I\
UNIVERSIDAD ‘ My FACULTAD DE Programa de
DE LA REPUBLICA INGENIERIA \0( Desarrollo de las

URUGUAY “ UDELAR scons | Ciencias Basicas

MEC-UDELAR

Coding of Multichannel Signals with
Irregular Sampling Rates and Data Gaps

Pablo Cervenansky Fierro

Tesis de Maestria presentada a la Facultad de Ingenieria de la Universidad de la Republica
en cumplimiento parcial de los requerimientos para la obtencion del titulo de
Magister en Informatica

Tutores

Dr. Alvaro Martin
Dr. Gadiel Seroussi

Tribunal

Dra. Lorena Etcheverry
Dr. Jorge Silva
Dr. Leonardo Steinfeld

Montevideo, Uruguay
Juliode 2021






Abstract

The relentless advances in mobile communications and the Internet have contributed to a rapid
increase in the amount of digital data created and replicated worldwide, which is estimated to
double every three years. In this context, data compression algorithms, which allow for the re-
duction of the number of bits needed to represent digital data, have become increasingly relevant.
In this work, we focus on the compression of multichannel signals with irregular sampling rates
and with data gaps. We consider state-of-the-art algorithms, which were designed to compress
gapless signals with regular sampling, adapt them to operate with signals with irregular sampling
rates and data gaps, and then evaluate their performance experimentally, through the compres-
sion of signals obtained from real-world datasets. Both the original and our adapted algorithms
work in a near-lossless fashion, guaranteeing a bounded per-sample absolute error between the
decompressed and the original signals. This includes the important lossless compression case,
which corresponds to an error bound of zero. The algorithms compress signals by exploiting
correlation between signal samples taken at close times (temporal correlation), and, in some
cases, between samples from different channels (spatial correlation). For most algorithms we
design and implement two variants: a masking (M) variant, which first encodes the position of
all the gaps, and then proceeds to encode the data values separately, and a non-masking (NM)
variant, which encodes the gaps and the data values together. For each algorithm, we compare
the compression performance of both variants: our experimental results suggest that variant M is
more robust and performs better in general. Every implemented algorithm variant depends on a
window size parameter, which defines the size of the windows into which the data are partitioned
for encoding. We analyze the sensitivity of variant M of each algorithm to this size parameter:
for each dataset, we compress each data file, and compare the results obtained when using a
window size optimized for said specific file, against the results obtained when using a window
size optimized for the whole dataset. Our experimental results indicate that the difference in
compression performance is generally rather small. The last part of our experimental analysis
consists of comparing the compression performance of our adapted algorithms, with each other,
and with the general-purpose lossless compression algorithm gzip. Following previous experi-
mental results, we only consider variant M of each algorithm, and we always use the optimal
window size for the whole dataset. Our experimental results reveal that none of the algorithm
variants obtains the best compression performance in every scenario, which means that the op-
timal selection of a variant depends on the characteristics of the data to be compressed, and the
error threshold that is allowed. In some cases, even a general-purpose compression algorithm
such as gzip outperforms the specific algorithm variants. Nevertheless, we extract some general
conclusions from our analysis: for large error thresholds, variant M of algorithm APCA achieves
the best compression results, while variant M of algorithm PCA (and, in some cases of lossless

compression, algorithm gzip) are preferred for lower threshold scenarios.

Keywords— multichannel signal compression, near-lossless compression, irregular sampling

rate, data gaps.



Table of Contents

Abstract ii
Table of Contents iii
List of Figures v
List of Tables viii
1 Introduction 1
2 Datasets 5
2.1 Data Format . . . . . . . . . . e 6
2.2 Dataset IRKIS . . . . . . . . . . 7
2.3 Dataset SST . . . . . . . 8
2.4 Dataset ADCP . . . . . . .. e 8
2.5 Dataset EINino . . . . . . . .. o 9
2.6 Dataset Solar . . . . . . . . ... 10
2.7 Dataset Hail . . . . . . . . . . . . . 11
2.8 Dataset Tornado . . . . . . . . . . . 11
2.9 Dataset Wind . . . . . . . .. 12
2.10 Summary . ... . 12

3 Algorithms and Their Variants 14
3.1 Imtroduction . . . . . . . . . .. 15
3.2 General Encoding Scheme . . . . . . ... ... L 16
3.3 Encoding of Gaps in the Masking Variants . . . . . . .. ... ... ... ..... 17
3.4 Algorithm Base . . . . . . . . . . . 18
3.5 Algorithm PCA . . . . . . . . 19
3.5.1 Example. . . . .. .. 21

3.5.2 Non-Masking (NM) Variant . . . . . ... ... ... ... .. ....... 23

3.6 Algorithm APCA . . . . . . . o 24
3.6.1 Example. . . . . . e 25

3.6.2 Non-Masking (NM) Variant . . . . . ... ... ... ... ... ...... 27

3.7 Encoding Scheme for Linear Model Algorithms . . . . .. .. ... ... ..... 27
3.8 Algorithms PWLH and PWLHInt . . ... ... ... ... ... ......... 28
3.81 Example. . . . .. .. 32

3.8.2 Differences Between Algorithms PWLH and PWLHInt . . . . . .. .. .. 36

3.8.3 Non-Masking (NM) Variant . . . . . ... ... ... ... ... ... 37

3.9 Algorithm CA . . . . . . . . e 38
3.91 Example. . . . .. .. 41

3.9.2 Non-Masking (NM) Variant . . . . . . ... ... ... ... ... .... 45

3.10 Algorithm SF . . . . . . . oL 45

iii



Table of Contents

iv

3.10.1 Example. . . . ... ..
3.11 Algorithm FR . . . . . ... ..
3.11.1 Example. . . ... ...
3.12 Algorithm GAMPS . . . . . ..
3.12.1 Example. . . ... ...

3.12.2 Non-Masking (NM) variant . . . . . . .. ... .. .. .. ... .

3.13 Implementation Details . . . .

4 Experimental Results

4.1 Experimental Setting . . . . . . ... L
4.2 Comparison of Masking and Non-Masking Variants . . . . . ... ... ... ...
4.3 Window Size Parameter . . . . . . .. ... L
4.4 Algorithm Compression Performance . . . . . . . . ... ... ... ... .....

4.4.1 Comparison with Algorithm gzip . . . . . . ... .. ... ... ......

4.4.2 Timestamp Compression
5 Conclusions and Future Work

Bibliography

o1
o6
59
61
63
64
65

66
67
69
73
7
81
83

85

89



List of Figures

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33
3.34
3.35
3.36
3.37
3.38
3.39
3.40
3.41
3.42

General encoding scheme for the evaluated algorithm variants. . . . . .. .. ..
Markov model diagram. . . . . . . ... . L L
Coding routine for algorithm Base. . . . . . ... ... ... ... ... ...
Coding routine for algorithm variant PCAy,. . . . . . . . . . . ... ... ...
Decoding routine for algorithm variant PCA,. . . . . . . .. ... ... ... ..
Example: Signal consisting of 12 samples. . . . . .. ... .. .. ... ......
Example: Algorithm variant PCAy; with e =1 and w=4. Step 1. . . ... ...
Example: Algorithm variant PCAy; with e =1 and w=4. Step 2. . . ... ...
Example: Algorithm variant PCA; with e =1 and w=4. Step 3. . . ... ...
Coding routine for algorithm variant PCAnps. . - . 0 - o 0 o o 0 o 0 oo 00 oL
Coding routine for algorithm variant APCA. .. . . . . . . ...
Auxiliary routine EncodeWindow for algorithm variant APCAy. . . . . . . . ..
Decoding routine for algorithm variant APCAy,. . . . . 0 o o o 00000 oL
Example: Algorithm variant APCA ), with e =1 and w = 256. Step 1. . . . . ..
Example: Algorithm variant APCA ), with e =1 and w = 256. Step 2. . . . . ..
Example: Algorithm variant APCA ), with e =1 and w = 256. Step 3. . . . . ..
Auxiliary routine FillSegment for linear model algorithms. . . . . . . . .. .. ..
Example of the auxiliary routine FillSegment for linear model algorithms. . . . .
Coding routine for algorithm variant PWLH,,. . . . . .. .. .0 o ...
Example: checking the valid hull condition. Variant PWLH,; with e = 1. Step 1.
Example: checking the valid hull condition. Variant PWLH,; with e = 1. Step 2.
Auxiliary routine EncodeWindow for algorithm variant PWLH,. . . . . . . . . .
Auxiliary routine EncodeLastWindow for algorithm variant PWLH,. . . . . . .
Decoding routine for algorithm variant PWLHy,. . . . . . .. ... ... ... ..
Example: Algorithm variant PWLH ), with e = 1 and w = 256. Step 1. . . . . . .
Example: Algorithm variant PWLH ), with e = 1 and w = 256. Step 2. . . . . . .
Example: Algorithm variant PWLH; with e = 1 and w = 256. Step 3. . . . . . .
Example: Algorithm variant PWLH; with e = 1 and w = 256. Step 4. . . . . . .
Example: Algorithm variant PWLH ), with e = 1 and w = 256. Step 5. . . . . . .
Example: Algorithm variant PWLH ), with e = 1 and w = 256. Step 6. . . . . . .
Example: Algorithm variant PWLH; with e =1 and w = 256. Step 7. . . . . . .
Example: Algorithm variant PWLH; with e = 1 and w = 256. Step 8. . . . . . .
Example: Algorithm variant PWLH; with e = 1 and w = 256. Step 9. . . . . . .
Example: Algorithm variant PWLH ), with ¢ = 1 and w = 256. Step 10. . . . . .
Coding routine for algorithm variant CAyr . . 0 0 0 0 00 0o oo
Example: key steps of the coding algorithm. Variant CAy; with e = 1. Step 1.

Example: key steps of the coding algorithm. Variant CAy; with e = 1. Step 2.

Auxiliary routine EncodeArchivedPoint for algorithm variant CAp. . . . . . . . .
Auxiliary routine EncodeWindow for algorithm variant CAy. . . . . . . . . . .
Decoding routine for algorithm variant CAy. . . . o o 0 0 0o o000
Example: Algorithm variant CAj; with e =1 and w=256. Step 1. . . . . . . ..
Example: Algorithm variant CAjp; with e =1 and w= 256. Step 2. . . . . . . ..

26
26
27
28
29
30
30
30
31
31
32
32
33
33
34
34
34
35
35
36
38
39
39



List of Figures vi

3.43
3.44
3.45
3.46
3.47
3.48
3.49
3.50
3.51
3.52
3.53
3.54
3.55
3.56
3.57
3.58
3.59
3.60
3.61
3.62
3.63
3.64
3.65
3.66
3.67
3.68
3.69
3.70
3.71
3.72
3.73
3.74
3.75
3.76
3.77
3.78
3.79

4.1

4.2

4.3

44

Example: Algorithm variant CAj; with e =1 and w= 256. Step 3. . . . . . . .. 42
Example: Algorithm variant CAps with e = 1 and w= 256. Step 4. . . . . . . .. 42
Example: Algorithm variant CAjs with e = 1 and w= 256. Step 5. . . . . . . .. 43
Example: Algorithm variant CA s with e =1 and w= 256. Step 6. . . . . . . .. 43
Example: Algorithm variant CAjp; with e =1 and w=256. Step 7. . . . . . . .. 44
Example: Algorithm variant CAjp; with e = 1 and w = 256. Step 8. . . . . . . .. 44
Example: Algorithm variant CAjy; with e =1 and w= 256. Step 9. . . . . . . .. 45
Coding routine for algorithm variant SFp,. . . . . 0 0 00000 46
Auxiliary routine EncodePoint for algorithm variant SFp,. . . . . . .. ... ... 47
Auxiliary routine EncodeWinStart for algorithm variant SEp. . . 0 0 0 0 0 0 0 L. 47
Auxiliary routine EncodeWinEndStart for algorithm variant SF,,. . . . . . . .. 48
Auxiliary routine EncodeWinEnd for algorithm variant SFp. . . . . . . . . . .. 48
Example: key steps of the coding algorithm. Variant SF s with e = 1. Step 1. . . 48
Example: key steps of the coding algorithm. Variant SFj; with e = 1. Step 2. . . 48
Decoding routine for algorithm variant SF,,. . . . . . . . .. .. ... 50
Auxiliary routine DecodePoint for algorithm variant SF. . . . . . . . . . . ... 50
Example: Algorithm variant SF); with e = 1 and w=256. Step 1. . . . ... .. 51
Example: Algorithm variant SF; with ¢ = 1 and w= 256. Step 2. . . . ... .. o1
Example: Algorithm variant SF; with ¢ = 1 and w=256. Step 3. . . ... . .. 52
Example: Algorithm variant SFy; with e = 1 and w = 256. Step 4. . . ... ... 52
Example: Algorithm variant SFy; with e =1 and w = 256. Step 5. . . ... ... 53
Example: Algorithm variant SF; with e = 1 and w= 256. Step 6. . . . . . . .. 53
Example: Algorithm variant SF ), with e = 1 and w = 256. Step 7. . . . ... .. 54
Example: Algorithm variant SF; with ¢ = 1 and w= 256. Step 8. . . . ... .. 54
Example: Algorithm variant SF); with e = 1 and w = 256. Step 9. . . . ... .. 55
Example: Algorithm variant SFj; with e = 1 and w = 256. Step 10.. . . . . . .. 5h
Example: Algorithm variant SF,; with e = 1 and w = 256. Step 11.. . . . . . .. 56
Coding routine for algorithm variant FRpr. .0 0 0 0 0 000000000 57
Auxiliary routine GetDisPointsMDP for algorithm variant FRy. . . . . . . . .. 57
Decoding routine for algorithm variant FRy,. . . . . . . 0 o o0 o000 58
Example: Algorithm variant FR ), with e =1 and w=256. Step 1. . . . . .. .. 59
Example: Algorithm variant FRy; with e = 1 and w = 256. Step 2. . . . . .. .. 60
Example: Algorithm variant FR ), with e = 1 and w = 256. Step 3. . . . . . . .. 60
Example: Algorithm variant FR s with e = 1 and w= 256. Step 4. . . . . . . .. 61
Coding routine for algorithm variant GAMPS,,. . . . . . .. . ... .. 62
Example: Three signals consisting of 12 samples each. . . . . . . ... ... ... 63
Example: Algorithm variant GAMPS,; with ¢ = 0 and w = 256. Step 1. . . . . . 64
CR and RD plots for variants ap; and apyps, for each algorithm a € Ay, for

the data type “SST” of the dataset SST. In the RD plot for algorithm PCA we
highlight with a red circle the marker for the maximum value (50.78%) obtained
for all the tested CAIs. . . . . . . . . . . . . . 70
CR and RD plots for variants ap; and apypy, for each algorithm a € Ay, for the
data type “Longitude” of the dataset Tornado. In the RD plot for algorithm
APCA we highlight with a blue circle the marker for the minimum value (-0.29%)
obtained for all the tested CAIs. . . . . . . .. . . ... ... .. ... ...... 71
Plots of w41 Wiyeq, and the RD between cca, wr o> a0d C<a,wr o>, 85 2
function of the error parameter e, obtained for the data type “VWC?” of the file
“irkis-1202.csv” of the dataset IRKIS. . . . . . .. ... ... ... ... ..... 74
Plots of w;lobub Wi, and the RD between Caywpure> and C<aywp, e>r S
a function of the error parameter e, obtained for the data type “VWC” of the
file “irkis-1203.csv” of the dataset IRKIS. In the RD plot for variant PCA,; we
highlight with a red circle the marker for the maximum value (10.6%) obtained
for all the tested CAIs. . . . . . . . . . . . . e 75



