via the use of a 
correction factor determined using the simple rigid boJy model. 

Un programme d'~sais comqx~rat~ entre lat~oratoires a dt~ 
r&dis'O pour &rduer he test de txmOe sournise & la flexion, cornme 
prescrt~ par TC 162-TDF de la RJLEM Des'pouttes en b~ton normal 
et en b~on d e i c e s  m d t a l l ~  (Bf ;~D sont prises" en corapte dam le 
programme d'essa& Une & d e  d~taLll& a dt~ eff~r pour 
examiner l'iqflue~ce de d~rentes mdthodes' d'essai de mesures de 
l'cm~ema'e dbrij~e de j~ swe  (OOF). La md~lnique de jPacaze 
lindaire et non-l~aire a dt~ utilis& ~ examiner le probl&ne d'une 

fo4:on a n a , ~ e .  Sur base des ~tudes' ar~lytiques, on p.o_pa~e que 
l 'OOF ne soit ~ m~var& a une distance de plus de 5 mm de la ba~e 
de la tmutre. Au-deld de cette dAtcau:e de 5 ram, la d~&~mce entre 
l ' 0 0 F  mesurde et l 'OOF vdritable atteint un n;neau inac~*ptable. Un 
m t ~ l e  simple, basd aztr de~ c~ps soiides, est proln~sd u m r  estbner 
l 'OOF h la flexion au centre de la tnmtre. L 'a~al~e de la m~.mique 
de fizz:twin non-lin&~ a ~t~ compar& weec les r&~dtcas 
ex't~imogawc txmr lea" poutres e~ bdton normal et en BFM: En 
pratique, on a oomtatd que hes r&ultats bas'ds , ~  l'6K)F petcvott ~ e  
compar& arv~c lea' r&~qats ba~& a~r la dOqexior~ si on utilise un 
moddle bcz~d sur des corps ,solides. Lea" r ~ t a t s  a~ggbrent clairement 
~ e  he modkle, tv.z~ ,s~tr &"  c~)q:~ .wlide,, l~'is'se ~tre c~p l~d  a~tr 
tom" les mat&iaux test& ~ Ie programme dez' ewsais' compara(i[J. 
En plm; la o)rrverskAn entre I'O()F et la d (eflexion &iuivahenle au 
centre de tb poutre (6~) a r&~ld une grande co~)rmitd evffe le 
diagr~'nme de la force en fl~.cck)n de la &flexion moyenne ~ centre 
de la po~Ire ca he diagramme de la Jbrce en Jbnction de la d~,1exkm 
&luivalente au cemre de la lxmtre. Cez,i est c ~ , m c m t  le cas lxnec 
BFM On ~ e  que le dia~amme de kL/bme en Jbnction de 
l 'OOF (conO'a~avxent au dic~,ramme crvec la jbrce en Jbnction de la 
ddflexion) soit utilisd lgna �9 le calc~l de~ pammktres de 
dimemionnement, propa~d par la RILE3/[ Pour ce fltire, on pcatt 
utiliser un j&ct~r de correctkm, ddterm~ par le m~xtOle, bas'd a, tr 
des" corps ~91ktes. 
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1. INTRODUCTION 

This paper gives an account of a detailed investigation of 
the relationship between the mid-span deflection, 8, and the 
crack mouth opening displacement, CMOD, obtained in a 
round robin test programme executed by five test laboratories. 
The round robin test programme was carried out using the test 
eonfi=maration proposed by RILEM TC 162-TDF [1]. 

Further details of the round robin test progrm~me are 
reported in a companion paper and will not be repeated here 
[2,3]. Essentially, the round robin test programme was executed 
in two phases with two concrete strengths considered. The 
concrete grades considered were C25/30, termed as normal 
strength concrete (NSC) and C70/85, termed as high strength 
concrete (HSC), The letter "C" indicates a characteristic 
compressive strength and the numerals indicate the compressive 
strengths in N/mm 2 measured from cylinders and cubes 
respectively. Three types of fibres and fibre dosages were 
employed during the round robin programme i.e. l?'~arnix 65/60 
BN (tbr the NSC beams with 25kg/m 3 and 75kg/m 3 of fibres), 
Dmmix 80/60 BN (for the NSC beams with 50kg/m 3 of fibres) 
and Dramix 80/60 BP (for the HSC beams with 25k~m 3 of 
fibres). Plain concrete beams were also included as part of the 
test programme to play the role of control specimens and were a 
means of investigating the strengths, limitations and sensitivity 
of the proposed test method, as they do not contain the -variations 
introduced by fibre distribution and orientation. 

