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Abstract

The emissions from five commonly used building products were studied in small-scale test chambers over a period of
50 days. The odor intensity was assessed by a sensory panel and the concentrations of selected volatile organic
compounds (VOCs) of concern for the indoor air quality were measured. The building products were three floor
coverings: PVC, floor varnish on beechwood parquet and nylon carpet on a latex foam backing; an acrylic sealant, and
a waterborne wall paint on gypsum board. The impacts of the VOC concentration in the air and the air velocity over the
building products on the odor intensity and on the emission rate of VOCs were studied. The emission from each building
product was studied under two or three different area-specific ventilation rates, i.e. different ratios of ventilation rate of
the test chamber and building product area in the test chamber. The air velocity over the building product samples was
adjusted to different levels between 0.1 and 0.3 m s~1. The origin of the emitted VOCs was assessed in order to
distinguish between primary and secondary emissions. The results show that it is reasonable after an initial period of up
to 14 days to consider the emission rate of VOCs of primary origin from most building products as being independent of
the concentration and of the air velocity. However, if the building product surface is sensitive to oxidative degradation,
increased air velocity may result in increased secondary emissions. The odor intensity of the emissions from the building
products only decayed modestly over time. Consequently, it is recommended to use building products which have a low
impact on the perceived air quality from the moment they are applied. The odor indices (i.e. concentration divided by
odor threshold) of primary VOCs decayed markedly faster than the corresponding odor intensities. This indicates that
the secondary emissions rather than the primary emissions, are likely to affect the perceived air quality in the long run.
Some of the building products continued to affect the perceived air quality despite the concentrations of the selected
VOCs resulted in odor indices less than 0.1. Therefore, odor indices less than 0.1 as an accept criterion cannot guarantee
that a building product has no impact on the perceived air quality. ( 1999 Elsevier Science Ltd. All rights reserved.

Keywords: Building products; CLIMPAQ; Emission testing; Indoor air quality; Odor intensity; Volatile organic
compounds
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1. Introduction

Over the past decade it has become evident that build-
ing products are major contributors to the pollution of
the indoor environment with volatile organic compounds
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(VOCs), at least during the initial period after the con-
struction or renovation of a building (Wolkoff, 1995).
Some of the emitted VOCs may affect the perception of
the indoor air quality, e.g. in the form of odor nuisance,
eye and airway irritation (Bluyssen et al., 1996; Nielsen et
al., 1997a). Consequently, methods need to be developed
to characterize the emissions from building products in
sensory and chemical terms in order to understand their
impact on perceived air quality and to assess potential
health risks (e.g. airway irritation). This is important
when developing standards for emission testing and
building product labeling schemes, and when advising
manufacturers on how to develop low-polluting building
products.

In order to characterize a building product properly, it
is important to know how various climate parameters
may affect the perceived air quality and the emission
rates of VOCs. Several parameters should be considered,
e.g. the VOC concentration in the air, the air velocity
over the building product, the age of the building prod-
uct, temperature, and humidity (ECA, 1991; Guo et al.,
1996; Wolkoff, 1995).

The emission rates of VOCs from building products
with no internal chemical reactions generally depend on
two mechanisms: (1) the diffusion of VOCs within the
building product and (2) the evaporation from the build-
ing product surface to the ambient air (Clausen et al.,
1991; Tichenor, 1992). Depending on the type of building
product, the emission rate may be limited by one or both
mechanisms. In the case of evaporation from the building
product, the emission rate of VOCs may be affected by
the concentration in the air, because it is the differences in
partial pressures between building product surface and air
which drive the mass transfer to the air. Some effects of
concentration have been observed during the initial emis-
sion from liquid surface products like waterborne paints
and wood finishing products (i.e. stain, polyurethane and
wax) (Andersen et al., 1996; Tichenor and Guo, 1991).
However, theoretical studies and measurements have in-
dicated that the concentration effect on the emission rate
especially from some building products (PVC flooring,
waterborne paint, nylon carpet with latex backing, floor
varnish on beechwood parquet and sealant) may be neg-
ligible (Andersen et al., 1996; Christiansson et al., 1993;
Clausen et al., 1991; Jayjock, 1994; Wolkoff, 1998).

The air velocity over a building product surface may
have an impact on the VOC emission rate by affecting
the flow pattern in the boundary layer near the surface
(Guo et al., 1996). Increased air velocity may increase the
mass transfer coefficient and thereby increase the evapor-
ation of VOCs from the surface of some building prod-
ucts. The largest effect of air velocity is expected for the
initial emission (evaporation controlled) from liquid
products (Wolkoff, 1995, 1998).