List of Figures vii

4.5 CR and window size parameter plots for every evaluated algorithm, for the data
type “Sea Temp.” of the dataset EINino. For each error parameter ¢ € E, we
use blue circles to highlight the markers for the minimum CR value and the best
window size (in the respective plots corresponding to the best coding variant). . 78



List of Tables

2.1
2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

Example of a dataset CSV file with the format we defined. . . . . . . . ... ...
Number of rows, columns, entries and gaps (total and percentual), and minimum,
maximum, median, and standard deviation, of the sample values (dimensionless),
for each file of the dataset IRKIS. The gaps are ignored when calculating the
median, mean and standard deviation. . . . . . . .. .. ... ... ...
Number of rows, columns, entries and gaps (total and percentual), and minimum,
maximum, median, and standard deviation, of the sample values (in °C), for each
file of the dataset SST. The gaps are ignored when calculating the median, mean
and standard deviation. . . . . . . ... L Lo L Lo
Number of rows, columns, entries and gaps (total and percentual), and minimum,
maximum, median, and standard deviation, of the sample values (in m/s), for
each file of the dataset ADCP. The gaps are ignored when calculating the median,
mean and standard deviation. . . . . . . .. ... Lo
Number of gaps (total and percentual), and minimum, maximum, median, and
standard deviation, of the sample values (in their respective units of measure-
ment), for each data type of the dataset EINino. The gaps are ignored when
calculating the median, mean and standard deviation. . . . . .. ... ... ...
Number of gaps (total and percentual), and minimum, maximum, median, and
standard deviation, of the sample values (in W/m?), for each data type of the
dataset Solar, for year 2011. The gaps are ignored when calculating the median,
mean and standard deviation. . . . . .. ... oL L oL
Number of gaps (total and percentual), and minimum, maximum, median, and
standard deviation, of the sample values (in W/m?), for each data type of the
dataset Solar, for year 2012. Notice that there are no gaps in the data. . . . . . .
Number of gaps (total and percentual), and minimum, maximum, median, and
standard deviation, of the sample values (in W/m?), for each data type of the
dataset Solar, for year 2013. The gaps are ignored when calculating the median,
mean and standard deviation. . . . . . . ... oL L Lo
Number of gaps (total and percentual), and minimum, maximum, median, and
standard deviation, of the sample values (in W/m?), for each data type of the
dataset Solar, for year 2014. The gaps are ignored when calculating the median,
mean and standard deviation. . . . . .. ... oL L Lo o
Number of gaps (total and percentual), and minimum, maximum, median, and
standard deviation, of the sample values (in their respective units of measure-
ment), for each data type of the dataset Hail. Notice that there are no gaps in
this dataset. . . . . . . . . .
Number of gaps (total and percentual), and minimum, maximum, median, and
standard deviation, of the sample values (in coordinate degrees), for each data
type of the dataset Tornado. Notice that there are no gaps in this dataset. . . . .
Number of gaps (total and percentual), and minimum, maximum, median, and
standard deviation, of the sample values (in their respective units of measure-
ment), for each data type of the dataset Wind. Notice that there are no gaps in
this dataset. . . . . . . . . L

Datasets overview. . . . . . . . .. e e e

viii

10

10

10

10

11

11



List of Tables

ix

2.14 Data types overview. . . . . . ... Lo L e e e

3.1

4.1

4.2

4.3

44

4.5

4.6

4.7

Characteristics of the evaluated algorithm variants. . . . . . . .. ... ... ...

Range of values for the RD between the masking and non-masking variants of
each algorithm (last column); we highlight the maximum (red) and minimum
(blue) values taken by the RD. The results are aggregated by dataset. The second
column indicates the characteristic of each dataset, in terms of the number of
gaps. The third column shows the number of cases in which the masking variant
outperforms the non-masking variant of a coding algorithm, and its percentage
among the total pairs of CAls compared for a dataset. . . . ... .. ... ...
RD between the OWS and LOWS variants of each CAI. The results are aggregated
by algorithm and the range to which the RD belongs. . . . . .. ... ... ...
Compression performance of the best evaluated coding algorithm, for various error
values on each data type of each dataset. Each row contains information relative
to certain data type. For each error parameter value, the first column shows the
minimum CR, and the second column shows the base-2 logarithm of the best
window size for the best algorithm (the one that achieves the minimum CR),
which is identified by a certain cell color described in the legend above the table.
maxRD(a, e) obtained for every pair of coding algorithm variant a, € V* and
error parameter e € E. For each e, the cell corresponding to the minmaxRD(a)
value is highlighted. . . . . . . . . ... ... .. ...
Compression performance of the best evaluated coding algorithm, for various error
values on each data type of each dataset, including the results obtained by gzip.
Each row contains information relative to certain data type. Each row contains
information relative to certain data type. For each error parameter value, the
first column shows the minimum CR, and the second column shows the base-2
logarithm of the best window size for the best algorithm (the one that achieves the
minimum CR), which is identified by a certain cell color described in the legend
above the table. Algorithm gzip doesn’t have a window size parameter, so the cell
is left blank in these cases. . . . . . . . .. ... L
maxRD(a,e) obtained for every pair of coding algorithm variant a, € V* U
{gzip} and error parameter e € E. For each e, the cell corresponding to the
minmaxRD(a) value is highlighted. . . . . ... ... ... .0 0oL
Lossless compression performance of algorithm variants PCA yp; and APCA yy,
for the timestamp column of each dataset. For each variant, the first column
shows the minimum CR, and the second column shows the base-2 logarithm of
the best window size (the window size that achieves the minimum CR). For each
dataset, the cells corresponding to the algorithm that obtains the best result are
colored, and the last column shows the RD between the corresponding CAls, as
defined in (4.5). . . . . L

79



Chapter 1

Introduction

In the last 20 years, we have witnessed a staggering development of mobile communications and
the Internet. Both factors have contributed to an accelerated expansion of the digital universe.
Researchers estimate that the amount of digital data, created and replicated worldwide, more
than doubles every three years: it went from 4.4 ZB' in 2013, to 33 ZB in 2018, and it is expected
to reach 175 ZB by the year 2025 [1, 2]. In this context, research on data compression has become
more relevant than ever.

Data compression techniques allow for the reduction of the number of bits needed to represent
digital data. There are two types of compression algorithms: lossless and lossy. Lossless compres-
sion algorithms allow the original data to be perfectly reconstructed from the compressed data.
On the other hand, lossy compression algorithms only allow to reconstruct an approximation of
the original data, though they usually obtain better compression rates (i.e. the compressed data
is represented using even a smaller number of bits).

Data compression is ubiquitous, with applications in industry as well as various branches of
scientific research. It is worth mentioning a few examples, just to paint a picture of its broad
scope:

e All the multimedia data that is sent, from the servers of both music (e.g. Spotify, Apple
Music) and video (e.g. Youtube, Netflix) streaming services, to an end user device, is
compressed to optimize the bandwidth usage [3, 4]. Something similar occurs with digital
television, where signals are encoded in the source, and decoded in the receiver [5].

 Voice and video calls made on VoIP (Voice over IP) software, such as Zoom [6] or Skype
[7], always require the implementation of compression techniques on every end user device,
without which it would not be possible to maintain a real-time conversation with proper
sound and video quality.

o Digital cameras use different compression algorithms to reduce the size of the image files,
which allows to decrease the storage and transmission costs. In general, the end user is
able to select between a lossy compression algorithm (JPEG being the most popular one),
and a lossless one (TIFF is one of the industry standards, but leading brands have their
own algorithms) [8, 9].

LA zettabyte (ZB) is a unit of measurement of the size of digital information on a computer or other electronic
device, which is equivalent to 1012 GB.



Chapter 1. Introduction 2

e There is a great variety of general-purpose compression tools, which allow to losslessly
compress any type of file. Among the most popular ones are gzip [10] and WinRAR [11],
which also allow to encrypt and split the compressed files.

 In the medicine field, some tests (e.g. EEG, ECG) require for a patient to wear a monitoring
device that measures clinical diagnosis data and wirelessly broadcasts it to a remote storage
device, for an extended period of time. In such cases, compression algorithms are used to
compress the transmitted data, which reduces the amount of energy consumed by the
monitoring device, thus extending battery life [12, 13].

e NASA'’s space missions involve transmitting information back to Earth from space probes
in far away places, which requires a great amount of energy. In past missions to Mars and
Pluto, using onboard compression algorithms allowed to save resources, such as energy,
space, and money, which is crucial for making space exploration viable [14, 15].

o A Wireless Sensor Network (WSN) consists of spatially distributed sensors that communi-
cate wirelessly to collect data about the surrounding environment. They are used in a wide
variety of environmental, health, industrial, and military applications [16, 17]. Since the
sensors are often placed in remote locations, it is important that they use energy-efficient
compression algorithms and communication protocols, so that their power consumption is
optimized.

Even though some kind of data compression technique is involved in each one of the examples
presented above, which specific compression algorithm is used in each case depends on a variety
of factors [18], such as the characteristics of the data, the desired compression rate, whether the
data is going to be archived or transmitted?, and whether the energy resources are critical or
not?.

In this work, we focus on the compression of multichannel signals with irregular sampling rates
and with data gaps. There is a wide range of research on compression algorithms for multichannel
signals with regular sampling rates (see, for example, [19, 20] for images, [21, 22] for audio, [23, 24]
for video, and [25, 26] for biomedical signals). However, real-world datasets sometimes consist of
multichannel signals with irregular sampling rates. This occurs frequently in datasets gathered by
WSNs*, since different groups of sensors may be out of sync, and some might even malfunction.
It is also common that errors arise when acquiring, transmitting or storing the data, causing a
data gap. Nevertheless, state-of-the-art algorithms designed for sensor data compression reported
in the literature [27, 28] assume, in general, that the signals have regular sampling rates and
that there are no gaps in the data. Thus, in this thesis we design and implement a number of
variants of state-of-the-art algorithms, adapt them so they are able to encode multichannel signals
with irregular sampling rates and data gaps, and then evaluate their compression performance
experimentally.

To assess the performance of our implemented algorithm variants, we consider eight different
real-world datasets: dataset IRKIS [29] is gathered by multiple soil moisture measuring sensors
installed along the Dischma valley, in the municipality of Davos, Switzerland; datasets EINino
[30], SST and ADCP [31] consist of various oceanographic and surface meteorological readings,
obtained by sensors placed in buoys and moorings in the Pacific Ocean; dataset Solar [32] consists
of solar radiation measurements in the city of Miami, Florida, US; and datasets Hail, Tornado

2In general, lossless compression is recommended for archival purposes, while lossy compression is suggested
to optimize the bandwidth usage when transmitting data.

3In general, compression algorithms executed in a battery-run device tend to have low computational com-
plexity, so that a small amount of energy is consumed during the compression process.

4In the context of WSNs, we consider that each sensor, which records data corresponding to a single signal,
represents a different channel.



Chapter 1. Introduction 3

and Wind [33] consist of data related to thunderstorms and tornadoes along US territory. Each
experimental dataset consists of multichannel signals with one or both of the characteristics
we are interested in, namely, irregular sampling rate and data gaps. The number of gaps, as
well as other characteristics (e.g. whether they are smooth or rough signals, the number of
outliers, periodicity), varies among different signals, which allows us to analyze the performance
of the evaluated algorithms under different circumstances. The datasets come from multiple
sources [29-33], each using a different data representation format. Thus, as a first step, we
transformed the data into a uniform format, which we define ourselves, and can be easily adapted
to represent different kinds of datasets. The details of this data format, as well as the description
of the experimental datasets, laying out the source, characteristics and relevant statistics of every
signal involved, are presented in Chapter 2.