Five testing laboratories were involved in the beam 
bending round robin programme, with Cardiff University 
(UWC) as the task co-ordinator, The laboratories are (in 
alphabetical order): 

CSTC - Belgian Building Research Institute 
DTU - Technical University of Denmark 
KUL - Katholieke Universiteit Leuven 
RUB ~ Ruhr-University of Bochum 
UWC - Cardiff University (task co-ordinator) 
The above acronyms for each participating laboratory 

will be used heneefbrth. 

2. RESEARCH SIGNIFICANCE 

The test method advanced by the RILEM TC 162-TDF is 
a notched beam under three-point bending which is shown 
schematically in Fig. 1, From the experience gained from the 
round robin test programme, it was concluded that the test 
would be more stable if executed under CMOD control 
particularly for specimens with a high strength matrlx~ It is 
anticipated that the CMOD would be measured at a certain 
distance away ti"om the bottom surface of the beam. Knit~ 
edges (or other similar devices) could be used to hold the clip 
gauge (or LVDT in some cases) in place, The knitb~edges 
would have a certain thickness, do, ~ illtlstrated in Fig. 1. 
The measured CMOD would have a systematic ~ r  ~elative 
to the true CMOD~ with the deviation proportional with 
respect to some fianction of the thictmess do, It is thus 
essential to limit the thickness of the knii~-edge to a certain 
range to avoid unacceptably large deviations. 

The test method is eiosely related to the cr-e method 
proposed by the R1LEM TC-TDF [4]. The test method 
requires that measurements be made of the mid-span 
deflections on both sides of the beam, 8i and 62, in addition 
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Fig. I - Schematic illustration showing knife-edges (or 
similar devices)having a certain thickness, do. 

to the CMOD. Strictly speaking, the RILEM TC-TDF design 
parameters should be calculated from the load-average mid- 
span deflection, P-5, curves. However, there may be certain 
times where this is not possible. Either, one or both 
deflection measurements may be tbtmd to be erroneous and 
this would eliminate the possibility of carrying out 
calculations based on the P-6 curves. Another scenario which 
may arise, is that some researchers may desire to carry out 
the tests "indirectly" by measuring only CMOD. 
Additionally, the possibility of obtaining all necessary design 
parameters from the load-CMOD (P-CMOD) curves would 
appeal to the practising engineer as it reduces set-up time and 
cost. A model relating the CMOD measurements to the mid- 
span deflections would pave the way to such a possibility. 

The idea of using the P-CMOD curve is not a new one. 
Gopalaratnam et aL [5] ibund that CMOD are less prone to 
errors than beam deflection measurements and postulated 
that tbe P-CMOD curve could be a possible alternative 
measure of toughness. Also, Gopalaramam et al. [6] 
demonstrated that there was vi~aally a linear relationship 
between mid-span deflection response and CMOD and 
suggested that the two could be related, for all practical 
purposes, using a simple relation. Barr et aL [7] concluded 
that the P-CMOD curve would be a good basis for use in the 
measurement of  toughness and carrying out tests on notched 
beams via CMOD control leads to a stable post-peak 
response. More recently, Navalurkar et aL [8] proposed that 
the P-CMOD curve be used, instead of the P-6 curve, to 
evaluate the fracture energy of concrete. 

3. CORRELATION BETWEEN CMODs AT 
DIFFERENT DEPTH, do 

3.1 Scope of study 

This section gives an account of a study' to investigate 
the er~r introduced by using difi'erent knife-edges (or 
similar devices to measure/control CMOD) with different 
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thickness, do. In a beam test, the CMOD is typically 
measured at a fixed distance from the bottom of the beam. 
It is unusual to measure CMOD directly from the bottom 
fibre of the beam, This introduces a fixed amount of 
systematic error into the measured or nominal value of 
CMOD (defined by CMOD in Fig. 2) relative to the actual 
value at the beam surface Le. CMOD ~ in Fig. 2, with the 
magnitude of the error increasing with an increase in the 
thickness of the knife-edge (do). 

g 

' CMOD" ; 

Fig. 2 - Illustration of difference between CMOD and CMOD a 

Two analytical methods were used to investigate this 
issue; Ferreira et al. [9] used linear elastic fracture mechanics 
(LEFM) whereas Stang [10] used non-linear fracture 
mechanics (NLFM). Errors introduced in terms of the 
difference in the CMOD measured using a certain knife-edge 
thickness, do, with that of the CMOD measured exactly at the 
bottom of the beam was studied. The "real" CMOD a and the 
nominal value, CMOD, as obtained experimentally are 
related as follows: 

CMOD ~ = cr (1) 

where c~ is the theoretical correction thctor for converting 
the measured value to the "real" CMOD. 