The age of a building product is an important para-
meter. It has been proposed to divide the emissions from

building products into primary emissions (i.e. non-bound
VOCs from e.g. accelerators, additives, antioxidants,
monomers, plasticizers, solvents, and unreacted raw ma-
terials) and secondary emissions, i.e. originally chemi-
cally or physically bound VOCs (VOCs that are emitted
or formed by different mechanisms, e.g. decomposition,
hydrolysis, oxidation, and sorption processes on the ma-
terial surface) (Wolkoff, 1995). The primary emissions
decay relatively fast (usually within a year) while second-
ary emissions for some building product types, e.g. lin-
oleum (Jensen et al., 1996), may continue for the entire life
of the building product (Wolkoff and Nielsen, 1997).

One important aspect of building product emissions is
the link between VOC concentrations and perceived air
quality, eye and airway irritation. An understanding of
this interrelation is essential for the ability to predict the
possible impact of emitted VOCs on these aspects of
indoor air quality. Such information is very useful for
developing better building products with a low emission
and a low impact on the perceived air quality and no
airway irritation. The Danish Indoor Climate Labeling
scheme recommends requirements to both the concentra-
tion of selected VOCs and a sensory assessment of the
emissions. For selected VOCs of concern, i.e. VOCs that
are believed to have an impact on the perceived odor
intensity, a concentration of 50% of the odor thresholds
is used as an accept criterion for building products (Wol-
koff and Nielsen, 1996). The use of 50% of the odor
threshold is a pragmatic safety factor to account for the
possibility of contributions of the same VOCs from other
pollution sources. The labeling scheme is based on
a series of assumptions. Firstly, it is assumed that the
initial qualitative analysis has identified the VOCs that
may affect the odor intensity. Secondly, mixtures of odor-
ants above odor threshold are believed to be hypoaddi-
tive, i.e. the odor intensity of the mixture is less than the
sum of the single odorant intensities (cf., Berglund and
Olsson, 1993; Berglund and Lindvall, 1992; Cometto-
Mun8 iz and Cain, 1991; Cometto-Mun8 iz et al., 1997;
Laing et al., 1994; Lawless, 1977). Thirdly, the intensity of
the stronger odorant alone often offers a close descrip-
tion of the odor intensity of the mixture (Berglund and
Lindvall, 1992; Cain et al., 1995). However, below odor
threshold, mixtures may show normal or hyperadditivity
(Guadagni et al., 1963; Cometto-Mun8 iz et al., 1997; Pat-
terson et al., 1993). Finally, the use of odor indices (see
definition later) is considered a crude estimate of the
relative contributions of single odorants to the odor
intensity of their mixtures.

The objectives of this study were to investigate over
time, in sensory and chemical terms, the impacts of: (1)
the air velocity over a building product surface and (2)
the concentration of the selected VOCs in the surround-
ing air on the odor intensity and on the emission rate,
and (3) to study the interrelation between odor intensity
and concentrations of selected VOCs.
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Table 1
The ventilation rate of the test chambers, the area of the test specimens, the mean air velocity measured equidistant from the test
specimens and the number of test chambers used during the study

PVC Varnish Carpet Sealant Wall paint

Ventilation rate (L s~1) 0.8 1.3 1.8 1.2 0.9 1.8 1.6 0.7 1.2 1.7 0.7 1.7 0.8 1.2 1.4 1.2 1.7 1.8
Area of test specimen (m2) 2.6 1.9 1.3 0.6 0.6 0.3 0.3 1.7 1.1 0.8 0.06 0.03 1.9 1.9 1.2 0.9 1.2 0.9
Air velocity (m s~1) 0.1 0.1 0.1 0.1 0.3 0.3 0.1 0.1 0.2 0.1 0.15 0.15 0.1 0.2 0.3 0.3 0.1 0.1

0.3 0.3 0.3 0.3 0.2 0.3 0.3
Number of CLIMPAQs 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 1

2. Method

2.1. Research plan

The emissions from five different building products
kept at different concentrations of VOCs and at different
air velocities were studied over a 50-day period by sens-
ory and chemical methods. The emission from each
building product was studied under two or three different
area-specific ventilation rates (L s~1 m2), i.e. different
ratios of ventilation rate of the test chamber and building
product area in the test chamber. The area-specific ven-
tilation rates were within the range normally found
indoors. The highest area-specific ventilation rate was
five times higher than the lowest. The air velocity over
the building product samples was adjusted to differ-
ent levels between 0.1 and 0.3 m s~1 corresponding to
a realistic indoor range (Girman, 1993), at constant area-
specific ventilation rates. Throughout the study, the air
temperature and the relative humidity in the test cham-
bers were held constant at 23.0$0.2°C and 50$3%
RH. Concurrently with measurements of the five building
products, measurements of the emissions from an empty
test chamber was performed as a measure of the back-
ground level. A sensory panel assessed the odor intensity
on days 1, 8, 15, 29 and 50 after the building products
were placed in the test chambers. For PVC flooring,
assessments were performed on days 6, 13 and 29. Chem-
ical measurements of selected VOCs were performed on
days 1, 7, 21, 28 and about 40—50. The experimental
conditions are listed in Table 1.