Both the original and our implemented variants are near-lossless compression algorithms. This
type of algorithms guarantee a bounded per-sample absolute error between the decompressed
and the original signals. The error threshold can be specified via a parameter, denoted e. When
€ is equal to zero, the compression is lossless, i.e., the decompressed and the original signals
are identical. Additionally, the original algorithms and our proposed variants follow a model-
based compression approach that compresses signals by exploiting correlation between signal
samples taken at close times (temporal correlation) and, in some cases, between samples from
different channels (spatial correlation). In addition to efficient compression performance, they
offer some data processing features, like inferring uncertain sensor readings, detecting outliers,
indexing, etc. [27]. The model-based techniques are classified into different categories, depend-
ing on the type of model: constant models approximate signals by piecewise constant functions,
linear models use linear functions, and correlation models simultaneously encode multiple signals
exploiting temporal and spatial correlation. There also exist nonlinear models, which approx-
imate signals by nonlinear functions, but known algorithms that follow this technique do not
support near-lossless compression, and generally do not yield the best compression results on
WSN data [27, 28]. In total, we implement variants for eight different compression algorithms:
Piecewise Constant Approxzimation (PCA) [34] and Adaptive Piecewise Constant Approzimation
(APCA) [35], which are constant model algorithms; Piece Wise Linear Histogram (PWLH) [36],
PWLHInt (see Subsection 3.8.2), Critical Aperture (CA) [37], Slide Filter (SF') [38], and Fractal
Resampling (FR) [39], which are linear model algorithms; and Grouping and AMPlitude Scaling
(GAMPS) [40], which is a correlation model algorithm. The variants implemented for our eval-
uation are presented in Chapter 3, including a description of their parameters, details of their
coding and decoding routines, and examples that show the encoding process step by step.

For most algorithms we design and implement two variants, masking (M) and non-masking (NM),
which differ in the encoding of the gaps in the data. Variant M of an algorithm first encodes the
position of all the gaps, and then proceeds to encode the data values separately, while variant
NM encodes the gaps and the data values together. The proposed strategy to compress the
gaps in variant M, which is presented in Section 3.3, uses arithmetic coding [41, 42] combined
with a Krichevsky-Trofimov probability assignment [43] over a Markov model. We point out
that, with both variants, the gaps in a decompressed signal match the gaps in the original signal
exactly, regardless of the value of the error threshold parameter (¢). Efficient compression of gap
information, especially in variant M, is an original contribution of this thesis.

In Chapter 4 we present and analyze a series of experimental results, with the aim of evaluating
and comparing the various tested algorithm variants in practical scenarios. All of our experiments
involve the compression of data obtained from the real-world datasets presented in Chapter 2.
We assess the compression performance of an algorithm variant through the compression ratio
(CR), which is calculated by the formula

size of compressed data

CR =

(1.1)

size of original data



Chapter 1. Introduction 4

Thus, smaller values of CR correspond to a better performance. To compare the compression
performance between two algorithm variants a; and a2, we consider the relative difference (RD)
metric, which is calculated by the formula

size of data compressed with ay — size of data compressed with a;

RD(a1,az) = 100 x (1.2)

size of data compressed with as

Therefore, a; has a better performance than ay if RD(aq, az) is positive®.

In Section 4.2, for each algorithm a that supports variants M and NM®, we compare the respective
compression performance of both, ajs and apy. The results show that on datasets with few or
no gaps the performance of both variants is roughly the same, i.e. RD(ay, ann) is always close
to zero, ranging between —0.29 and 1.76%. On the other hand, on datasets with many gaps
variant M always performs better, in some cases with a significant difference, with RD(a s, anar)
ranging between 2.44 and 50.78%. These experimental results suggest that variant M is more
robust and performs better in general.

Every original algorithm (and its respective variants) depends on a window size parameter,
denoted w, which defines the size of the windows into which the data are partitioned for encoding.
In algorithm PCA, it defines a fized window size, while in the rest of the algorithms it defines a
mazimum window size. In Section 4.3 we analyze the sensitivity of variant M of each algorithm”
to this parameter. For each dataset, we compress each data file, and compare the results obtained
when using a window size optimized for said specific file, against the results obtained when using
a window size optimized for the whole dataset. The results indicate that the difference in
compression performance is generally rather small, with the RD being less than or equal to
2% in 97.8% of the experimental cases. Therefore, we could fix the window size parameter in
advance, for example by optimizing over a training set, without significantly compromising the
overall performance of the compression algorithm variant. This is relevant, since obtaining the
optimal window size for a specific data file is, in general, computationally expensive.

The last part of our experimental analysis, which is presented in Section 4.4, consists of comparing
the compression performance of our adapted algorithm variants, with each other, and with the
general-purpose lossless compression algorithm gzip [10]. Taking into account the discussion in
the previous two paragraphs, for this analysis we only consider variant M of each algorithm, and
in every case we use the optimal window size for each whole dataset. Our experimental results
indicate that none of the algorithm variants obtains the best compression performance in every
scenario. This means that the optimal selection of a variant depends on the characteristics of
the data to be compressed, and the error threshold (€) that is allowed. In some circumstances,
even a general-purpose compression algorithm such as gzip outperforms the specific variants.
Nevertheless, we extract some general conclusions from our analysis. For large error thresholds,
variant APCA j; achieves the best compression results, obtaining the minimum CR in 76 out
of 84 experimental cases (90.5%). On the other hand, algorithm gzip and variant PCA, are
preferred for lower thresholds scenarios, since they obtain the minimum CR in 18 and 17 out of
42 experimental cases (42.9% and 40.5%), respectively.

Finally, in Chapter 5 we sum up the conclusions of our thesis, and we propose some ideas to
carry out as future work.

5More formal definitions of the compression performance metrics CR and RD will be given in Section 4.1.

6 Algorithms SF and FR only support variant M, while the rest of the algorithms support variants M and NM.

"Due to the results obtained in Section 4.2, our experiments in the subsequent sections in Chapter 4 focus on
studying the compression performance of variant M of the algorithms.



Chapter 2

Datasets

In this chapter we introduce the datasets used in our experiments. Every dataset consists of
signals with one or both of the characteristics we are interested in, namely, irregular sampling
rate and data gaps. In Chapter 4, we present our experimental results, which make use of these
datasets to analyze the compression performance of our implemented algorithm variants, which
are presented in Chapter 3.

The datasets come from multiple sources [29-33], each using a different data representation
format. We transformed the data into a consistent, uniform format, which can be easily adapted
to represent different kinds of datasets. In Section 2.1 we describe this format, including an
example file that illustrates how the data is represented. In sections 2.2 to 2.9 we present each
of the eight real-world datasets, namely, IRKIS [29], SST, ADCP [31], EINino [30], Solar [32],
Hail, Tornado, and Wind [33], laying out the source, characteristics and relevant statistics of
every signal involved. Finally, in Section 2.10 we summarize the information presented in this
chapter, specifying the number of files, the number of gaps, and the data types of each dataset,
as well as the measuring unit, scale, and range of each data type.



Chapter 2. Datasets 6

2.1 Data Format

The data from each dataset [29-33] was transformed into a consistent format, which can be
adapted to represent different types of datasets. In Table 2.1 we present an example of a comma-
separated values (CSV) file with this format. Although a CSV file is simply a delimited text file
that uses commas to separate values, we display its contents in the form of a table for legibility.
The first three rows have general data, namely a dataset name, in this example ElNino, the total
number of data rows, and the timestamp value for the first sample. The remaining rows are
divided into two sections: metadata and data. The data section consists of a row with the labels
of each data column, followed by the data rows representing the actual signal data, while the
metadata section has additional information indicating the measuring unit, scale, and range, of
the data displayed in the respective data columns.

DATASET: EINino
DATA ROWS: 7
FIRST 1980-03-07
TIMESTAMP: 00:00:00
METADATA:
COLUMNS UNIT SCALE MINIMUM | MAXIMUM
Time Delta hours 1 0 131071
Lat coord. degrees 100 -1000 1000
Long coord. degrees 100 -18000 18000
Mer. Wind m/s 10 -150 150
Air Temp. °C 100 0 4000
Sea Temp. °C 100 0 4000
DATA:
Time Delta Lat Long Mer. Wind Air Temp. Sea Temp.
0 -2 -10946 7 2614 2624
24 -2 -10946 11 N N
24 -2 -10946 22 N N
48 -1 -10946 19 N 2431
24 -2 -10946 15 2557 2319
48 -2 -10946 3 2472 2364
24 -2 -10946 -1 N 2434

TABLE 2.1: Example of a dataset CSV file with the format we defined.

The values in the first data column, which we label “Time Delta”, represent the timestamps
associated with the data from the rest of the columns. We often refer to this column as the
timestamp column. It is always the first column, and it is present in every CSV file. In practice,
this timestamp may represent the time at which the data was read, transmitted, stored, etc. Each
timestamp is represented as an integer value, which is an increment with respect to the previous
timestamp, measured in the unit specified in the metadata section. For the first timestamp,
the increment is taken with respect to the “First Timestamp” entry in the third row, and its
value is always zero. Thus, in the example presented in Table 2.1, the first four timestamps are
interpreted as “1980-03-07 00:00:00”, “1980-03-08 00:00:00”, “1980-03-09 00:00:00”, and *“1980-
03-11 00:00:00”. Notice that the difference between subsequent timestamps is not constant,
varying between 24 and 48 hours, which means that the signals in this dataset have an irregular
sampling rate (recall that this is one of the data characteristics we are interested in).

Besides the timestamp column, the CSV presented in Table 2.1 consists of five additional data
columns, each representing a different data type. The first two columns display the latitude and
longitude coordinates, respectively, of a buoy floating in the ocean, while the last three columns



Chapter 2. Datasets 7

display readings of various physical magnitudes (i.e. wind velocity, air and sea temperatures),
made by sensors on the buoy. Additional information on dataset ElNino [30] is presented in
Section 2.5. To keep the data representation consistent among different datasets, the readings are
always transformed into the integer domain. In general, the information shown in the metadata
section is determined by the range and accuracy of the sampling instrument used for acquiring
and storing the data, and in some cases by the nature of the data (e.g. the range of the latitude
and longitude coordinates depends on the area in which the data are recorded). For example, in
the dataset file presented in Table 2.1, the sampling instrument used for measuring the air and
sea temperatures has a precision of two significant digits, and its range is between 0 and 40°C.
Thus, the three sample values shown in the air temperature column, correspond to 26.14, 25.57,
and 24.72 °C, respectively (these values are obtained after dividing each displayed integer value
by the corresponding scale).

In every dataset, the timestamp column consists of integer values, but, in general, the rest of
the columns admit both integer values and the character “N”. An integer value represents an
actual data sample, while character “N” represents a gap in the data. In practice, this data gap
may occur when there’s an error acquiring, transmitting or storing the data. In the example in
Table 2.1, there are some gaps in the last two data columns (recall that this is another of the
data characteristics we are interested in).

2.2 Dataset IRKIS

Dataset IRKIS [29] consists of soil moisture measurements from stations installed along the
Dischma valley, in the municipality of Davos, Switzerland, in the period between October 2010
and October 2013. This information is particularly useful to researchers who study the role of soil
moisture in relation to the snowpack runoff and catchment discharge in high alpine terrain [44].

The dataset corresponds to seven stations, labeled 1202, 1203, 1204, 1205, 222, 333, and SLF2,
respectively, which can be located in the map presented in [29]. For each station, the dataset
contains measures of soil moisture data at different depths below the surface, namely 10, 30, 50,
80 and 120 cm. For each depth, there are moisture measures coming from two sensors, labeled A
and B in the dataset files. Thus, for each station, there are 10 different data samples stored for
each timestamp. The sensors measure the Volumetric Water Content (VWC), which is equal to
the ratio of water volume to soil volume. Therefore, higher VWC values indicate a more moist
soil. The scale for the VWC columns is 103.

In Table 2.2 we present some statistics of dataset IRKIS. The data from each station is stored
in a separate CSV file, and every row in the table contains statistics for one such file. The first
three columns show the total number of rows, columns and entries (i.e. number of rows times
number of columns) in the dataset, respectively. The fourth column specifies the number of
gaps, and the percentage of gaps relative to the total number of entries. The last five columns
show the minimum, maximum, median, mean, and standard deviation, of the sample values
(dimensionless).



Chapter 2. Datasets 8

Station || Rows | Cols| Entries Gaps (%) Min | Max | Mdn| Mean | SD
1202 26,305 | 10 263,050 | 125,190 (47.6) | 240 | 541 | 428 | 417.1 48.8
1203 26,305 | 10 263,050 | 200,051 (76.1) | 165 | 385 | 249 | 257.7 40.1

1204 26,305 | 10 263,050 | 178,657 (67.9) | 218 | 464 | 298 | 313.3 70.0

1205 26,305 | 10 263,050 | 224,287 (85.3) | 272 | 600 | 315 | 342.1 63.9

(21.3)
(14.4)
(16.4)

222 26,304 | 10 263,040 56,007 (21.3 128 | 562 | 426 | 384.2 | 119.7
333 26,088 | 10 260,880 37,520 (14.4 38 | 451 | 327 | 291.5 81.1
SLF2 26,305 | 10 263,050 43,049 (16.4 215 | 580 | 352 | 360.9 65.1

TABLE 2.2: Number of rows, columns, entries and gaps (total and percentual), and minimum,

maximum, median, and standard deviation, of the sample values (dimensionless), for each file

of the dataset IRKIS. The gaps are ignored when calculating the median, mean and standard
deviation.

2.3 Dataset SST

Dataset SST [31] consists of Sea Surface Temperature (SST) measurements from buoys floating
in the Pacific Ocean. This dataset is collected by the Tropical Atmosphere Ocean (TAO) project,
which was established in 1985 to study annual climate variations near the equator [45].

The dataset consists of readings from 55 buoys, which can be located in the map presented
in [31]. For each timestamp, the dataset contains the SST measurement taken in each buoy.
Thus, a total of 55 data samples are stored for each timestamp. The temperature is measured
in degrees Celsius (°C), and its scale is 103.

In Table 2.3 we present some statistics of dataset SST. The data for each month is stored in a
separate CSV file, and every row in the table contains statistics for one such file. The first three
columns show the total number of rows, columns and entries (i.e. number of rows times number
of columns) in the dataset, respectively. The fourth column specifies the number of gaps, and
the percentage of gaps relative to the total number of entries. The last five columns show the
minimum, maximum, median, mean, and standard deviation, of the sample values (in °C).