3.2 Proposal  for a limit to do 

From the study using LEFM [9], it was found that for a 
knife-edge thickness of 10 mm, the error varies from values of 
20% to 8% as a function of mid,span deflection. By assuming 
a maximum error of 5%, the study showed that a knife-edge 
should not have a thickness of more than 2.5 mm. For an error 
level of approximately 10%, the study suggests that a knife- 
edge should not have a thickness greater than 5 ram. 

The analysis using NLFM [10] showed similar results with 
the error increasing with increasing knife-edge thickness. By 
considering knife-edge thicknesses of 2 mm and 5 mm, several 
correction factors were obtained for various mid-span 
deflections. The results are shown in Table t. It can be 
observed that after a certain mid-span deflection, the correction 
factor approaches a constant value. 

In essence, both analytical studies showed that the error 
introduced increases with an increase in the height of the 
knife-edge used and that the correction thctor, cr varies as 
the test progresses. However, the change in the v~ue of c~ 
is insignificant when the test is in the post-cracked phase. It 
is proposed that the knife-edge (or similar devices) 
thickness is limited to a maximum value of  5 mm, This 
thickness is not too small thereby making it relatively easy 
to fabricate with reasonable accuracy and would not be too 
cumbersome to handle, especially for practising engineers. 

4. C O R R E L A T I O N  B E T W E E N  $ AND 
C M O D  

4.1 Methodology 

This section gives an account of an investigation to determine 
whether there is a simple correlation between the mid-span 
deflection, 15, and the crack mouth opening displacement, 
CMOD. This is to enable calculations of the RILEM TC 162- 
TDF design parameters from P-CMOD ctawes to be considered 
as a parallel or altemative method of analysis. 

In the post-cracked phase, using rigid body ~ n a t i r  it can 
be shown that theoretically the average mid-span deflection, ~5, 
can be related to CMOD. The only variable that one may 
encounter will be the value old,, which is defined in Fig. !. 

The equation relating ~5 to CMOD is as follows: 

~5 L 1 
CMOD 4 H (2) 

where, L - span at which the beam is tested mad H = the 
apparent depth about which the beam rotates 

Equation (2) implies that the ratio of ~3/CMOD is a 
constant given by L/4, multiplied by the value 1/H. The only 
problem left is to evaluate the value of H. The point at which 
the beam rotates can be assumed (as a first approximation) to 
be at the veu,, top surface of the beam. In the case of the 
round robin tests, H is then estimated to be t50+.~. In the 
following sections, the nominal values of CMOD (i.e, 
CMOD in Fig. 2) will be used for the av~yses and should not 
be confused with CMOD a. 

In the first phase of the round robin programme, file test 
labs used diflbrent values of  do in the work c ~ r  o~t. Thus, 
the CMOD results for the plain normal streng~ concrete 
beams, C25/30, and normal sgength concrer wi~ a fibre 
content of 50 kg/m ~ was obtained via. the ~ e  of different 
values of do. This gives test data to investigate the 
assumptions implied in Equation (2), Table 2 tabulates the 
values of  do adopted by the various testing lal~ during the 
first phase of the round robin lest programme. 

By plotting ~5/CMOD against l/It, a ~  by carrying out 
linear regression with the estimated regression line passing 
through the origin, one can evat~uate the acc~aey of  the 

Table 1 - Correction factors at various mid-span deflections (from non-linear fracture mechanics analysis) 
Correction factor, er prescribed mid-span deflection 

do (mm) 0A 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 
2 0.9733 0 .9837  0 . 9 8 5 2  0 . 9 8 5 8  0 .9862  0~9864 0 .9865  0 : 9 8 6 5  0 .9 8 6 6  0.9866 

5 0.9357 019603 0 . 9 6 3 9  0 ,9653  0 .9661  0 . 9 6 6 6  0.%68 0 . 9 6 7 0  0 .9671  0.9672 
Note: Figures in bold indicate,flae prescribed mid-span deflection in millimeters . . . .  
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Table 2 - Location of CMOD measurement 
devices at the various test labs (during the first 

phase of the round robin test programme) 
Testing lab Thickness do (mm) 

CSTC* -4 
DTU 7.5 
KUL 14 

RUB t 0 
UWC 5 

Note: * CSTC measured CMOD above the bottom fibre on 
both sides of the beam, ? RUB measured the CMOD on 
both sides of the beam, at the bottom corners 

model. A slope in close agreement with the theoretical value 
of  L/4 would imply that the model is applicable. Hence, the 
ratio of 6/CMOD was calculated at distinct mid-span 
deflections, 6, and these values are plotted against 1/H. This 
was done for both the plain and SFRC beams. (Examples of 
these plots are shown later in Figs. 7 and 9.) 