2.2. Building products

The five building products used in this study were
selected to represent major groups of building products
often used indoors. The building products were three
floor coverings: a 1.5 mm one-layer PVC, a one compo-
nent waterborne acrylic floor varnish (semi gloss,
10 m2 L~1) applied by a paint roller onto 12 mm thick
pretreated beechwood parquet and an 8 mm tufted nylon
carpet on a latex foam backing. Furthermore, a water-

borne acrylic sealant for indoor use injected into a U-
shaped aluminum profile, 10 mm wide and 12 mm deep,
and a white pigmented waterborne acrylic wall paint
(10 m2 L~1) applied by a paint roller onto 13 mm gyp-
sum board were studied. The building products were
wrapped in inert and diffusion-tight packing and stored
at controlled conditions at 15°C immediately after re-
ceipt from the manufacturers. Test specimens were cut to
size and conditioned in the main environmental chamber
(see below) for 24 h before they were placed in the test
chambers (time"0 day). The sizes of the test specimens
were determined so that the area-specific ventilation rate
corresponded to the typical application of the building
products in a real room and also accounting for the size
of the test chamber. For a detailed description of the
selection criteria and the handling of the building prod-
ucts, see Kjaer et al. (1996).

2.3. Chamber facilities

The experiments were performed in a series of CLIM-
PAQ test chambers made of glass (Gunnarsen et al.,
1994), see Fig. 1a. The volume of the test chamber is
50.9 L. The exhaust air from each test chamber was led
through a diffusor specially designed for sensory assess-
ments. The test specimens of the floor coverings and the
wall paint on gypsum board were placed vertically, paral-
lel to the long side of the test chamber so that the
emitting surface was parallel to the direction of the air
flow. Sealant in U-shaped profiles was placed on the
bottom of the test chamber parallel to the long side of the
test chamber. The air velocity over the building product
specimens was adjusted by control of the air flow
through the recirculation channel of the test chamber by a
damper. The mean air velocity was measured with a hot-
wire anemometer (DANTEC FLOWMASTER Pre-
cision Anemometer Type 54 N 60) in holes 5—8, see Fig.
1a. During measurements the anemometer was placed
equidistant from the building product specimens and
equidistant from top and bottom of the test chamber.
Prior to the experiments, the test chambers were cleaned
with hot water with a neutral detergent added. The test
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Fig. 1. (a) The CLIMPAQ test chamber. (b) Intensity scale
slightly modified from Yaglou’s psycho-physical scale and the
accompanying question. The scale was not numbered during the
assessments, but the numbers are used in Fig. 2.

chambers were then rinsed with hot water, and finally
rinsed with distilled water. During the study, the test
chambers were covered with aluminum sheets to hide the
building products from the view of the assessors in
the sensory panels. The experiments were performed in
the air quality laboratory of the Danish Building
Research Institute (Ekberg and Nielsen, 1995). The labor-
atory facilities consist of two adjacent full-scale/walk-in
environmental chambers: a main chamber with a volume
of 96 m3 and an antechamber with a volume of 32 m3.
The test chambers were situated in the main environ-
mental chamber, ventilated with an outdoor air exchange
rate of at least 11 L h~1, and at a temperature of
21.0$0.5°C and at a relative humidity of 55$3% RH.

2.4. Sensory panels

In the study of PVC, varnish and wall paint a sensory
panel comprising 6—12 subjects (on an average 8) per-
formed the sensory assessments. The subjects were uni-
versity students and 20% of them were women. The age
ranged from 21 to 45 yr with a mean age of 25 yr. In the
study of sealant and carpet another panel comprising
20—25 subjects (on an average 23) performed the sensory
assessments. These subjects were recruited in the neigh-
borhood of the Danish Building Research Institute.
There was an even distribution of men and women in this
panel. The age ranged from 16 to 69 yr with a mean age
of 39 yr. Both panels assessed the immediate odor inten-
sity of air exhausted from the test chamber through
the diffusor by marking on the scale for odor intensity

(Yaglou et al., 1936) as shown in Fig. 1b. Before the first
assessment the panels were instructed on how to use the
scale and the exposure equipment. Between each assess-
ment the subjects were seated for about 2 min in a well-
ventilated hall surrounding the environmental chambers.
The subjects first entered the antechamber (clean air) for
1 min, and then they entered the environmental chamber
with the small-scale test chambers. Here they made one
assessment of the immediate perceived odor intensity
before they exited to the hall again. The assessments were
performed in random order. This procedure was repeated
throughout a 2 h period.