Month || Rows | Cols| Entries Gaps (%) Min| Max Mdn Mean SD

01-2017 || 4,392 | 55 | 241,560 | 92,866 (38.4) 32,367 | 27,221 | 27,326.9 | 2,406.0

02-2017 || 3,984 | 55 | 219,120 | 84,292 (38.5) 31,277 | 27,477 | 27,677.3 | 1,953.1

Wl Wl w

03-2017 || 4,362 | 55 | 239,910 | 99,541 (41.5) 31,809 | 28,070 | 28,050.9 | 1,760.4

TABLE 2.3: Number of rows, columns, entries and gaps (total and percentual), and minimum,
maximum, median, and standard deviation, of the sample values (in °C), for each file of the
dataset SST. The gaps are ignored when calculating the median, mean and standard deviation.

2.4 Dataset ADCP

Dataset ADCP [31] consists of water current velocity measurements from moorings in the Pacific
Ocean. This dataset is collected by the Tropical Atmosphere Ocean (TAO) project, which was
established in 1985 to study annual climate variations near the equator [45].

The dataset consists of readings from 3 moorings, which can be located in the map presented
in [31]. In each mooring, readings are made by a total of 63 acoustic Doppler current profilers
(ADCPs), placed at different depths below the ocean. Fach ADCP measures the eastward
(UCUR), northward (VCUR), and upward (WCUR) components of the water current velocity.
Therefore, there are 567 (3 x 63 x 3) data samples stored for each timestamp. The velocity is
measured in m/s, and its scale is 103.



Chapter 2. Datasets 9

In Table 2.4 we present some statistics of dataset ADCP. The data for each month is stored in a
separate CSV file, and every row in the table contains statistics for one such file. The first three
columns show the total number of rows, columns and entries (i.e. number of rows times number
of columns) in the dataset, respectively. The fourth column specifies the number of gaps, and
the percentage of gaps relative to the total number of entries. The last five columns show the
minimum, maximum, median, mean, and standard deviation, of the sample values (in m/s).

Month || Rows| Cols | Entries Gaps (%) Min | Max | Mdn| Mean | SD
01-2015 || 744 567 | 421,848 | 134,544 (31.9) | -805 | 1,394 6 113.7 | 273.1
02-2015 || 672 567 | 381,024 | 125,151 (32.8) | -761 | 1,822 7 154.5 | 318.3
03-2015 || 744 567 | 421,848 | 133,110 (31.6) | -870 | 2,094 | 13 | 185.5 | 3674

TABLE 2.4: Number of rows, columns, entries and gaps (total and percentual), and minimum,

maximum, median, and standard deviation, of the sample values (in m/s), for each file of

the dataset ADCP. The gaps are ignored when calculating the median, mean and standard
deviation.

2.5 Dataset EINino

Dataset EINino [30] consists of various oceanographic and surface meteorological measurements
from buoys floating in the Pacific Ocean between 1980 and 1998. This dataset is collected by
the Tropical Atmosphere Ocean (TAO) project, which was established in 1985 to study annual
climate variations near the equator [45].

The dataset consists of readings from 78 buoys, which move around in the Pacific Ocean, near the
equator. For each timestamp, the position of each buoy is specified, in terms of its latitude and
longitude (in coordinate degrees), and in each buoy the following measurements are taken: speed
of the zonal and meridional winds (m/s), relative humidity (%), and air temperature and sea
temperature (°C). Therefore, a total of 546 (78 x 7) data samples are stored for each timestamp.
The scale for the latitude, longitude, and air and sea temperatures columns is 102, while the
scale for the speed of the zonal and meridional winds, and relative humidity columns is 10.

In Table 2.5 we present some statistics of dataset EINino. The dataset consists of a single file,
and each row in the table contains statistics for a different data type. The first column specifies
the number of gaps, and the percentage of gaps over the total number of entries. The file has
6,371 rows, so there is a total of 496,938 (78 x 6,371) entries of each data type. The rest of the
columns show the minimum, maximum, median, mean, and standard deviation, of the sample
values (in their respective units of measurement).

Data Type Gaps (%) Min Max Mdn Mean SD
Lat (coord. degrees) 318,858 (64.2) -881 905 1 47.3 458.2
Tong (coord. degrees) || 318,858 (64.2) | -18,000 | 17,108 | -11,126 | -5,402.5 | 13,536.4
Zon. Wind (m/s) 344,021 (69.2) 124 143 ~40 -33.0 337
Mer. Wind (m/s) 344,020 (69.2) 116 130 3 2.5 30.0
Humidity (%) 384,619 (77.4) 154 999 812 812.4 53.1
Air Temp. (°C) 337,005 (67.8) | 1,705 | 3,166 | 2,734 | 2,688.8 | 1816
Sea Temp. (°C) 335,865 (67.6) 1,735 3,126 2,829 2,771.5 205.7

TABLE 2.5: Number of gaps (total and percentual), and minimum, maximum, median, and

standard deviation, of the sample values (in their respective units of measurement), for each

data type of the dataset EINino. The gaps are ignored when calculating the median, mean
and standard deviation.



Chapter 2. Datasets 10

2.6 Dataset Solar

Dataset Solar [32] consists of solar radiation measurements from sensors in the city of Miami,
Florida, US. This dataset is collected by SolarAnywhere, an online tool used for monitoring solar
radiation around the world.

The dataset consists of readings from 12 sensors, where each sensor measures three different
types of solar irradiance, namely, Global Horizontal Irradiance (GHI), Direct Normal Irradiance
(DNI), and Diffuse Horizontal Irradiance (DHI). Thus, a total of 36 data samples are stored for
each timestamp. The solar irradiance is measured in W/m?, and its scale is 1.

In tables 2.6, 2.7, 2.8, and 2.9, we present some statistics of dataset Solar for years 2011, 2012,
2013, and 2014, respectively. The data for each year is stored in a different CSV file. Each file
has 8,759 rows, with a total of 105,108 (12 x 8,759) entries of each data type. Each row in the
tables contains statistics for a different data type. The first column specifies the number of gaps,
and the percentage of gaps over the total number of entries. The rest of the columns show the
minimum, maximum, median, mean, and standard deviation, of the sample values (in W/m?).

Data Type Gaps (%) Min Max Mdn Mean SD
GHI 23 (0.02) 0 1,005 11 187.6 274.7
DNI 23 (0.02) 0 959 3 183.5 278.2
DHI 23 (0.02) 0 763 8 70.5 96.8

TABLE 2.6: Number of gaps (total and percentual), and minimum, maximum, median, and
standard deviation, of the sample values (in W/m?), for each data type of the dataset Solar, for
year 2011. The gaps are ignored when calculating the median, mean and standard deviation.

Data Type Gaps (%) Min Max Mdn Mean SD
GHI 0 (0) 0 1,004 9 186.0 269.7
DNI 0 (0) 0 958 3 178.3 272.8
DHI 0 (0) 0 485 7 2.7 100.4

TABLE 2.7: Number of gaps (total and percentual), and minimum, maximum, median, and
standard deviation, of the sample values (in W/m?), for each data type of the dataset Solar,
for year 2012. Notice that there are no gaps in the data.

Data Type Gaps (%) Min Max Mdn Mean SD
GHI 156 (0.15) 0 1,004 9 183.7 267.8
DNI 156 (0.15) 0 954 3 168.9 261.8
DHI 156 (0.15) 0 483 7 75.8 103.2

TABLE 2.8: Number of gaps (total and percentual), and minimum, maximum, median, and
standard deviation, of the sample values (in W/m?), for each data type of the dataset Solar, for
year 2013. The gaps are ignored when calculating the median, mean and standard deviation.

Data Type Gaps (%) Min Max Mdn Mean SD
GHI 204 (0.19) 0 1,006 9 189.5 274.8
DNI 204 (0.19) 0 959 4 181.0 274.6
DHI 204 (0.19) 0 473 7 73.1 100.1

TABLE 2.9: Number of gaps (total and percentual), and minimum, maximum, median, and
standard deviation, of the sample values (in W/m?), for each data type of the dataset Solar, for
year 2014. The gaps are ignored when calculating the median, mean and standard deviation.




Chapter 2. Datasets 11

2.7 Dataset Hail

Dataset Hail [33] consists of hail size measurements from several stations around the US, taken
between 2015 and 2017. This dataset is collected by the Storm Prediction Center (SPC), a US
government agency established in 1995, whose goal is to forecast the risk of severe thunderstorms
and tornadoes along US territory.

The dataset consists of hail diameter readings from several stations distributed around the US.
For each timestamp, besides the hail diameter measurement, the position of the station where the
measurement is taken is specified, in terms of its latitude and longitude (in coordinate degrees).
The scale of the latitude and longitude is 100. The hail diameter is measured in 1/100 of an
inch, and its scale is 1.

In Table 2.10 we present some statistics of dataset Hail. The dataset consists of a single file, and
each row in the table contains statistics for a different data type. The first column specifies the
number of gaps, and the percentage of gaps over the total number of entries. The file has 17,059
rows, so there is the same number of entries of each data type. The rest of the columns show
the minimum, maximum, median, mean, and standard deviation, of the sample values (in their
respective units of measurement).

Data Type Gaps (%) Min Max Mdn Mean SD
Lat (coord. degrees) 0 (0) 2,570 4,932 3,845 3,854.7 | 475.7
Long (coord. degrees) 0 (0) -12,442 | -6,783 -9,676 | -9,487.4 | 841.4
Size (1/100 inch) 0 (0) 100 600 100 1362 | 51.8

TABLE 2.10: Number of gaps (total and percentual), and minimum, maximum, median, and
standard deviation, of the sample values (in their respective units of measurement), for each
data type of the dataset Hail. Notice that there are no gaps in this dataset.

2.8 Dataset Tornado

Dataset Tornado [33] consists of records with the location of tornadoes around the US, from
between 2015 and 2017. For each timestamp, a location hit by a tornado is specified via its
latitude and longitude (in coordinate degrees). This dataset is collected by the Storm Prediction
Center (SPC), a US government agency established in 1995, whose goal is to forecast the risk of
severe thunderstorms and tornadoes along US territory. The scale of the latitude and longitude
is 100.

In Table 2.11 we present some statistics of dataset Tornado. The dataset consists of a single file,
and each row in the table contains statistics for a different data type. The first column specifies
the number of gaps, and the percentage of gaps over the total number of entries. The file has
3,841 rows, so there is the same number of entries of each data type. The rest of the columns
show the minimum, maximum, median, mean, and standard deviation, of the sample values (in
coordinate degrees).

Data Type Gaps (%) Min Max Mdn Mean SD
Lat 0 (0) 2,456 4,891 3,688 3,693.9 491.1
Long 0 (0) -12,397 | -6,822 -9,313 -9,260.0 787.9

TABLE 2.11: Number of gaps (total and percentual), and minimum, maximum, median, and
standard deviation, of the sample values (in coordinate degrees), for each data type of the
dataset Tornado. Notice that there are no gaps in this dataset.



Chapter 2. Datasets 12

2.9 Dataset Wind

Dataset Wind [33] consists of wind velocity measurements from several stations around the
US, taken between 2015 and 2017. This dataset is collected by the Storm Prediction Center
(SPC), a US government agency established in 1995, whose goal is to forecast the risk of severe
thunderstorms and tornadoes along US territory.

The dataset consists of wind velocity readings from stations distributed around the US. For
each timestamp, besides the wind velocity measurement, the position of the station where the
measurement is taken is specified, in terms of its latitude and longitude (in coordinate degrees).
The scale of the latitude and longitude is 100. The wind velocity is measured in mph, and its
scale is 10.

In Table 2.12 we present some statistics of dataset Wind. The dataset consists of a single file,
and each row in the table contains statistics for a different data type. The first column specifies
the number of gaps, and the percentage of gaps over the total number of entries. The file has
40,260 rows, so there is the same number of entries of each data type. The rest of the columns
show the minimum, maximum, median, mean, and standard deviation, of the sample values (in
their respective units of measurement).

Data Type Gaps (%) Min Max Mdn Mean SD
Lat (coord. degrees) 0 (0) 0] 4,899 3,776 3,778.4 | 460.8
Long (coord. degrees) 0 (0) -12,432 -8 -8,732 | -8,870.1 | 968.4
Speed (mph) 0 (0) 0] 2,359 1,810 | 1,350.1 | 875.2

TABLE 2.12: Number of gaps (total and percentual), and minimum, maximum, median, and
standard deviation, of the sample values (in their respective units of measurement), for each
data type of the dataset Wind. Notice that there are no gaps in this dataset.

2.10 Summary

In Table 2.13 we summarize information of the eight datasets presented in the previous sections
of this chapter. The second column indicates, qualitatively, the characteristic of each dataset,
in terms of the number of gaps. The third column shows the number of CSV files corresponding
to each dataset. The last two columns show the number of data types in each dataset, and their
names, respectively. In many files there are multiple data columns with the same data type.

Dataset Characteristic | #Files | #Types Data Types
TRKIS [29] Many gaps 7 1 VWC
SST [31] Many gaps 3 1 SST
ADCP [31] Many gaps 3 1 Velocity

. Lat, Long, Zon. Wind, Mer. Wind,

ElNino [30] Many gaps ! 7 Humidify, Air Temp., Sea Temp.
Solar [32] Few gaps 4 3 GHI, DNI, DHI
Hail [33] No gaps 1 3 Lat, Long, Size
Tornado [33] No gaps 1 2 Lat, Long
Wind [33] No gaps 1 3 Lat, Long, Speed

TABLE 2.13: Datasets overview.



Chapter 2. Datasets

In Table 2.14 we show the measuring unit, scale, and range of each data type. Recall that this
information is included in the CSV file for each dataset. We also show, in the last column,
the value of the column-dependent parameter B., obtained for the data columns of each data
type. It represents the number of bits required to represent either an integer sample value or
a data gap indicator in the respective data column. We will formally define and discuss B, in
Section 3.2. We point out that data types with the same name can have different measuring

unit, scale, and/or range, among different datasets.