Strictly speaking, the model is only applicable for test 
results in the post-cracked phase. The actual relationship 
between 6 and CMOD is a thnction of  the crack length, thus 
implying different 6/CMOD ratios in the pre-cracked and 
post-cracked phases as illustrated in Figs. 3 and 4. For 
practical reasons, a constant value of 6/CMOD is highly 
desirable. The pre-cracked phase is relatively short in 
comparison with the post-cracked phase, which .justifies the 
use of a constant 6/CMOD ratio. The assumption of  a 
constant 6/CMOD ratio should not have a significantly 
adverse effect, especially for SFRC beams as they are 
tested well into the post-cracked phase. 

Apart from using the experimental results for the 
verification of Equation (2), a computer program developed 
at the Technical University of  Denmark, DTU, was used in 
addition to the simple proposed model. The computer 
program together with a description of the analysis is given 
in reference [10]. The computer program was execmed with 
fixed material and geometrical parameters but with 
different values of  do. Similarly, the procedure of obtaining 
6/CMOD at various mid-span deflection points and plotting 
~/CMOD against 1/H was carried out using the computed 
results obtained from the program. 

4 .2  V a l i d i t y  o f  m o d e l  

If  we assume the crack length is significantly large in the 
notched three-point bend test, the model suggests that the 
ratio of  6/CMOD is constant in the post-peak region. 
Equation (2) also implies that the ratio o f  the area under P-6 
to the area under P-CMOD is a constant. To test the validity 
of  such a model, plots of  6/CMOD against mid span 
deflections were carried out. Additionally, plots of the ratio 
of  the area under the P-6 curves against the area under the 
P-CMOD curves were also prepared. 

Figs. 5 and 6 show plots of 6/CMOD against mid-span 
deflection, 8, tbr plain and SFRC beams respectively. It is seen 
that the ratio of 6/CMOD approaches a plateau after a cer~in 
value of mid-span deflection. In general, the constant platean 
of 6/CMOD occupies most of the post-peak region and this 
suggests that the assumptions behind the proposed model are 
valid especially within the post-peak region. 

E 
0,8 

t~r 

0 

0.6 
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~, 0 . 4  
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o.2 

0 005 0~ 0.15 

CNOO ( ram} 

0 
o &2 0.4 0.6 0.8 1 

Crack mouth opening displacement, CMOD (mm) 

Fig. 3 - Typical plot of 6 against CMOD tbr a plain concrete 
beam with the inset figure magnifying the initial portion of the 
curve. 
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Fig. 4 - Typical plot of 6 against CMOD for a SFRC beam with 
the inset figure magni~ing the initial portion of the curve. 

Figs. 5 mad 6 were plotted using the average values from 
all the testing labs. Thus, it is not unexpected that the plots 
for the NSC and HSC beams diverge from each other. This 
is because in the first phase of the round robin program, 
testing labs used very different values of  do- On the other 
hand, in the second phase of  the round robin, all but one 
used a d,, of  5 mm with the exception of  RUB, who used 
3 ram, but the dit~rence is not seen to be significant. 

The divergence tbr the SFRC beams in Fig. 6 is not as 
significant as seen in the plain concrete beams. This is as 
expected, since the SFRC beams were tested well into the 
post-peak region with relatively much larger mid-span 
deflections in compaxison with the plain concrete beams. 
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Fig. 5 - The average ratio of  8/CMOD for plain concrete 
beams for a series of  average mid-span deflection points. 
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Fig. 6 - The average ratio of  6/CMOD for SFRC beams for a 
series of  average mid-span deflection points. 

4.3 Results and discussion 

Fig. 7 shows a plot oft/CMOD against 1/H for a mid-span 
deflection of 0.4 mm for the normal strength plain concrete 
beams. The plot uses both the experhqaental results and the 
results computed using the aforesaid computer program from 
DTU. This type of plot was obtained for several mid-span 
deflections and the gradients were obtained by means of linear 
regression analysis. Although five labs were involved in the 
round robin programme for the beam-bending test, only four 
experimental data sets is available for analysis tbr the plain 
NSC specimens because all the beams in one of the labs 
underwent catastrophic failure. 

Fig. 8 shows the gradients obtained tbr all average mid- 
span deflections considered. Both the experimental results 
and the analytical results are quite close to the predicted 
value of L/4 i.e. 125 for this study. In general, it can be 
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- - I J n e a r  (Experimental ~VCMOD at ~s = 0.4mm) 
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0.0060 0.0062 0.0064 0.0066 0.0068 0.0070 

I l H  

Fig. 7 - Rat io o f  6 / C M O D  against 1./H for  p la in NSC beams at 

an average mid-span deflection of  0,4mm, 
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A v e r a g e  m id -span  de f lec t ion  (mm) 

Fig. 8 - Gmdi~ts obtained at several points of  mid-span deflection 
l~om experimental and analUdcal results for plain NSC beams. 

concluded that the experimental and analytical results are in 
close agreement with the proposed model. 