2.5. Chemical measurements

Prior to the measurements in the CLIMPAQs,
a screening of VOCs emitted from the building products
were performed by GC/MS analysis of the air exhausted
from a field and laboratory emission cell (FLEC). The
measurements were done 2 days after the building prod-
ucts were placed in the FLEC. About 30 different VOCs
were identified from each building product, for details see
Wolkoff et al. (1996).

For each building product, a number of VOCs of
concern were selected on the basis of low odor thresholds
(Jensen and Wolkoff, 1996), abundance, and persistence,
see Table 2. This selection was based on the assumption
that VOCs with low odor thresholds may have an impact
on the perceived air quality (Wolkoff and Nielsen, 1996).
Some other VOCs were also selected. Table 2 shows
whether the origin of the VOCs is considered to be from
primary or secondary emissions or a combination. Fi-
nally, the airway irritation thresholds for the selected
VOCs are listed.

The chemical measurements in the CLIMPAQs were
performed as follows. Duplicate samples on Perkin-El-
mer Tenax TA steel tubes were taken in a hole in the
diffusor perpendicular to the air flow direction. The tubes
were thermally desorbed and analyzed by gas
chromatography and a FID detector. Each VOC was
individually calibrated and the results are reported as the
mean of a duplicate sample. Further details about the
qualitative and quantitative analyses are described else-
where (Wolkoff, 1998). The sum of VOCs, &VOC, was
calculated based on individual VOC concentrations in-
cluding unidentified peak areas converted to decane
equivalents (equivalent to toluene).

3. Results

3.1. Sensory measurements

The mean odor intensity vs time for the five building
products and an empty test chamber are shown in Fig. 2.
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Table 2
Selected VOCs, an indication of whether their origin is believed to be primary or secondary emission, odor thresholds and airway
irritation thresholds

Building product VOC Primary (P) or Odor threshold! Airway irritation
Secondary (S) (lg m~3) threshold!

(lg m~3)

Carpet 2-Ethyl-1-hexanol P/S 500 7160
4-Phenylcyclohexene P 2 high"

Nonanal S 14
Decanal S 6

PVC 2-Butoxyethoxyethanol P 9 high#

2-Ethyl-1-hexanol P/S 500 7160
Phenol P/S 427 19500

Sealant Hexane P 79000 high$

Dimethyloctanols (isomers) P/S 120% (1000&

Floor varnish Butyl acetate P 47 105000
Butoxyethanol P 51 417000
Ethoxyethoxyethanol P (100 high$

2-Butoxyethoxyethanol P 9 high#

N-Methylpyrrolidone P 300' 20000)

Wall paint 2-Butoxyethoxyethanol P 9 high$

Decanal S 6 high$

1,2-Propandiol P odorless high$

Texanol* P (2' 1000+

! From VOCBASE (Jensen and Wolkoff, 1996). "Expected not to cause irritation (Nitschke et al., 1991). # Based on high TLV.
$Expected not to cause irritation (Sax, 1993). % The value for decanol is used. & Irritation threshold estimate based on analysis of the
isomer decanol (Jensen and Wolkoff, 1996), based on analysis of homologues hexanol, heptanol, and octanol. 'Unpublished data (Jensen
and Wolkoff, 1997). )Tentative TLV (Danish Labor Environment Service, 1996). * Two isomers of 2,4,4-trimethyl-1,3-pentandiol
mono-isobutyrate. + Critical indoor value from Nielsen et al. (1997a).

The assessments are shown for different area-specific
ventilation rates (Q/A) and for different air velocities
(»

!*3
). The experimental standard deviation of the odor

intensity was on average 0.7 (see Fig. 2). This corresponds
to an approximate experimental standard deviation of
the mean of 0.3 for PVC, varnish and wall paint and 0.2
for sealant and carpet. Generally, it was seen that after
a limited decay during the first one or two weeks the odor
intensity reached a nearly constant level for the rest of the
period. For the liquid building products, varnish and
wall paint, the sensory decay was more pronounced over
the first 1—2 weeks than for the other building products.
The odor intensity for the carpet did not seem to decay
over the 50 day period whereas the odor intensity for
sealant decreased somewhat.

3.2. Chemical measurements

The impacts of the air velocity and concentration on
the emission rate for the five building products are sum-
marized in Table 3. Figs. 3—5 show concentration vs time
for different air velocities and emission rate vs time for
different area-specific ventilation rates of the selected
VOCs from the five building products.

3.2.1. Carpet and PVC (Fig. 3)
For carpet, the decays of 2-ethylhexanol and 4-phenyl-

cyclohexene show no dependence of the air velocity dur-
ing the 50 day period. The area-specific emission rate vs
time for the same VOCs indicates a dependency of
the concentration on the emission rate. At the high
area-specific ventilation rate (Q/A), i.e. at the low concen-
tration, the emission rate was highest, especially during
the first 2 weeks. For PVC, the decays of 2-ethylhexanol
and in particular phenol at the end of the period show
some air velocity dependence. The highest concentration
and thereby the highest emission rate was observed at the
highest air velocity. The area-specific emission rate vs
time for 2-ethylhexanol shows no effect of concentration
on the emission rate.