B

Dataset || Data Type Unit Scale | Minimum | Maximum (bi gs)
IRKIS Time Delta minutes 1 0 131,071 17
VWC dimensionless 1,000 0 600 10
SST Time Delta seconds 1 0 131,071 17
SST °C 1,000 0 40,000 16
ADCP Time Delta minutes 1 0 131,071 17
Velocity m/s 1,000 -1,100 2,700 12
EINino Time Delta hours 1 0 131,071 17
Lat coord. degrees 100 -1,000 1,000 11
Long coord. degrees 100 -18,000 18,000 16
Zon. Wind m/s 10 -150 150 9
Mer. Wind m/s 10 -150 150 9
Humidity % 10 0 1,000 10
Air Temp. °C 100 0 4,000 12
Sea Temp. °C 100 0 4,000 12
Solar Time Delta minutes 1 0 131,071 17
GHI W /m? 1 0 1,020 10
DNI W/m? 1 0 970 10
DHI W /m? 1 0 800 10
Hail Time Delta minutes 1 0 131,071 17
Lat coord. degrees 100 2,500 5,000 12
Long coord. degrees 100 -12,500 -6,700 13
Size 1/100 inch 1 0 700 10
Tornado Time Delta minutes 1 0 131,071 17
Lat coord. degrees 100 2,400 5,000 12
Long coord. degrees 100 -12,500 -6,800 13
Wind Time Delta minutes 1 0 131,071 17
Lat coord. degrees 100 0 5,000 13
Long coord. degrees 100 -12,500 0 14
Speed mph 10 0 2,400 12

TABLE 2.14: Data types overview.




Chapter 3

Algorithms and Their Variants

In this chapter we present the algorithm variants that we have implemented and evaluated. In
Section 3.1 we give an overview of various state-of-the-art compression algorithms, including
their parameters and our masking /non-masking variants. In Section 3.2 we describe the general
encoding scheme used for every algorithm variant, while in Section 3.3 we propose a general
strategy to compress gaps in the masking variants, using arithmetic coding combined with a
Krichevsky—Trofimov probability assignment over a Markov model. In Section 3.4 we present
algorithm Base, which is a trivial algorithm that serves as a base ground for the compression
performance comparison developed in Chapter 4. In sections 3.5 to 3.12 we present the variants
implemented for eight different algorithms, showing their coding and decoding routines, and
describing an example that shows the encoding process step by step. Finally, in Section 3.13
we present additional implementation details.

14



Chapter 3. Algorithms and Their Variants 15

3.1 Introduction

We focus on compression algorithms for multichannel signals with irregular sampling rates and
with data gaps. Signals with these characteristics are often observed in datasets gathered by
WSNs, where different groups of sensors may be out of sync, some might malfunction, and
errors may arise when acquiring, transmitting or storing the data. For example, this occurs in
the experimental datasets presented in Chapter 2. However, state-of-the-art algorithms designed
for sensor data compression reported in the literature [27, 28] assume, in general, that the signals
have regular sampling rate and that there are no gaps in the data. Therefore, in this chapter
we introduce a number of variants of state-of-the-art algorithms that we design and implement,
which are adapted so they are able to encode multichannel signals with irregular sampling rates
and data gaps. In Chapter 4 we evaluate their compression performance experimentally.

The original state-of-the-art algorithms considered, as well as our adapted variants, are lossy
algorithms that support near-lossless compression, which is defined as follows.

Definition 3.1.1. Near-lossless compression guarantees a bounded per-sample absolute error
between the decompressed and the original signals. This user-defined error threshold is specified
through parameter e.

When € is zero, the compression is lossless: the decompressed and the original signals are identi-
cal. For most algorithms we implement two variants: a masking (M) variant, which first encodes
the position of all the data gaps, and then proceeds to encode the data values separately, and
a non-masking (NM) variant, which encodes the gaps and the data values together. In both
variants, regardless of the value of parameter €, the gaps in a decompressed signal match the
gaps in the original signal exactly. In Section 4.2, we compare the compression performance of
both variants, M and NM, for every evaluated algorithm that supports both.

Except from algorithm Base (a trivial lossless algorithm described in Section 3.4), all our algo-
rithm variants parse the input data into windows, which are encoded in sequence (and, in most
cases, independently). The size of these windows depends on a parameter denoted w. In both
variants of algorithm PCA (presented in Section 3.5), parameter w defines a fized window size,
while for the rest of the algorithm variants it defines a mazimum window size. More details are
presented with the specific description of each algorithm, later in this chapter. In Section 4.3 we
analyze the sensitivity of the algorithm variants to parameter w, in terms of their compression
performance.

The original algorithms and our proposed variants follow a model-based compression approach:
they compress signals by exploiting temporal correlation (i.e. correlation between signal samples
taken at close times), and, in some cases, spatial correlation (i.e. correlation between samples
from different channels). They offer an efficient compression performance, as well as some data
processing features, such as inferring uncertain sensor readings, detecting outliers, indexing, etc.
[27]. The model-based techniques are classified into different categories, depending on the type
of model: constant models approximate signals by piecewise constant functions, linear models
use linear functions, and correlation models simultaneously encode multiple signals exploiting
temporal and spatial correlation. There also exist nonlinear model algorithms, such as Chebyshev
Transform [46], Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) [47],
which approximate signals by nonlinear functions. Even though nonlinear model algorithms
support lossless compression, they are mostly used for lossy compression (e.g. JPEG [48], which
is based on DCT, is the most popular lossy image compression standard). However, they do
not support near-lossless compression, and generally do not yield the best compression results
on WSN data [27, 28]. In this chapter, we propose variants for eight different compression
algorithms: PCA [34] and APCA [35] (constant model algorithms); PWLH [36], PWLHInt (see



Chapter 3. Algorithms and Their Variants 16

Subsection 3.8.2), CA [37], SF [38], and FR [39] (linear model algorithms); and GAMPS [40]
(correlation model algorithm). In Section 4.4 we compare the compression performance of our
adapted algorithm variants, with each other, and with the general-purpose lossless compression
algorithm gzip [10].

In Table 3.1 we outline some characteristics of the evaluated algorithm variants. For each al-
gorithm, the second and third columns indicate whether it supports lossless and near-lossless
compression, respectively, the fourth column shows its compression model, the fifth and sixth
columns indicate if the masking (M) and non-masking (NM) variants apply, respectively, and
the last column specifies if the algorithm depends on a window size parameter (w). Algorithm
Base is a trivial lossless algorithm that is used as a base ground for comparing the performance
of the remaining algorithms, all of which support both lossless and near-lossless encoding.

. Near- | Compression
Algorithm Lossless lossless Model M NM w
Base X constant X
PCA [34] X X constant X X X
APCA [35] X X constant X X X
PWLH [36] X X linear X X X
and PWLHInt
CA [37] X X linear X X X
SF [38] X X linear be X
FR [39) X X linear X X
GAMPS [40] X X correlation X X X

TABLE 3.1: Characteristics of the evaluated algorithm variants.

3.2 General Encoding Scheme

Figure 3.1 shows a general encoding scheme used for the evaluated algorithm variants.

input : in: CSV data file to be encoded
v: variant (M or NM)
e: maximum error threshold
w: window size
output: out: binary file with the encoding of in
1 Create output file out
Encode an algorithm identification key, variant key v, and parameter w (if applicable)
Encode the header of the input file
Encode the timestamp column using algorithm variant APCA yas
if v == M then
‘ Encode gap locations in each signal column of the input file (independently) into out
end
if we are using a constant or linear model algorithm then
Encode each signal column of the input file (independently) into out, using the
coding routine for variant v of a specific algorithm (i.e. Base, PCA, APCA, PWLH,
PWLHInt, CA, SF, FR)
10 else if we are using a correlation model algorithm then
11 Encode all the signal columns of the input file into out, using the coding routine for
variant v of a specific algorithm (i.e. GAMPS)
12 end
13 return out

© 00 N O oo~ WN

FIGURE 3.1: General encoding scheme for the evaluated algorithm variants.



Chapter 3. Algorithms and Their Variants 17

Tts inputs are a CSV data file in the format presented in Section 2.1, a key (v) that describes
the algorithm variant (either M or NM), and the maximum error threshold (¢) and window
size (w) parameters. The output is a binary file, which represents the input file encoded with a
compression algorithm using the specified variant and parameters. Constant and linear model
algorithms only exploit the temporal correlation in the data, thus they iterate through the data
columns and encode each independently (Line 9). On the other hand, correlation models also
exploit the spatial correlation, so the data columns are jointly encoded (Line 11). The decoding
scheme is symmetric.

The timestamp column, which is comprised of integers, is the first column in every CSV data
file, and it is also the first column to be encoded (Line 4). It is always encoded using algorithm
variant APCA yy. We delve further into the topic of timestamp compression in Subsection 4.4.2.

Next, we define a column-dependent parameter, B,., which is used by the evaluated algorithms
when encoding the timestamp, as well as the rest of the data columns.

Definition 3.2.1. The number of bits B, required to encode a specific value in the i-th data
column of a dataset file f is given by

Be.(f,i) = [log, (max(f,i) — min(f,i) + No(f,4))], (3.1)

where max(f,4) and min(f,4) are the maximum and minimum values allowed, respectively, for
the i-th data column of f, and N.(z,d) € {0,1} is a constant that accounts for an extra symbol
needed to encode a gap, whose value is 1 if the data column admits gaps, and 0 otherwise.

Recall, from Section 2.1, that the timestamp column consists of integer values, but, in general,
the rest of the columns admit both integer values and the character “N”, which represents a gap in
the data. Thus, N, is 0 for the timestamp column, and 1 for the rest of the data columns in each
dataset. For the data columns in our experimental datasets, the minimum and maximum values
obtained for parameter B, are 9, for the zonal and meridional winds columns in dataset EINino,
and 17, for the timestamp columns in every dataset (recall this information from Table 2.14).

We point out that the encoder is able to calculate B, for each data column in each dataset file:
recall, from Section 2.1, that the maximum and minimum values allowed for each column are
specified in the header of the dataset CSV file, making this information known to the encoder.
Since the header of the file is encoded (Line 3 in Figure 3.1), the decoder can also calculate B,
in each case. In the sequel, in all the algorithm descriptions, we will assume that the value of
B, is known for the data column of interest in the algorithm.

In Figure 3.1, notice that when variant M of an algorithm is executed, the positions of the gaps
in every data column are encoded, independently for each column, in Line 6; the details are
explained in Section 3.3.

3.3 Encoding of Gaps in the Masking Variants

We recall that the masking variant of an algorithm starts by losslessly encoding the position of
all the gaps in the data, independently for each data column (Line 6 in Figure 3.1). We describe
the position of the gaps in a column by encoding a sequence of binary symbols, xi...z,, each
symbol z; indicating the presence (0) or absence (1) of a sample in the i-th timestamp of the
column, in chronological order. To this end we use an arithmetic coder (AC) [41, 42]. Given a
sequence of probability assignments, p(-|x;...z;_1), for the symbol in position i given the past
symbols z1...x;_1, 1 <1i <n, an AC generates a lossless encoding bit stream for x;...z,,, of length
—log P(x1...xz,) + O(1), where P(xy..x,) = [[i; p(;|z1...251). This code length is optimal
for this probability assignment, up to an additive constant [49].



Chapter 3. Algorithms and Their Variants 18

For a sequence z of independent and identically distributed random binary symbols (with un-
known probability distribution), the Krichevsky—Trofimov probability assignment [43], which we
define next, yields an asymptotically optimal code length for the (unknown) probability distribu-
tion, in the sense that the worst case redundancy for such code is asymptotically minimized [50].

Definition 3.3.1. Given a string x over an alphabet A = {0, 1}, the Krichevsky—Trofimov (KT)
probability assignment assigns the following probabilities for each symbol position i,1 <7 <n

ng+1/2 ny+1/2
07_/’ p(l|zy..2i_q) = 17/

: Z (3.2)

p(0|x1...mi_1) =
where ng and ny denote the number of occurrences of 0 and 1 in x1...x;_1, respectively.

Analyzing the experimental datasets presented in Chapter 2, we notice that, in general, the data
gaps occur in bursts. Thus, it makes sense to consider a simple binary Markov model, such as
the one defined next, sometimes referred to as the Gilbert-Elliot model [51, 52], which efficiently
captures the burstiness of data gap occurrences.

The first-order Markov model has two states, Sy and S,
and we say that x; occurs in state S iff the previous sym-

bol, z;_1, equals b. We arbitrarily let S; be the initial state «1n 111151&1

(i.e. the state in which z; occurs). In Figure 3.2 we present

a diagram for this Markov model. A KT probability assign- “0” “17
ment for a first-order Markov model is obtained by applying “”

(3.2) separately for the subsequence of symbols that occur

in states Sy and S;. This is implemented by maintaining FIGURE 3.2: Markov

. . model diagram.
two pairs of symbol occurrence counters, ng, n1, one pair g

for each state.

3.4 Algorithm Base

Algorithm Base is a trivial lossless coding algorithm that yields a standard representation of the
uncompressed data, which serves as a base ground for comparing the performance of the rest of
the algorithms. It encodes every sample independently and using the same number of bits.

Algorithm Base follows the general schema presented in Figure 3.1, with a specific coding routine
shown in Figure 3.3. This routine iterates through every entry of a column of a CSV data file.
Since algorithm Base only supports variant NM, these entries can be either the character “N”,
which represents a gap in the data, or an integer value representing an actual data sample. Every
column entry is encoded independently using B, bits. A special integer, NO__DATA, is reserved
for encoding a gap. The decoding routine is symmetric to the coding routine.

input : column: column of the CSV data file to be encoded
out: binary file encoded with algorithm Base
1 foreach entry y in column do
2 if y == “N” then
3 ‘ value = NO_DATA
4 else
5 ‘ value =y
6 end
7 Encode value using B, bits
8 end

F1Gure 3.3: Coding routine for algorithm Base.