Fig. 9 Shows a plot of 5/CMOD against I/H for 8 = 2rnm 
for the normal strength SFRC beams with a fibre content of 50 
kg/m 3. Fig. 10 shows the gradients tbr all ~is considered. Once 
again, there is close agreement between the experimental and 
anal)~cal results. 

4.4 Range of applicability 

In the analysis reported in Section 4.3, consideration was 
only given to two r~es  of concrete ~ s ;  the plain NSC 
beam and the NSC beam with a tibre content of 50 k&/m 3. A 
similar analysis cannot be carried out fiar beam results from the 
second phase of the round robin tests because during this 
phase, all but one laboratory used a d,, of 5mm. Thus a 
different approach was adopted to investigate whether the 
proposed modal applies to all of the concrete types considered 
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Fig. 9 - R a t i o  of  S/CMOD against 1/H for SFRC C25/30 
(50kg/m 3 of  fibres) at an average mid-span deflection of  
2.0mm. 
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Fig. 10 - Gradients obtained at several points of  mid-spma 
deflections from experimental and analytical results for C25/30 
(50kg/m 3 of  fibres) beams. 

in the round robin programme. With the confirmation that the 
proposed model works well with the plain concrete beams and 
SFRC beams from the first phase, this conclusion can be used 
in the analysis of the second phase beam results. This time, the 
CMOD at various values of 5 was obtained. 

Fig. 11 shows a plot of CMOD against 5 for the plain 
concrete beams. It can be observed that both sets of CMOD 
increases in a linear manner in relation to 5. Also, the results 
tbr NSC beams are quite close to HSC beams. Again, the 
divergence can be explained because of the difference in do 
adopted in the first and second phase. The plain concrete 
beams would be expected to be more sensitive to differences in 
do due to the fact that the tests had relatively low values of 
mid-span deflections. 

Fig. 12 shows a plot of CMOD against 5 for the SFRC 
beams. Once again, the CMOD increases linearly with 5. This 
time, the agreement between all the SFRC beam types is 
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Fig. l 1 - Relationship between CMOD and 6 for plain concrete 
beams. 
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Fig. 12 -Relat ionship between CMOD and ~i for SFRC beams. 

extremely good. The data points seem to lie on top of one 
another. Divergence between the first mad second phase results 
is not obvious because the SFRC beam tests were loaded well 
into the post-peak region mad thus would not be as sensitive to 
differences in do as that observed for the plain concrete beams. 

Using the plain NSC beams as a benchmark from the 
previous study (refer to Section 4.3), Fig. 11 indicates that the 
relationship found between 5-CMOD would also apply for the 
plain HSC tbavugh logical deduction (as the data poims for 
both types of concrete are quite close with each other in 
Fig. 11). Similm'ly, it can be deduced from Fig. 12 that the 
relationship between CMOD and 8 not only holds for the 
C25/30 with 50kg/m 3 of tibres, but also applies to all the fibre 
concrete types considered. 

Figs, 11 and 12 were plotted using the average values 
calculated using all the results available from the round robin 
test programme. The ratio of 5/CMOD was compiled along 
with coefficients of variation to determine whether any 
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Concrete 
grade 

Table 3 - Tabulated ratios of  5 /CMOD at various prescribed average mid-span deflections and their 
coefficients of  variation for th e plain coBcrete beams 

i Ratio of S/CMOD at prescribed average mid-span deflections 6 = --~-.-~ 
k 

0 . 1  0.15 0.2 0.25 0 . 3  0.35 0.4 
0.874 0.822 0.792 0.776 0.765 0.766 0.765 C25/30 
(9.00) (6.43) (5.04) ( 4 . 0 8 )  (4.34) (3.78) (3.80) 
0.987 0.902 0.867 0.859 0.849 0.840 0.832 C70/85 
(8,66) (8.20) ( 6 , 8 8 )  (5.06) (5.82) (4.71) (3.99) 

Note: Figures in bold are the prescribed average mid-span deflections, 8, in millimetres 
Figures in brackets are the coefficients of variation, V (%) 

0.5 
0.750 
(6.37) 11 r 

0.820 
.... (3.50) 

0.6 
0.757 
(4.34) 
0.816 
(2.83) 

0.7 
0.760 
(4.33) 
0.818 
(2.32) 

Table 4 - Tabulated ratios of  5 /CMOD at various prescribed average mid-span deflections and their 
coefficients of  variation for the SFRC beams 

Concrete . . . . . . . . . .  

grade 
(Fibre 

dosage in 
kg/m 3) 

C25/30 (25) 

C25/30 (50) 

C25/30 (75) 

C70/85 (25) 

Note: 

Ratio of 6/CMOD at prescribed average mid-span deflections 

0.25 0.5 

0.917 0.856 0.833 
(9.58) ( 6 . 0 0 )  (5.25) 
0.898 0.854 0.840 
(7.15) (5 .62 )  (5.44) 
0.969 0.894 0.865 
(4.29) (3.87) (3~41) 
0.923 0.870 0.850 
(10.8) ( 7 . 16 )  (5.39) 

8=-g. 