3.2.2. Sealant (Fig. 4)
For sealant, concentrations vs time show some effect of

air velocity on the emission rate for dimethyloctanols, in
particular at the beginning of the period, but no effect
was observed for hexane. Similarly, area-specific emis-
sion rates vs time show an impact of concentration on the
emission rate for dimethyloctanols whereas there
was no effect for hexane. It should be noted that
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Fig. 2. Mean odor intensity vs time for three floor coverings: carpet, PVC and varnish; and for sealant, wall paint, and empty test
chambers. The assessments are shown for different area-specific ventilation rates (Q/A) and for different air velocities (»

!*3
). The

experimental standard deviation of odor intensity votes as a function of the mean odor intensity is also shown. Each point represents the
mean vote of eight persons for PVC, varnish and wall paint, and 23 persons for sealant and carpet.

dimethyloctanols may be formed during the hardening
process, i.e. secondary emission.

3.2.3. Floor varnish and wall paint (Fig. 5)
The concentrations vs time and the area-specific emis-

sion rates vs time show no impact of the air velocity or
the concentration on the emission rates of the VOCs
from floor varnish and wall paint.

3.3. Odor index vs time

To compare the measurements of VOC concentrations
with the sensory assessments, odor index vs time was

determined, see Fig. 6. The odor index (OI
i
) for VOC

i
is

calculated as

OI
i
"C

i
/OT

i

where C
i
is the concentration of VOC

i
(lg m~3) and OT

i
the odor detection threshold of VOC

i
(lg m~3). Odor

thresholds were obtained from a data compilation (Jen-
sen and Wolkoff, 1996).

Only VOCs with an odor index greater than 1 at some
point in time are considered. Since the impact of the air
velocity on the emission rate is negligible or at least
modest, the odor index is calculated on the basis of the
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Table 3
The impact of air velocity and concentration on the emission rate of selected VOCs

Building VOC Air velocity Impact of Q/A Impact of
product (m s~1) air velocity (L s~1 m~2) concentration

Carpet 2-Ethyl-1-hexanol 0.1 vs 0.3 — 0.4 vs 2.0 ##

4-Phenylcyclohexene — ###

PVC 2-Ethyl-1-hexanol 0.1 vs 0.3 # 0.3 vs 1.4 —
Phenol ##

Sealant Hexane 0.1 vs 0.3 — 11 vs 52 —
Dimethyloctanols ## ##

Floor varnish Butyl acetate 0.1 vs 0.3 — 1.9 vs 5.0 —
N-Methylpyrrolidone — —

Wall paint 1,2-Propandiol 0.1 vs 0.3 — 0.4 vs 1.9 —
Texanol — —

The impact of differences in air velocity or impact of differences in concentration is rated in the following way: (—) the difference is less
than 10% during the entire test period; (#) the difference is between 10 and 25%; (##) the difference is between 25 and 50%;
(###) the difference during the entire test period is greater than 50%.

Fig. 3. Concentrations vs time at different air velocities and area-specific emission rate vs time at different area-specific ventilation rates
for selected VOCs emitted from carpet and PVC.

mean concentration of measurements at the two air vel-
ocities 0.1 and 0.3 m s~1, except for 3,7-dimethyloctanols
from sealant.

3.3.1. Carpet
The odor index of 4-phenylcyclohexene approached

0.5 after about 1 week and 0.1 after about 7 weeks. The
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Fig. 4. Concentrations vs time at different air velocities and
area-specific emission rate vs time at different area-specific venti-
lation rates for selected VOCs emitted from sealant.

odor indices of the two aldehydes, nonanal and decanal,
fluctuated between 0.2 and 1.6 for unknown reasons.
Decanal increased during the period to 1.5. The odor
index of 2-ethylhexanol was about 0.01 at the start of the
experiment.

3.3.2. Sealant
The odor index of dimethyloctanols was above 2 from

the beginning of the measurements and approached
1 after about 7 weeks.

3.3.3. Floor varnish
The odor indices of butyl acetate and N-methylpyr-

rolidone both started at about 7, and approached about
1 after about 3 weeks. Both reached about 0.1 after about
5—6 weeks. The odor indices of butoxyethanol and
butoxyethoxyethanol approached 0.1 within 3 weeks.
Ethoxyethoxyethanol approached 0.1 after about
4 weeks.

3.3.4. Wall paint
The odor index of Texanol started at about 200, and

approached 1 after about 4 weeks, 0.5 after about 6 weeks
and 0.1 after around 7 weeks. The odor index of

butoxyethoxyethanol approached 0.1 after about
2 weeks. The odor index of decanal fluctuated consider-
able between 0.8 and 2.6, but was generally above 1.