Chapter 3. Algorithms and Their Variants 19

3.5 Algorithm PCA

Algorithm Piecewise Constant Approzimation (PCA) [34] is a constant model algorithm that
supports lossless and near-lossless compression. As its name suggests, it approximates a signal
with a piecewise constant function. For PCA we define both variants, M and NM.

In Figure 3.4 we show the coding routine for variant M, in which all the column entries are
integer values (the gaps are encoded separately). The column entries are parsed into consecutive
non-overlapping windows of size w (Line 1), and each of these windows is encoded independently
(lines 3-13).

input : column: column of the CSV data file to be encoded
out: binary file encoded with algorithm variant PCA 5,
e: maximum error threshold
w: fixed window size
Parse column into consecutive non-overlapping windows of size w, except possibly for
the last window that may consist of fewer samples

[o

2 foreach window in the parsing, win, do
3 Let m and M be the minimum and maximum sample values in win, respectively
4 if M — m < 2e then

5 Output bit 0 to out

6 mid_range = |(m+ M)/2]

7 Encode mid_range using B, bits
8 else

9 Output bit 1 to out

10 foreach sample in win, value, do
11 ‘ Encode value using B, bits

12 end

13 end

14 end

FIcURE 3.4: Coding routine for algorithm variant PCA .

A window in the parsing, win, can be encoded in two different ways. If the difference between
its maximum and minimum values is less than or equal to 2¢ (i.e. the condition in Line 4 is
satisfied), then bit 0 is output, and the value of mid_range for win is encoded (lines 5-7). On
the other hand, if the condition in Line 4 evaluates to false, then bit 1 is output, and each of
the values in win is encoded separately (lines 9-12). We point out that, in the former case, the
absolute error between the encoded and the original values in win is guaranteed to be less than
or equal to €, as proven by the following Lemma.

Lemma 3.1. Let m, M € Z, € € N, such that M — m < 2¢, let mid_range = [(m+ M)/2], and
let y € R, such that m <y < M. Then |y — mid_range| < e.

Proof. Assume there exists a y’ € R, m <y’ < M, such that |y’ — mid_range| > e.

We have |y’ — mid_range| > ¢ = 2|y’ — mid_range| > 2¢ = |2y’ — (m + M)| > 2e.

If 2y’ > m+ M, then |2y’ — (m+ M)| > 2¢e = 2y’ — (m+ M) > 2e.
Since M >y, then 2y’ — (m+ M) > 2¢e = 2M — (m+ M) = M — m > 2¢, which contradicts
the assumptions of the Lemma.

Otherwise, if 2y” < m + M, then |2y’ — (m + M)| > 2¢ = 2y’ — (m + M) < —2e.
Sincem <y, then 2y’ — (m+M) < —2¢ = 2m—(m+M)=m—-M < —2¢ = M —m > 2¢,
which, again, contradicts the assumptions of the Lemma. O



Chapter 3. Algorithms and Their Variants 20

Observe that a window that satisfies the condition in Line 4 is encoded with fewer bits than a
window that does not. Exactly 1+ B, and 1+ wx* B, bits are required for encoding the window
in each case, respectively.

The decoding routine for variant M is shown in Figure 3.5. It consists of a loop that repeats until
every entry in the column has been decoded, which occurs when condition in Line 2 becomes
false. Recall that the coding algorithm encodes the number of rows, as part of the header of the
input file (Line 3 in Figure 3.1), so this information is known by the decoding routine (input
col_size). Each iteration of the loop starts with the reading of a single bit from the input binary
file (Line 4). If this bit is 0, then the mid-range of an encoded window is decoded, and it is
written size times to the decoded CSV data file (lines 6-7). On the other hand, if the read bit is
1, then the following process is repeated a total of size times: a value is decoded and written to
the decoded CSV data file (lines 9-12).

input : ¢n: binary file encoded with algorithm variant PCA 5,
out: decoded column of CSV data file
w: fixed window size
col_size: number of entries in the column
1n=0
2 while n < col size do
3 size = min{w, col_size — n}
4 Decode bit from in
5 if bit == 0 then
6 Decode mid__range using B, bits
7 Output size copies of mid_range to out
8 else
9 repeat size times
10 Decode value using B, bits
11 Output value to out
12 end
13 end
14 n += size
15 end

FIGURE 3.5: Decoding routine for algorithm variant PCA ;.



Chapter 3. Algorithms and Their Variants 21

3.5.1 Example

Next we present an example of the encoding of the 12 samples illustrated in Figure 3.6. Recall
that the specific timestamp values are irrelevant for algorithm PCA. For this example we let the
error threshold parameter (¢) be equal to 1, and the fixed window size (w) equal to 4.

4 x sample %
31 x X
2 - x x
1 x x x x x x x
o T T T T T T T T T T T T
tl t2 t3 t4 5 t6 t7 t8 t9 t10 t1l t12
timestamp
FIGURE 3.6: Example: Signal consisting of 12 samples.
Since there are 12 samples to encode and w = 4, three windows are encoded independently, each
consisting of exactly four samples. The first window includes the first four samples, which are
all equal to 1, so in this case the condition in Line 4 of the coding routine is satisfied. Therefore,
lines 5-7 are executed, which encode a single value, mid_range, as a representation of the four
samples in the window. For this first window, mid_range equals 1. Figure 3.7 shows this step
in the graph. Notice that, since all the values in the window are equal, the condition in Line 4
would be satisfied regardless of the value of parameter e.
4 x sample
encoded/decoded sample
3 .
2 -
|
1 x x x X
Ie
o T T T T T T T T T T T T
tl t2 t3 t4 5 t6 t7 t8 t9 t10 t11 t12
timestamp

FIGURE 3.7: Example: Algorithm variant PCA j with e = 1 and w = 4. Step 1.



Chapter 3. Algorithms and Their Variants 22

The second window is comprised of the next four samples, i.e. [1,2,3,3]. Again, the condition
in Line 4 is satisfied, because we have |3 — 1| < 2 % 1, but in this case mid range equals 2, so
these four samples are described through the encoding of a single value, 2. This step is shown

in Figure 3.8.

sample

4
encoded/decoded sample
31 x x
If
2 A x
Ie
1 A x x x x x
0 T T T T T .3 T T T T T T
tl t2 t3 t4 t5 t6 t7 t8 t9 t10 t1ll t12
timestamp
FIGURE 3.8: Example: Algorithm variant PCA y with e = 1 and w = 4. Step 2.
The third and last window consists of the last four samples, i.e. [4,2,1,1]. In this case, the
condition in Line 4 evaluates to false, so lines 9-12 are executed, which encode each sample value
separately. This last step is shown in Figure 3.9.
4 x sample o
encoded/decoded sample
3 1 x x €
2 A x x €
1 A x x x x x x x
0 T T T T T T T T T T T T
t1l t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
timestamp

FIGURE 3.9: Example: Algorithm variant PCA y with e = 1 and w = 4. Step 3.

This simple example fairly represents every scenario that may arise during the encoding process.
Since the threshold condition holds for the first two windows, both are encoded with exactly the
same number of bits, i.e. 1+ B.. On the other hand, since the threshold condition does not hold
for the last window, it is encoded with 1 + w % B, bits. Thus, windows consisting of adjacent
samples are encoded using fewer bits. This example illustrates why algorithm PCA is expected
to achieve better compression performances on smooth (i.e. slowly varying) rather than rough
(i.e. with abrupt changes) signals. Overall, 2x (1+ B.) +1+w* B. = 3+ 6% B, bits are required
for encoding the 12 samples in this example.




Chapter 3. Algorithms and Their Variants 23

3.5.2 Non-Masking (NM) Variant

In Figure 3.10 we show the coding routine for variant NM of algorithm PCA. In this case,
the column entries may be not only integers representing sample values, but also the character
“N”, which represents a gap in the data. As in variant M, after parsing the column entries
into consecutive non-overlapping windows of size w (Line 1), each of these windows is encoded
independently (lines 3-23). However, since not every entry in a window is guaranteed to be an
integer, we consider additional scenarios when encoding a window.

input : column: column of the CSV data file to be encoded
out: binary file encoded with algorithm variant PCA s
€: maximum error threshold
w: fixed window size
Parse column into consecutive non-overlapping windows of size w, except possibly for
the last window that may consist of fewer samples
foreach window in the parsing, win, do

[y

2
3 if every entry in win is equal to “N” then
4 Output bit 0 to out
5 Encode NO_DATA using B, bits
6 else
7 Let m and M be the minimum and maximum sample values in win, respectively
8 if every entry in win is different from “N” and M — m < 2¢ then
9 Output bit 0 to out

10 mid_range = |(m + M)/2|

11 Encode mid_range using B, bits

12 else

13 Output bit 1 to out

14 foreach entry in win, y, do

15 if y == “N” then

16 ‘ value = NO_DATA

17 else

18 ‘ value =y

19 end

20 Encode value using B, bits

21 end

22 end

23 end

24 end

Ficure 3.10: Coding routine for algorithm variant PCA .

A window win can be encoded in three different ways. If every entry in win represents a gap
in the data (i.e. the condition in Line 3 is satisfied), then bit 0 is output, and the special
integer NO_DATA is encoded (lines 4-5). If every entry in win represents a sample value, and
the difference between its maximum and minimum values is less than or equal to 2¢ (i.e. the
condition in Line 8 is satisfied), then bit 0 is output, and the value of mid_range for win is
encoded (lines 9-11). In this case, due to Lemma 3.1, the absolute error between the encoded
and the original values in win is guaranteed to not be greater than e. In every other case, bit 1 is
output, and each of the entries in win is encoded separately (lines 13-21), using NO_DATA for
encoding a gap. Notice that in the first two cases the window is encoded with the same number
of bits, i.e. 1+ B,, while in the last case the window is encoded with 1 + w % B, bits.

The decoding routine for variant NM is quite similar to the decoding routine for variant M,
presented in Figure 3.5, the only difference being that, in lines 6-7 and 10-11, when NO_DATA
is decoded, a character “N” is written to the decoded CSV data file.



Chapter 3. Algorithms and Their Variants 24

3.6 Algorithm APCA

Algorithm Adaptive Piecewise Constant Approximation (APCA) [35] is a constant model al-
gorithm that supports lossless and near-lossless compression. As its name suggests, it works
similarly to algorithm PCA, i.e. it approximates a signal with a piecewise constant function,
with the difference that, in APCA, the size of the windows into which the data are parsed for
encoding is not fixed, but variable. APCA supports both variants, M and NM.

In Figure 3.11 we show the coding routine for variant M, in which all the column entries are
integer values (the gaps are encoded separately). It consists of a loop that iterates over all column
entries. The algorithm maintains a window of consecutive samples, win, which is initially empty
(Line 1). In each iteration, the addition of an entry to the window is considered (lines 3-8). If
the new entry makes the difference between the maximum and minimum values greater than
2¢, or the window size greater than w, then the window is encoded, and emptied (lines 5-6). In
any case, the current entry is added to win (Line 8), and is eventually encoded. In particular,
if the loop ends and win is not empty, it is encoded in Line 11. We point out that Lemma 3.1
guarantees that the absolute error between the encoded and the original values in a window is
less than or equal to €.

input : column: column of the CSV data file to be encoded
out: binary file encoded with algorithm variant APCA »,
e: maximum error threshold
w: maximum window size
1 Create an empty window, win

2 foreach entry y in column do

3 Let m and M be the minimum and maximum sample values in the extended window
[win, y], resp.

4 if M —m > 2e or |win| == w then

5 EncodeWindow(win, out, w) // routine shown in Figure 3.12

6 Set win to an empty window

7 end

8 Append y to win

9 end

10 if win is not empty then

11 | EncodeWindow(win, out, w) // routine shown in Figure 3.12

12 end

FIGURE 3.11: Coding routine for algorithm variant APCA y.

The auxiliary routine used for encoding a window (in lines 5 and 11), EncodeWindow, is shown in
Figure 3.12. Observe that every window is encoded with the same number of bits, i.e. [log, w| +
B., where [log, w] bits are used for encoding its size, and B. bits are used for encoding its
mid-range.

input : win: window to encode
out: binary file encoded with algorithm variant APCA »,
w: maximum window size
1 Encode |win| using [log, w] bits
2 Let m and M be the minimum and maximum sample values in win, respectively
3 mid_range = [(m+ M)/2]
4 Encode mid_range using B, bits

FIGURE 3.12: Auxiliary routine EncodeWindow for algorithm variant APCA ;.



Chapter 3. Algorithms and Their Variants 25

The decoding routine for variant M is shown in Figure 3.13. It consists of a loop that keeps
running until every entry in the column has been decoded, which occurs when the condition in
Line 2 becomes false. The decoding loop is fairly simple. First, both the window size, size, and
its mid-range value are decoded (lines 3-4). Then, the mid-range value is written size times to
the decoded CSV data file (Line 5).

input : in: binary file encoded with algorithm variant APCA ,,
out: decoded column of CSV data file
w: maximum window size
col _size: number of entries in the column

1n=0
2 while n < col_size do
3 Decode size using [log, w| bits

Decode mid_range using B, bits
Output size copies of mid_range to out
n += size

end

i =T L G

FIGURE 3.13: Decoding routine for algorithm variant APCA .

3.6.1 Example

Next we present an example of the encoding of the same 12 samples of the previous example,
presented in Figure 3.6, and also shown in Figure 3.14 below. Recall that the specific timestamp
values are irrelevant for algorithm APCA. For this example we let the error threshold parameter
(e) be equal to 1, and the maximum window size (w) equal to 256.

The condition in Line 4 of the coding routine evaluates to false in the first eight iterations, so
these samples, [1,1,1,1,1,2,3, 3], are added to the first window. The sample processed in the 9th
iteration is 4, whose addition to the window would violate the error threshold constraint, because
we have |4 —1| > 2x 1. Therefore, the window is encoded, which requires [log, w] = log, 256 = 8
bits for encoding its size (i.e. 8), and B, bits for encoding its mid-range (i.e. 2), and the sample
value 4 is added to a new empty window. This step is shown in Figure 3.14.