0.75 1.0 1.25 1.5 1.75 2.0 

0.822 0.821 0.828 
(5.60) 
0.835 
(5.31) 
0.851 

0.824 
(5:43) 
0.832 
(5.35) 
0.843 

0.823 
(5.05) 
0.830 
(5.34) 
0.837 

(4.67) 
0.830 
(5.68) 
0.833 

(4:36) 
0.832 
(5.1o) 
0.829 

2.5 3,0 

0.822 0.823 
(4.17) r (4.t2) 
0.833 0.836 
(4.82) (4.88) ,, 
0.828 0.824 
(2.32) g.60) 
0.824 0.822 
O.28) i @!0) 

(3,03) 
0.840 
(4A7) 

(3,03) 
0.835 
(3,93) 

(3,09) 
0.831 
(3.63) 

(2.87) 
0.829 
(3.65) 

(2.85) 
0,828 

(3.55) 
Figures in bold are the prescribed average mid-span deflections, 8, in millimetres 
Figures in brackets axe the coefficients of variation, V (%) 

deviations from linearity was lost due to averaging. Tables 3 
and 4 show the ratio of 8/CMOD at various average mid-span 
deflections tbr the plain concrete and SFRC beams 
respectively. It is clear that the coefficients of variation, V, for 
all the values considered are below 10%. Fttrthermore, the 
majority of the variations are within 5%, This suggests that the 
linear relationship would not solely be applicable to the 
averaged values, but would be applicable globally (for the test 
dimensions used in the round robin test programme). 

5. INTERCHANGING BETWEEN 5 AND 
CMOD 

To study the impact of interchanging between ~ and 
CMOD using the proposed simple model, the rotmd robin 
beam results were re-analysed by converting CMOD values 
into equivalent ~ values. This was achieved using the 
expression: 

L 1 
5 e . . . . .  CMOD (3) 

4 H 

where, 6e = equivalent mid-span deflection, L = span at 
which the beam is tested, H = the apparent depth about 
which the beam rotates and CMOD = nominal (or 
measured) CMOD. 

The P-6 curves for the beam specimens were converted 
to P-8~ curves using Equation (3). Typical curves for a plain 
concrete beam are shown in Figs. 13 and 14. 

By converting the CMOD values to equivalent mid-span 
deflection values (6~), the agreement between the P-6 and 

P-CMOD curves (Fig. 13) is improved (Fig. 14). This is 
especially true where the post-peak regime is concerned. 
The difference between the two curves in the initial part of 
the curves is actually increased, but this increase is not seen 
as substantial. The application of  Equation (3)has the effect 
of shifting the P-CMOD towards the left in a linear fashion 
because the abscissa values are reduced by a t~ctor. This 
factor is a function of  the apparent depth about which the 
beam rotates, H. 

Figs. 15 and 16 show the impact of  the conversion from 
the P-CMOD curve to the P-6~ curve for a typical SFRC 
beam. As the SFRC specimens are tested for a relatively 

14 

lO 
P-$ curve 

~ 
0 0.1 0.2 0.3 0.4 0.5 

8 or CMOD (mm) 
0.6 

Fig. 13 - P-8 and P-CMOD curves for a typical plain NSC beam. 
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Fig. 14 -,, P-8 and P-8~ curves for  a typical  plain NSC beam. 

long time as compared to the plain beams, the agreement 
between the P-6 and P-8~ curves is greater. Similarly, the 
difference between the two curves in the initial part of  the 
curves is increased but not significantly so. 

To have a quantitative evaluation of  the impact of  the 
conversion, loads at prescribed mid-span deflections were 
obtained from both the P-6 and P-8~ curves. This was 
carried out tbr both the plain and SFRC specimens. The 
difI~rence between the loads obtained fi'om the two curves 
is quantified using the expression: 

Pee - P~ 
AD = ~ • (4) 

where, AD = difference between the load obtained from the 
P-8 and P-8~ curves at a particular prescribed mid-span 
deflection, P~ = the load evaluated from the P-8~ curve and 
P~ = the load evaluated fi'om the P-8 curve 

Tables 5a and 5b show the results calculated for the plain 

Table 5a - Comparison between the loads obtained 
from the P-8 and P-Be curves at various mid-span 

deflections for the plain NSC beams 

C n l n g e  .......... 