3.3.5. PVC
The odor indices of 2-ethylhexanol and phenol were

below 0.1 from the start of the experiment. For
butoxyethoxyethanol the odor index was below 0.2 from
the start of the experiment.

Table 4 lists the odor intensity after 50 days (for PVC
after 30 days) and the approximate time to reach an odor
index of 0.5 for each VOC as used in the Danish Indoor
Climate Labeling scheme (Wolkoff and Nielsen, 1996).
Similarly, the time to reach an odor index of 0.1 is shown.
This lower index is included in an attempt to account for
the more sensitive proportion of normal subjects (nor-
mosmics) that may perceive odorants down to at least
one tenth of a given odor threshold. Table 4 also lists the
measured sum of VOCs at the end of the experiments.
The data do not indicate any correlation between the
sum of VOCs and the odor intensity (see Fig. 2). For
example, carpet resulted in an odor intensity of 2.4 and
a sum of VOCs of 57 lg m~3, while the relatively high
sum of VOCs from sealant or floor varnish did not result
in a correspondingly higher odor intensity. Similarly, the
relatively low odor intensity for wall paint did not result
in a lower sum of VOCs.

4. Discussion

4.1. Air velocity

The first objective was to investigate the impact of the
air velocity over the building product surface on the odor
intensity and on the emission rates of selected VOCs.

4.1.1. Sensory assessment
The impact of air velocity on the odor intensity can be

evaluated by comparison of odor intensities vs time in
Fig. 2 at different air velocities for similar area-specific
ventilation rates. These comparisons show that the air
velocity has no significant impact on the odor intensity
for any of the building products. This indicates that for
practical purposes the impact of the air velocity on the
emission rate of VOCs affecting the sensory assessments
can be considered to be negligible for the investigated
building products.

4.1.2. Chemical assessment
A summary of the impact of air velocity on the emis-

sion rate of VOCs is given in Table 3. For floor varnish
and wall paint no impact of air velocity on the emission
rate was observed. Apparently, the emission rate has
become controlled by diffusion within the product
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Fig. 5. Concentrations vs time at different air velocities and area-specific emission rate vs time at different area-specific ventilation rates
for selected VOCs emitted from varnish and wall paint.

relatively fast (cf. Chang et al., 1997). This finding is in
agreement with a study of the same building products
where emissions were measured in a FLEC test chamber
(Wolkoff, 1998). For carpet, the emission rates of 2-ethyl-
hexanol and 4-phenylcyclohexene were unaffected by the
air velocity. An explanation for this observation may be
that the emissions of 2-ethylhexanol and 4-phenylcyclo-
hexene from the latex backing is controlled by diffusion
within the building product. For sealant the emitted
dimethyloctanols showed some impact that diminished
over time, whereas hexane was not affected. The reason
for this observation may be that dimethyloctanols are
also formed as a byproduct during the hardening process
and this may lead to a composite mechanism of emis-
sions. Hexane is a primary emission that is diffusion
controlled. The emission rates of 2-ethylhexanol and in
particular phenol from PVC were affected by the air
velocity. This is surprising, because the emission rate
would be expected to be controlled by diffusion within
the product (Clausen et al., 1993). One explanation may
be that high air velocity causes secondary emissions, due
to chemicals susceptible to air/oxygen, e.g. plasticizers in
the building product. If the air velocity increases,
the thickness of the boundary layer decreases. This

may increase the effective contact of oxygen (a biradical)
with the building product surface microstructure, i.e.
increase of the possibility of oxidative degradation.
A similar observation was found in a study of emissions
from samples of the same PVC placed in the FLEC test
chamber (Wolkoff, 1998). Oxidative degradation has also
been shown for linoleum (Jensen et al., 1996).

4.2. Concentration

The second objective was to investigate the impact of
the concentration on the emission rate.

4.2.1. Sensory assessments
It is not possible to evaluate the impact of the concen-

tration on the emission rate of VOCs based on the
sensory assessments. This would require a detailed knowl-
edge of the exposure—response relationships on intensity
votes for each of the five building products. However, it is
interesting to look at the odor intensities vs time for
sealant and carpet. For both building products the area-
specific ventilation rate was varied by a factor of 5. For
sealant, the odor intensity differed as expected for the two
levels of area-specific ventilation rates during the entire
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Fig. 6. Odor indices vs time at constant area-specific ventilation rate, for selected VOCs emitted from carpet, sealant, floor varnish, and
wall paint.