4 x sample %
encoded/decoded sample
31 X X
16
24 x
Ie
1 x X X X x
0 T T T T T T T T T T T T
tl t2 t3 t4 B t6 t7 t8 t9 t10 t11l t12
timestamp

FIGURE 3.14: Example: Algorithm variant APCA y with e = 1 and w = 256. Step 1.




Chapter 3. Algorithms and Their Variants 26

For the second window, the condition in Line 4 evaluates to false in the 10th iteration. However,
the error threshold constraint is violated in the 11th iteration, for the sample value 1. The
second window, [4,2], is encoded with size 2 and mid-range 3, and the sample value 1 is added
to a new empty window. This step is shown in Figure 3.15.

4 x sample &
encoded/decoded sample I
€
3 - x X
IF
2 A x X
1 x x x x x x
0 T T T T T T T T T T T T
tl t2 t3 t4 t5 t6 t7 t8 t9 t10 tll t12
timestamp
FIGURE 3.15: Example: Algorithm variant APCA y with e = 1 and w = 256. Step 2.
For the third window, the condition in Line 4 evaluates to false in the 12th and last iteration.
This window, which is equal to [1, 1], is encoded in Line 11, after executing the last iteration. In
this case, the window size is 2 and its mid-range is 1. This last step is shown in Figure 3.16.
4 x sample %
encoded/decoded sample
3 - x X
2 1 x X

1+ x X x X x x %

€

€

tl t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
timestamp

FIGURE 3.16: Example: Algorithm variant APCA y with e = 1 and w = 256. Step 3.

We point out that each of the three windows in this example is encoded using exactly the same
number of bits, i.e. [logy w] + B.. However, the first window consists of eight samples, while the
last two consist of only two samples. Therefore, the first window achieves a better compression
ratio (more samples encoded per bit). This example illustrates why, similarly to PCA, algorithm
APCA is expected to achieve better compression performances on smooth rather than rough
signals. Overall, 3 * ([logy w] + B.) = 24 + 3 * B, bits are required for encoding the 12 samples
in this example.




Chapter 3. Algorithms and Their Variants 27

3.6.2 Non-Masking (NM) Variant

The coding and decoding routines for variant NM of algorithm APCA are similar to their variant
M counterparts, the difference being that the former routines are able to handle both sample
values and gaps. Recall that in the coding routine for variant M, a window is encoded when
adding a new entry makes it violate the error threshold constraint or the window size restriction
(Line 4 in Figure 3.11). In the coding routine for variant NM, a window must also be encoded
if the incoming entry is character “N” (gap in the data) and the other entries in the window are
integers (sample values), or vice versa. A window that consists of gaps is encoded with the same
number of bits as a window that consists of integers, i.e. [log, w] + B., where [log, w| bits are
used for encoding its size, and B, bits are used for encoding the special integer NO_DATA.

3.7 Encoding Scheme for Linear Model Algorithms

In the following four sections we present the evaluated linear model algorithms, i.e. PWLH,
PWLHInt, CA, SF and FR. As we recall from Section 3.1, this type of algorithms approximate
signals using linear functions. Even though the encoding scheme varies among algorithms, it
always requires encoding a sequence of line segments in the two-dimensional Euclidean space.
Each line segment represents a sequence of consecutive samples, with x and y-axis corresponding
to timestamps and sample values, respectively. A sample point is a pair of integers (z, y), where
y is a sample value (i.e. a column entry other than “N”, which represents a data gap) with an
associated timestamp .

A linear model encoding algorithm operates by successively encoding endpoints of segments,
which span samples whose vertical distance to the segment along the y-axis does not exceeds
the prescribed error threshold parameter (¢). The decoder, in turn, sequentially decodes the
endpoints of each segment and linearly interpolates the intermediate samples, up to integer
constraints. In Figure 3.17 we present the auxiliary routine FillSegment, which performs this
interpolation; it is invoked by the decoding routine for every linear model algorithm variant.
Tts inputs are the timestamp column (recall that this column is encoded first and, thus, it is
available to the decoder when decoding sample columns), and a pair of timestamps and sample
values, which correspond to the coordinates of a segment endpoints (Line 1). The output is a
list consisting of the (integer) sample values that are decoded from said segment.

input :t col: timestamp column
t,: timestamp of the first endpoint of the segment
tg: timestamp of the last endpoint of the segment
S,: sample value of the first endpoint of the segment
s¢: sample value of the last endpoint of the segment
output: decoded samples: list with the sample values decoded from the segment
Let segment be the line segment whose endpoints coordinates are (¢,,5,) and (tf,sys)

[y

2 Create an empty list, decoded_samples

3 foreach timestamp ¢; in ¢_col, such that ¢, < t; < #y, do

4 Let s; be the sample value obtained by substituting #; for the x-coordinate in the
segment equation, and rounding the result to the nearest integer

5 Append s; to decoded_samples

6 end

7 return decoded__samples

FIGURE 3.17: Auxiliary routine FillSegment for linear model algorithms.



Chapter 3. Algorithms and Their Variants 28

For most algorithms, both the x-coordinates and the y-coordinates of the endpoints are encoded
as integers, the exceptions being algorithm PWLH, presented in Section 3.8, which encodes
the y-coordinates as floats!, and algorithm SF, presented in Section 3.10, which encodes the
coordinates of both axes as floats.

Next, we present an example that illustrates the working of the auxiliary routine FillSegment.
The inputs are represented in Figure 3.18: the coordinates of the encoded segment endpoints

are (t5, 1) and (t9, 3.5), while the timestamp
column is equal to [tq, ..., tx], where N > 9.
The segment defined in Line 1 of the routine O encoded point

is colored red. After creating the empty list decoded sample
of decoded samples (Line 2), a loop iter-

ates over every timestamp t;, t5 < t; < {9, 31
in the column, it decodes the correspond- S
ing sample value s; (Line 4), and adds it 3 5
to the list (Line 5). Given timestamp t;,

sample value s; is obtained by taking the 1

equation of the segment and substituting ¢;
for the x-coordinate, and then rounding the
result to the nearest integer. In Figure 3.18, 0 T T T T T

the decoded sample values, s;, 5 < i < 9, B i timets7tamp t8 v

are colored in orange. They are equal to

[1,2,2,3,4], which is the list output by the FIGURE 3.18: Example of the auxiliary routine
routine FillSegment in this example. FillSegment for linear model algorithms.

3.8 Algorithms PWLH and PWLHInt

Algorithm Piece Wise Linear Histogram (PWLH) [36] is a linear model algorithm that supports
lossless and near-lossless compression. For PWLH we define both variants, M and NM. We
also define algorithm PWLHInt by introducing minor design changes to algorithm PWLH. The
description in the current section applies to both PWLH and PWLHInt, except for the specific
differences that are pointed out in Subsection 3.8.2.

PWLH is a linear model algorithm, so its encoding process involves the encoding of a sequence
of line segments. In Figure 3.19 we present the coding routine for variant M. It consists of a
loop that iterates over all column entries, which are always integer values (the gaps are encoded
separately). The algorithm maintains a window of consecutive sample points, win, which is
initially empty (Line 1). In each iteration, the addition of a new incoming point, FE, to the
window is considered (lines 3-16). Notice that E, defined in lines 3-4, is a sample point (recall
definition in Section 3.7): its y-coordinate is an integer sample value, and its x-coordinate is
the timestamp (obtained from the timestamp column) for said sample. We point out that in
algorithm PWLH, as well as in every evaluated linear model algorithm, windows consist of sample
points, while in the constant and correlation model algorithms, windows consist of integer values
corresponding to column entries.

n Subsection 3.8.2 we define algorithm PWLHInt, which is an adaptation of algorithm PWLH that encodes
the y-coordinates as integers.



Chapter 3. Algorithms and Their Variants 29

input : column: column of the CSV data file to be encoded
out: binary file encoded with algorithm variant PWLH y,
e: maximum error threshold
w: maximum window size
t_col: timestamp column

1 Create an empty window, win

2 foreach entry y in column do

3 Obtain timestamp for y, ¢,, from ¢_col

4 Let E be the point with coordinates (t,, y)

5 if y is the first entry in column then

6 Append E to win

7 continue

8 end

9 Let S be the set of points in the extended window [win, E]

10 Let H be the convex hull of §
11 Let valid_hull be true iff H satisfies the valid hull condition, defined in 3.8.1, for €
12 if not valid_hull or |win| == w then

13 EncodeWindow(win, out, w, t_col) // routine shown in Figure 3.22
14 Set win to an empty window

15 end

16 Append FE to win

17 end

18 if win is not empty then

19 | EncodeLastWindow(win, out, w, t_col) // routine shown in Figure 3.23
20 end

F1GURE 3.19: Coding routine for algorithm variant PWLH ;.

The incoming points obtained in the subsequent iterations are parsed into consecutive windows
of variable size (up to a maximum size w), such that the set of points in a certain window satisfy
the valid hull condition, defined in the next paragraph. If the set of points in a window satisfies
the valid hull condition, the absolute error between the encoded and the original samples is
guaranteed to be less than or equal to e. To compute the convex hull we apply Graham’s Scan
algorithm [53]. Since the points are already sorted by their respective x-coordinates, the sorting
step in the algorithm is eliminated, and the time complexity to build and update the convex hull
is O(n) instead of O(nlogn) [27].

Definition 3.8.1. Let S be a set of points, with |S| > 1, and let H be the convex hull of S. H
satisfies the valid hull condition for a maximum error threshold e, iff there exists an edge line in
the boundary of H, for which the maximum Euclidean distance from any of the points in H to
said edge line is less than or equal to 2e.

In figures 3.20 and 3.21 we present an example that illustrates how the valid hull condition is
checked in the coding routine of Figure 3.19. In Figure 3.20, set S, which is defined in Line 9,
contains the three points in win, plus the incoming point, E4. In this case, the convex hull of S,
H, satisfies the valid hull condition for € = 1, since the maximum distance from any of its points
to the upper edge line of its boundary is approximately 1.1, which is less than 2e = 2. Therefore,
the condition in Line 12 evaluates to false (we assume that |win| < w), and E/ is added to win
(Line 16). In the next step, presented in Figure 3.21, set S contains the four points in win, plus
E5. In this case, H does not satisfy the valid hull condition, since for each of the three edge
lines in its boundary, there exists a point in H such that its distance to the edge line is greater
than 2e. Therefore, the condition in Line 12 is satisfied, so win is encoded (Line 13), emptied
(Line 14) and added E5 (Line 16).



data

FIGURE 3.20: Example: checking the valid hull
condition. Variant PWLH y with e = 1. Step 1.

Chapter 3. Algorithms and Their Variants 30
4 X sample E4 4 x sample
e convex hull e convex hull dist.~3.1
3 dist. ~ 1.1 - T ORI NI S ol St 5 & dist. 2 3.5
g | e
c | @ A
2 T 24 d
14 1
E5
T T T T T 0 T T T T T
1 2 3 4 5 1 2 3 4 5

timestamp timestamp

FIGURE 3.21: Example: checking the valid hull
condition. Variant PWLHy with e = 1. Step 2.

A window is encoded via the auxiliary routine EncodeWindow, shown in Figure 3.22. This
method first encodes the window size using [log, w] bits (Line 1), then selects the segment that
minimizes the mean square error (MSE) for the points in the window, taken among all the
segments for which the x-coordinates of the first and last endpoints match the x-coordinates of
the first and last points in the window, respectively (lines 2-3). Notice that the y-coordinates of
the two endpoints of this segment are float values, which may not match the value of any column
entry, and might even be out of the range specified in the dataset CSV file for the corresponding
data type. Finally, in lines 5-6, both y-coordinates are encoded as floats, using 32 hits. Recall
that the coding algorithm encodes the timestamp column, with the respective x-coordinates,
first. Thus, the decoding routine is able to decode both coordinates of each endpoint.

: win: window to encode
out: binary file encoded with algorithm variant PWLH,
w: maximum window size
t_col: timestamp column
1 Encode |win| using [log, w] bits
2 Let LS be the set of line segments such that s € LS iff the x-coordinates of the first and
last endpoints of s match the x-coordinates of the first and last points in win, resp.
3 Let segment € LS be the line segment that minimizes the MSE for the points in win
(among the segments included in LS)
4 Let s, and sy be the y-coordinates of the endpoints of segment
5 Encode s, as a float, using 32 bits
6 Encode sy as a float, using 32 bits

input

FIGURE 3.22: Auxiliary routine EncodeWindow for algorithm variant PWLH .

We point out that calculating the segment that minimizes the MSE for a set of points is compu-
tationally more expensive than checking the valid hull condition [27]. This is the reason why the
valid hull condition is checked in every iteration, when deciding whether or not a point should
be added to the window, while the segment that minimizes the MSE is only computed for the
points in a complete window.

In the coding routine presented in Figure 3.19, if win is not empty after executing the last
iteration of the loop, it is encoded in Line 19, via the auxiliary routine EncodeLastWindow,
shown in Figure 3.23. If win consists of a single point, its size is encoded using [log, w] bits,
and the y-coordinate of the point is encoded using B, bits. On the other hand, if win consists



Chapter 3. Algorithms and Their Variants 31

of multiple points, it is encoded in the same way as the previous windows, i.e. via the auxiliary
routine EncodeWindow, shown in Figure 3.22.

input : win: window to encode
out: binary file encoded with algorithm variant PWLH ),
w: maximum window size
t_col: timestamp column

1 if |win| == 1 then

2 Encode 1 using [log, w] bits

3 Encode the y-coordinate of the single point in win using B, bits

4 else

5 | EncodeWindow(win, out, w, t_col) // routine shown in Figure 3.22
6 end

Fi1GURE 3.23: Auxiliary routine EncodeLastWindow for algorithm variant PWLH y;.