0.1 0.15 0.2 
P-8 5.38 3.30 2.19 

V(%) (IL6) (20.0) (23.4) 
P'Se 4.86 3.14 2,17 

V(%) (15.0)  (18.9)  (21.9) 
AD(%) 9.56 4,96 0.563 

Load atprescribed mid-span deflections (kN) 
0.25 0.3 0.4 
1.56 1.14 0.662 

[ (2L5) (2%9)  (33.2) 
1.60 1.17 0.709 

(24.1) (28.3) (30.6) 
2.49 3.22 7.16 

Note: Figures in bold denote the prescribed mid-span 
deflections in millimetres (mm) 

Figures in brackets are the coefficients of variation, V(%) 

NSC and HSC beams respectively. The difference, AD, is 
generally within 10% indicating a satisf~actory agreement 
between the P-8 and P-8~ ctu'ves for the mid, span deflections 
considered. 

Tables 6a to 6d show the results obtained for the SFRC 
beams. The agreement between the P-6 and P-6~ curves is 
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z 8 
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80r CMOO (ram) 

P-8 curve 

~ -  P-CMOD curve 

0 &5 1 1,5 2 2,5 3 
8 or  C M O D  (ram) 

Fig. 15 - P-6 and P-CMOD curves for a C25/30 with 25kg/m 3 
of fibres (Dramix 65/60 BN) SFRC beam. 
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Fig. 16 - Typical P-6 and P-Be curves for a C25/30 with 
25kg/m 3 of fibres (Dramix 65/60 BN) SFRC beam. 

Table 5b - Comparison between the loads obtained from 
the P-8 and P-Be curves at various mid-span deflections 

for the plain HSC beams 
Curve Load at prescribed mid-span deflections (kN) 

0.1 0.15 0.2 0.25 0.3 0.4 
P-8 5.39 2.67 1.68 1.13 0.801 0.470 

........ V(%) (173) (17,9)  (21.2)  (2L6) (24.3)  (3Z8) 
P-Be 4.17 2.35 1.54 0 . 9 8 5  0,745 [0.441 
V(%) (18 .1)  (21.3)  (2&5)  (26.91) (24.9) [ (34.9) 

AD(%) 22.6 1i.9 8.18 13.2 6.95 6.24 
Note: Figures in bold denote the preseribed mid-span deflections 
in millimetres (ram) 

Figures in brackets are the coefficients of variation, V(%) 

excellent for the mid-span deflections considered with the 
difference, AD, below 5%. 

In addition, the variations at the prescribed mid,span 
deflections have been plotted mad a comparison made 
between those obtained from the P-8 curve and from the P- 
8~ curve, Figs. 17 and 18 show such a comparison ibr the 
plain concrete specimens. Similarly, Figs. 19 and 20 show 
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the comparison for lhe SFRC beams. In general, the _ ,o-[ 
variation does not change significantly when the P-8 curve 
is transformed into the P-8~ curve using the proposed 
simple rigid body model. This is true for both the plain and __g 
SFRC beams. '~ 30 / 

Table 6a - Comparison between the loads obtained from 
the P-8 and P-Be curves at various mid-span deflections for 

the C25/30 (with 25kg/m 3 of Dramix 65/60 BN fibres) 
SFRC beams 

Curve Load at prescribed re!d-span deflections (kN) 
0.5 1.0 1.5 2.0 2.5 3.0 

P-~ 7.75 7.54 7.31 6.98 6.60 6.33 
V(%) ~24.3) ...... (26~7) (27,6) (28.2) (28~8) (29.6) 
P-6e 7.85 7.65 7.39 7.00 6,61 6.31 

V(%) (25.3) (27.9) (28.5) (28.9) (29.5) (30.1) 
AD(%) 1.29 1.49 t.07 0 . 4 1 3  0.219 O. 197 
Note: Figures in bold denote the prescribed mid-span deflections 
in millimetres (mm) 

Figures in brackets are the coefficients of variation, V(%) 

Table 6b - Compar ison between the loads obtained f rom 
the P-~ and P-Be curves at various mid-span deflections 

for the C25/30 (with 50kg/m 3 of Dramix 80/60 BN fibres) 
SFRC beams 

F Load at prescribed mid-span deflections (kN) 
Curve [ 0.5 1.0 1,5 2.0 2.5 3,0 

P-8 16.5 18.0 t8.2 17.8 17.0 16.6 
V(%) (22.5) (21.9) (22:2) (22.9) (22,9) (22.8) 
P-~30 16.6 18.0 18.2 17.7 16.8 16.4 