50 day period. For carpet, however, the odor intensity
only differed as expected at the beginning of the measur-
ing period. After 30 days the odor intensity was about the
same at the different levels of area-specific ventilation
rate. This may be explained either by an increase in
perceivable secondary emission at the lower concentra-
tion or it may simply be due to a flat slope of the
exposure—response relationship for carpet compared to
a steeper slope for sealant. Such differences have been
seen in a parallel study of exposure—response relation-
ships for the same and other building products (Knudsen
et al., 1997, 1998).

4.2.2. Chemical assessment
The impact of concentration on the emission rate of

VOCs is listed in Table 3. The impact of concentration on
the emission rate of VOCs for the carpet and the sealant
is difficult to explain without including a model with sink
effects, in particular for the polar VOCs, i.e. 2-ethyl-
hexanol and dimethyloctanols. A rational explanation
for the relatively large difference in emission rate for
carpet at different concentrations could be desorption
from the fibers. Until 24 h before the carpet samples were
placed in the test chambers they were stored while being
wrapped in diffusion-tight packing. During this storage

period, it is possible that the fibers have adsorbed VOCs
that later were desorbed, especially during the initial
period of the measurements. The decay of the
dimethyloctanols from the sealant is probably due to
a not yet finished hardening process that releases the
alcohols with the possibility of additional evaporation
controlled emission.

The above results support that it is reasonable after an
initial period of up to 14 days to consider the emission
rate of primary VOCs from a wide range of building
products to be independent of the VOC concentration in
the air and of the air velocity over the product surface.
Similar conclusions about the impact of the VOC con-
centration have been obtained for the same building
products, except for wall paint (Andersen et al., 1996).
For such building products it will be sufficient to quan-
tify the emission rate of VOCs at one realistic area-
specific ventilation rate, and at one air velocity to be able
to model the concentration levels in a room. However,
impacts of air velocity and concentration may occur for
primary VOCs if the emission rate is evaporation con-
trolled. In addition, increased air velocity may result in
an increased emission rate for secondary VOCs that
originate from drying, hardening, sorption, and oxidative
degradation. Then, it may be necessary to quantify the
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Table 4
Odor intensity after 50 days! (for PVC after 30 days), the approximate time for reaching an odor index of 0.5 and 0.1 for the selected
VOCs, and the approximate sum of VOCs from the five building products after 30—50 days

Building product: Area specific Odor Time (weeks) before &VOCs"
VOC ventilation rate

L s~1m~2

intensity reaching an odor index of (lg m~3)
0.5 0.1

Carpet: 0.4 2.4 57#

4-Phenylcyclohexene 1 7
Nonanal$ +7 '7
Decanal$ '7 '7

PVC: 0.3 2.3 141%

2-Butoxyethoxyethanol 0 0
2-Ethylhexanol 0 0
Phenol 0 0

Sealant: 11 2.4 163#

Dimethyloctanols& '7 '7

Floor varnish: 1.4 2.4 420'

Butoxyethanol (1 (3
Ethoxyethoxyethanol& (3 (5
2-Butoxyethoxyethanol (1 (3
Butyl acetate (4 '7
N-Methylpyrrolidone& 3 (5

Wall paint: 1.3 1.4 125'

2-Butoxyethoxyethanol (1 (3
Decanal$ '7 '7
Texanol& +6 '7

! See Fig. 3. " Sum of VOCs. # After 7 weeks. $ Fluctuating concentrations. %After 4 weeks. &Tentative or unpublished odor thresholds
used, see Table 1. 'After 6 weeks.

emission rate of VOCs at more than one realistic
area-specific ventilation rate and at more than one air
velocity to be able to model the VOC concentrations at
different area-specific ventilation rates and different air
velocities.

4.2.3. Airway irritation
It has recently been proposed to use threshold limit

values (TLVs) for risk assessment of airway irritation due
to indoor air pollutants, if no indoor air standard or
guideline exist (James and Gardner, 1996; Paustenbach,
1997). For continuous exposure of VOCs and accounting
for specially sensitive humans an indoor air guideline for
airway irritation has been proposed to be 1/40 )TLV
(Nielsen et al., 1997a). If none of the emitted VOCs (nor
their sum) exceed these levels, the building products are
not believed to cause airway irritation. For the five build-
ing products of this study the levels of the selected VOCs
were all below 1/40 )TLV after 2 weeks, see Table 2.
Therefore, none of the VOCs are considered to cause
airway irritation after about 2 weeks. Within the first
2 weeks, the dimethyloctanols from sealant and Texanol
from wall paint may be expected to cause airway irrita-
tion. However, since irritants are additive, airway irrita-
tion cannot be ruled out even after 2 weeks, but it is

considered unlikely for carpet, paint, and sealant (cf.
Nielsen et al., 1997b).