V(%) (22.2) (21.9) (22.3) (23.2) (23.1) (23.t) 
AD(%) 0 .581  0.299 0.147 0.764 0.967 1.20 
Note: Figures in bold denote the prescribed mid-span deflections 
in millimetres (mm) 

Figures in brackets are the coefficients &variation, V(%) 

Table 6c - Comparison between the loads obtained f rom 
the P-8 and P-~e curves at various mid-span deflections 

for the C25/30 (with 75kg/m ~ of  Dramix 65/60 BN fibres) 
SFRC beams 

Curve 

P-5 
Y(%) 
P-8~ 

v(%) 

Load at prescribed mid-span deflections (kN) 
0.5 1.0 1.5 2.0 2.5 3.0 

20.0 20.4 19.8 18.9 18.0 17.3 
[(14,9) (16.0) (16,9) (!6,8) (15.5) (15.()) 

/9.9 20.1 19.5 18.4 17.6 16.7 
(14.7) (14.9) (16.2) ........... (15.5) (13.9) (14.6) 

AD(%) 0.127 1.39 1.88 2.47 2.07 3.18 
Note: Figures in bold denote the prescribed mid-span deflections 
in millimetres 0rim) 

Figures in brackets are the coefficients of variation, V(%) 

Table 6d - Compar ison between the loads obtained f rom 
the P-~ and P-~e curves at various mid-span deflections 

for the C70/85 (with 25kg/m 3 of Dramix 80/60 BP fibres) 
SFRC beams 

Curve 

P-8 
V(%) 
P-6~ 

V(%) 
AD(%) 

Load at prescribed mid-span deflections, kN) 
0.5 1.0 1.5 2.0 2.5 3.0 
13.2 t5.6 16.8 17.3 17,2 16.7 

(30. I)  .... (30.7) (3 ] ,4)  (3 ] .5) (31.2) (31.9) ..... 
13.2 15.5 16.5 17.0 16.9 16.5 

(25.5) (25.5) (26.7) (26.8) (26.4) (26.1) 
0.171 1.10 1.84 1.86 1.96 1.43 

Note: Figures in bold denote the prescribed mid-span deflections 
in millimetres (ram) 

Figures in brackets are the coefficients &variation, V(%) 
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Fig. 17 - Variation of measured load at prescribed average 
mid-span deflections, 8 (variation obtained from P-8 curves) 
for the plain concrete beams. 
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In summary, it is found that the simple rigid body model is 
appropriate lbr converting the P-CMOD curve into a P-6, curve. 
The P-8~ curve is found to agree well with the experimentally 
obtained P-6 curve, especially for the SFRC beams. 

It is therefore suggested that the P-CMOD curve be used to 
obtain design parameters rather than the P-6 curve. ~ s  will 
facilitate the possibility of measuring CMOD alone to obtain the 
parameters using a simple relationship between 6 and CMOD as 
given by Equation (3) and thus save set-up time and cost. This 
simple relationship should be used to obtain a correction factor 
to interchange between 6 and CMOD (tbr example for a knit~ 
edge thickness, do = 5mm, the ratio of~SJCMOD = 0.8065). This 
method can be used to either evaluate toughness or residual 
strengths using the P-CMOD curve. 

6. CONCLUSIONS 

The study reported here shows that there would be a certain 
amount of error with regard to different values of d,, being used 
when conducting a beam-bending test. The amount of error 
introduced in general increases as d,, increases. From the 
analytical analysis, for an error level of 10%, a knife-edge of 
5ram would be acceptable. Bearing in mind the variation due 
to the distribution of fibres a knife edge thickness of  5mm is 
thus recommended. This value was chosen as a compromise 
between accuracy of  measurement and practical considerations 
(especially for practising engineers), 

The accuracy of a proposed model, based on rigid body 
kinematics, to obtain a relationship between 6 and CMOD was 
investigated. Analysis was carried out asing both experimental 
and analytical results. In both plain and SFRC beams, it was 
found that there was close agreement between the model and the 
experimental and analytical results. Another study conducted 
showed that this relationship between 6 and CMOD was 
independent of the fibre contents and the concrete strengtl~s 
considered, Furthermore, P-CMOD curves were converted into 

P-8~. curves using the simple rigid body model. This was found 
to be in close agreement with the experimentally measured P-6 
curve es~eially for the SFRC beams. 

The results show that toughness can be evaluated from either 
the P-6 or P-CMOD curves. With the support of both a~,lalytical 
and experimental evidence, it is recommended that the P- 
CMOD curve be used for evaluating the toughness or residual 
strengths of SFRC. However, the relationship between P-6 and 
P-CMOD needs to be. established tbr may given geometry. 
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