4.3. Sensory assessments vs chemical measurements

The third objective was to study the interrelation be-
tween odor intensity and concentrations of selected
VOCs. This interrelation was studied by comparison of
odor intensities vs time with the corresponding odor
indices vs time for selected VOCs believed to affect the
odor intensity. The odor intensity decreased within the
first 2 weeks; most for varnish and wall paint, less for
PVC, and only marginally for sealant and carpet (see
Fig. 2). Thereafter, the odor intensity reached a nearly
constant level for the rest of the period. The odor inten-
sity leveled out at around 2.4 for all building products
except for wall paint that ended at 1.4. The odor indices
of the selected VOCs for carpet, PVC, varnish, and wall
paint showed a markedly faster decay (Fig. 6) than the
corresponding odor intensities (Fig. 2). For all building
products the odor indices reached 0.1 after 50 days for
the primary VOCs, see Tables 2 and 4. Both carpet and
wall paint are believed to emit some secondary VOCs
(e.g. the aldehydes, nonanal and decanal) that only
slowly, if at all, approach an odor index of 0.1. The
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fluctuations of the aldehyde concentrations from carpet
and wall paint and the dimethyloctanols from sealant are
not well understood, but they are believed to be partially
derived from some surface degradation (oxidation) or
unknown mechanisms of secondary origin (including
hardening processes).

The present data show that building products continue
to affect the perceived air quality, even when the concen-
trations of primary VOCs are well below their respective
odor thresholds. Therefore, odor indices less than 0.1 for
selected VOCs cannot guarantee that a building product
has no impact on the perceived air quality. A reason for
this could be emissions of secondary VOCs. A better
understanding of the nature of secondary emissions and
their impact on the perceived air quality seems essential,
because they may be responsible for the continued odor
of the building products, even after known primary
VOCs have decayed to far below their respective odor
thresholds.

Several explanations can be suggested for the above
discrepancies between the decay of VOC concentrations
and corresponding odor intensity. These are: (1) We do
not measure all the VOCs that are present in the air and
that affect the odor intensity. (2) The building products
emit VOCs with high odor indices, but in low concentra-
tions which are not captured or analyzed by the analyti-
cal techniques available. (3) Available odor thresholds
are too high, due to inadequate olfactometric techniques
(Punter, 1983), uncertainties about exposure due to e.g.
sniffing technique and insufficient airflow (Laing, 1982).
(4) Odor thresholds are based on 50% detection of odor
by a panel of judges and do not take into account
inter-personal variations, i.e. some individuals may be
orders of magnitude more sensitive to odors than others.
(5) If a building product emits a mixture of similar odor-
ous VOCs (e.g. aldehydes), below odor threshold, normal
or hyperaddition may occur (see Introduction). This
means that mixtures of VOCs may affect the perceived
air quality although the individual compounds are all
below their respective odor thresholds.

In the present study odor intensity was used as
a measure of the perceived air quality. However, to de-
scribe ‘‘air quality’’ more directly, a measure of the
hedonic characteristics of the air are required. At present,
only a sensory panel can provide such information, e.g.
assessment of the acceptability of the polluted air. Such
assessments cannot be based on chemical measurements
since hedonic information on individual VOCs is not
available, and even if it were, it would be impossible to
predict how combinations of VOCs would be perceived.
However, for some building products that emit VOCs
above their odor thresholds guidance may be provided,
based on chemical measurements, for the development of
building products with a lower sensory impact. Even so,
this may not fully explain what affects the perceived air
quality. At present, the use of sensory panels is the only

method sensitive enough to characterize the perceived air
quality caused by low-emitting building products.

5. Conclusions

f For the investigated building products which re-
present a wide range of building products it seems
reasonable after an initial period of up to 14 days to
consider the emission rate of primary VOCs to be
independent of the VOC concentration in the air
and of the air velocity over the building product.
However, if the building product surface is sensitive
to oxidative degradation, increased air velocity may
result in an increase of secondary VOC emissions.

f The odor intensity of the emissions from the build-
ing products only decayed modestly over time.
Consequently, it is recommended to use building
products which have a low adverse impact on the
perceived air quality from the moment they are
applied.

f Some of the investigated building products
continued to affect the perceived air quality even
when the concentrations of selected VOCs resulted
in odor indices less than 0.1. Therefore, odor indices
less than 0.1 as an accept criterion cannot guarantee
that a building product has no impact on the per-
ceived air quality.

f The odor indices of primary VOCs decayed mark-
edly faster than the corresponding odor intensities.
This indicates that it is the secondary emissions,
rather than the primary emissions, that affect the
perceived air quality in the long run.

f To be able to understand the impact of emitted
VOCs on the perceived air quality, more research
has to be carried out on the chemical-sensory re-
lationship of VOC mixtures, especially at con-
centrations below odor threshold. This includes
determination of high-quality odor thresholds for
relevant indoor VOCs, a better understanding of
hedonic effects of VOCs, and a general improvement
of the chemical analytical performance.
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