The decoding routine for variant M is shown in Figure 3.24. It consists of a loop that repeats
until every entry in the column has been decoded, which occurs when condition in Line 2 becomes
false. Recall that the coding algorithm encodes the timestamp column first (Line 6 in Figure 3.1),
so the timestamps are known to the decoding routine (input ¢ _col). Each iteration of the loop
starts with the decoding of the window size (Line 3). If the window size is greater than 1,
then the points in the window are modeled by a line segment. In this case, the decoding routine
decodes the float representation of the y-coordinates of the segment endpoints (lines 5-6), obtains
the timestamps corresponding to their x-coordinates (Line 7), and calls the auxiliary routine
FillSegment with those inputs (Line 8). As we recall from Figure 3.17, routine FillSegment
returns a list consisting of the sample values that are decoded from the segment, which are then
written in the decoded CSV data file (lines 9-11). Notice that, even though inputs s, and sy
are floats, FillSegment returns a list of integers. When the window size is equal to 1, a value is
decoded (using B. bits) and written to the decoded file (lines 13-14).

input : i¢n: binary file encoded with algorithm variant PWLH
out: decoded column of CSV data file
w: maximum window size
col size: number of entries in the column
t_col: timestamp column
1n=0
2 while n < col size do
3 Decode size using [log, w] bits
4 if size > 1 then
5 Decode s, as a float, using 32 bits
6 Decode sy as a float, using 32 bits
7 Obtain timestamps for the endpoints of the segment, ¢, and ¢;, from ¢ _col
8 samples = FillSegment(t_col, t,, tf, So, sf) // routine in Figure 3.17
9 foreach sample in samples, value, do
10 ‘ Output value to out
11 end
12 else
13 Decode value using B, bits
14 Output value to out
15 end
16 n += size
17 end

FIGURE 3.24: Decoding routine for algorithm variant PWLH y.



Chapter 3. Algorithms and Their Variants 32

3.8.1 Example

Next we present an example of the encoding of the same 12 samples of previous examples,
presented in Figure 3.6, and also shown in Figure 3.25 below. For this example we let the
interval between consecutive timestamps be equal to 60, the error threshold parameter (¢) equal
to 1, and the maximum window size (w) equal to 256.

Since there are only 12 samples to encode, no window in this example can reach the maximum
size (256). Therefore, a window is only encoded when the convex hull, defined in Line 10 of the
coding routine, violates the valid hull condition defined in Line 11. The first iteration is the only
one in which the condition in Line 5 is satisfied, so the algorithm just adds the first incoming
point, E1, to the window (Line 6). Figure 3.25 shows this step in the graph. Observe that,
besides the sample points, the convex hull for the current window is also shown.

x sample
e convex hull

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
timestamp

FIGURE 3.25: Example: Algorithm variant PWLHy with € = 1 and w = 256. Step 1.

In the second iteration, the boundary of the convex hull that includes incoming point E2 consists
of a single line segment, where the maximum distance from either point to the line is zero, so the
valid hull condition is satisfied, and E2 is added to the window. This step is shown in Figure 3.26.

X sample
4 4

e convex hull
3 -
2 -

E2
1 1 —x
distance =0
tl t2 t3 t4 £5 t6 t7 t8 t9 t10 t1l1 t12

timestamp

FIGURE 3.26: Example: Algorithm variant PWLHy with e = 1 and w = 256. Step 2.




Chapter 3. Algorithms and Their Variants 33

The following three sample values are also equal to 1. The convex hull that includes the respective
incoming points still consists of a single line segment, so these points are also added to the
window. This step is shown in Figure 3.27.

x sample
4 -
e convex hull
3 .
2 .
ES5
1+ %%
distance =0
0 T T T T T T T T T T T T
tl t2 t3 t4 t5 t6 t7 t8 t9 t10 tll t12
timestamp
FIGURE 3.27: Example: Algorithm variant PWLHy with € = 1 and w = 256. Step 3.
In the 6th iteration, sample value 2 is considered. The updated convex hull, whose boundary
now consists of three edges, is shown in Figure 3.28. In this case, the maximum distance between
the upper edge in its boundary and any of its points is approximately 0.8, which is less than
2¢ = 2. Therefore, the valid hull condition is still satisfied, and E6 is added to the window.
x sample
4 -
e convex hull
3 .
2 .
1 -
o T T T T T T T T T T T T
tl t2 t3 t4 t5 t6 t7 t8 t9 t10 t1ll t12
timestamp

FIGURE 3.28: Example: Algorithm variant PWLHy with € = 1 and w = 256. Step 4.



Chapter 3. Algorithms and Their Variants

The following three iterations are similar to the previous one. In every case, the convex hull is
updated, and, even though the maximum distance between the upper edge in its boundary and
any of its points increases, it is never greater than 2e¢, so the three incoming points are added to

the window. These steps are shown in figures 3.29, 3.30 and 3.31.

x sample
4
e convex hull
E7
3 .
dist. ~1.3
2 .
1 o
0 T T T T T  § T T T T T T
tl t2 t3 t4 t5 t6 t7 t8 t9 t10 t1l1 t12
timestamp
FIGURE 3.29: Example: Algorithm variant PWLHy with € = 1 and w = 256. Step 5.
x sample
4
e convex hull
ES8
3 .
dist.~ 1.3
2 -
1 .
0 T T T T T T T T T T T T
tl t2 t3 t4 t5 t6 t7 t8 t9 t10 t1l1 t12
timestamp
FIGURE 3.30: Example: Algorithm variant PWLHy with e = 1 and w = 256. Step 6.
x sample E9
4
e convex hull
3 -
2 -
1 -
O T L} T T T T T T

tl t2 t3 t4 t5 t6 t7 t8 t9 t10 t11l t12
timestamp

FIGURE 3.31: Example: Algorithm variant PWLH with e = 1 and w = 256. Step 7.




Chapter 3. Algorithms and Their Variants 35

Eventually, in the 10th iteration, sample value 2 is considered. In the updated convex hull, which
is shown in Figure 3.32, for the first time the valid hull condition is not satisfied, i.e. valid__hull
in Line 11 becomes false. Observe that, for each of the four edges in the boundary of the convex
hull, there exists a point in the hull such that its distance to the edge line is greater than 2e.

x sample ".-"'d'ist.xw
e convex hull

X " dist.~2.4

E10

Tdist. ~ 2.2

dist. =3

tl t2 t3 t4 5 t6 t7 t8 t9 t10 t11 t12
timestamp

FIGURE 3.32: Example: Algorithm variant PWLHy with € = 1 and w = 256. Step 8.

Since the condition in Line 12 becomes true, the window is encoded via the auxiliary routine
EncodeWindow (Line 13), and the window is emptied and added E10 (lines 14 and 16). Routine
EncodeWindow models the points in the window through the line segment that minimizes the
MSE for said points (recall Figure 3.22). This segment and its two encoded endpoints are shown
in Figure 3.33. Encoding the window requires [log, w] = log, 256 = 8 bits for encoding its size
(i.e. 9), and 32 bits for encoding each of the float values corresponding to the y-coordinates of

the segment endpoints.

x sample
e convex hull
encoded point

E10

T T T T T T T

tl t2 t3 t4 t5 t6 t7 t8 t9 t10 t11l t12
timestamp

FIGURE 3.33: Example: Algorithm variant PWLH, with e = 1 and w = 256. Step 9.




Chapter 3. Algorithms and Their Variants 36

In the last two iterations of the coding routine, which correspond to the last two samples, the
valid hull condition is not violated. Therefore, after executing the last iteration, win includes
three points, which are encoded via the auxiliary routine EncodeLastWindow (Line 19), also
using [log, w] + 2 x 32 bits. The associated segment, with its two encoded endpoints, is shown
in Figure 3.34. In this figure, we also display the values of the decoded samples, which are the
values that the decoding routine, shown in Figure 3.24, writes to the decoded CSV data file.
Overall, 2x([log, w]+2%32) = 144 bits are required for encoding the 12 samples in this example.

X

sample

4 - ; x
O encoded point
decoded sample
3 = |
2 x
1 x x
0 T T T T T 5 T T T T T T
tl t2 t3 ta t5 t6 t7 t8 t9 t10 t11 t12

timestamp

FIGURE 3.34: Example: Algorithm variant PWLHy with € =1 and w = 256. Step 10.

3.8.2 Differences Between Algorithms PWLH and PWLHInt

Recall, from Section 2.1, that, in the signals we are interested in compressing, the data samples
are always represented as integers. However, algorithm PWLH [36] encodes the y-coordinates
of both endpoints of a line segment as floats, using 32 bits (lines 4-5 in Figure 3.22). When
B. < 32 (recall, from Section 3.2, that this is the case in our experimental datasets, where
the maximum B, is 17), the compression performance of the algorithm can be improved if we
transform these y-coordinates into the (integer) domain for the associated data column, since
this change allows us to encode a y-coordinate using B, bits. That is precisely the idea behind
the design of algorithm PWLHInt.

Algorithm PWLHInt is defined by applying three changes to algorithm PWLH. First, we change
lines 5-6 in the auxiliary routine EncodeWindow, shown in Figure 3.22, so that both y-coordinates
are rounded to the nearest integer, and then encoded using B, bits. Lines 5-6 are modified
accordingly in the decoding routine, shown in Figure 3.24, this being the only change in the
decoding routine. Secondly, we add a new constraint to the condition in Line 12 of the coding
routine, shown in Figure 3.19, to make sure that the (rounded) y-coordinates of both endpoints
of the approximation segment belong to the range defined for the data column being encoded
(in this case, the approximation segment obtained in EncodeWindow must be computed before
checking the condition). These first two changes guarantee that B, bits are enough to encode the
y-coordinate of an endpoint. Lastly, rounding a coordinate value to the nearest integer, before
encoding it, could represent a deviation of as much as 0.5 from its original value, which may
cause a decoding error greater than the threshold e. Therefore, the coding routine of algorithm
PWLHInt operates with an adjusted maximum error threshold, ¢ = ¢ — 0.5, to make sure that
the per-sample absolute error between the decoded and the original signals is less than or equal
to €.




Chapter 3. Algorithms and Their Variants 37

Notice that changes made to transform algorithm PWLH into PWLHInt result in a trade-off
between factors that affect the compression performance in opposite ways. Rounding and reduc-
ing the range of the y-coordinates of the segment endpoints, as well as adjusting the threshold,
are factors that are likely to worsen the performance, since, in general, they lead to algorithm
PWLHInt encoding more segments than algorithm PWLH. On the other hand, encoding the
y-coordinates using B, instead of 32 bits, is expected to improve the performance of PWLHInt
when B, < 32, which is the case in our experimental datasets. In Section 4.4 we evaluate the
coding algorithms, and the experimental results suggest that the compression performance of
algorithm PWLHInt is superior to that of the original algorithm PWLH [36]. Therefore, the
effect of the factors that improve the compression performance of the algorithm outweighs that
of those which worsen it, making the trade-off justified by our empirical results

3.8.3 Non-Masking (NM) Variant

The coding and decoding routines for variant NM of algorithms PWLH and PWLHInt are similar
to their respective variant M counterparts, the difference being that the former routines are able
to handle both sample values and gaps. In the coding routine for variant NM, a window may
consist either of sample points or gaps, but it cannot include both. Therefore, a new constraint is
added to the condition in Line 12 of the coding routine, shown in Figure 3.19, so that a window is
also encoded if the new entry is character “N” (gap in the data) and the other window entries are
sample points, or vice versa. To encode a window that consists of gaps, algorithm PWLH uses
[log, w] bits for encoding its size, and 32 bits for encoding the special float NO_DATA_FLOAT,
while algorithm PWLHInt also uses [log, w] bits for encoding its size, but it uses B, bits for
encoding the special integer NO_DATA.



Chapter 3. Algorithms and Their Variants 38

3.9 Algorithm CA

Algorithm Critical Aperture (CA) [37] is a linear model algorithm that supports lossless and
near-lossless compression. We implement both variants, M and NM.

Since CA is a linear model algorithm, its encoding process involves the encoding of a sequence of
line segments. In Figure 3.35 we show the coding routine for variant M, in which all the column
entries are integer values (the gaps are encoded separately). It consists of a loop that iterates over
all column entries, parsing them into an alternating sequence of a single sample point followed by
a window of variable size (up to a maximum size w), such that all the sample points in the same
window lie within vertical distance e from the segment whose endpoints correspond to the single
sample point and the last point of the window. The routine operates by successively encoding
a single sample point (using an auxiliary routine EncodeArchivedPoint, shown in Figure 3.38),
and then growing a window of subsequent sample points, adding one point at a time until it
is complete, and finally encoding the size and the last point of the window (using an auxiliary
routine EncodeWindow, shown in Figure 3.39).

input : column: column of the CSV data file to be encoded
out: binary file encoded with algorithm variant CA ,;
€: maximum error threshold
w: maximum window size
t_col: timestamp column

1 Create an empty window, win
2 Let SMin and SMax be objects that will represent straight line rays
3 foreach entry y in column do
4 Obtain timestamp for y, ¢,, from ¢_col
5 Let E be the point with coordinates (¢, y)
6 if y is the first entry in column then
7 | Make A = E, then EncodeArchivedPoint(4, out) // routine in Figure 3.38
8 else if win is empty (i.e. A was defined in the previous iteration) then
9 Make S = F, then append S to win
10 Let SMin and SMax be the rays with initial point A, that pass through points
(S.x, S.y — €) and (S.x, S.y + €), respectively
11 else
12 Let (A,E) be the segment with initial point A that passes through point E
13 if not slope(SMin) < slope((A,E)) < slope(SMaz) or |win| == w then
14 EncodeWindow(win, out, w) // routine shown in Figure 3.39
15 Set win to an empty window
16 Make A = E, then EncodeArchivedPoint(A, out) // routine in Figure 3.38
17 else
18 Make S = E, then append S to win
19 Let SMinOld and SMazOld be rays equal to SMin and SMaz, respectively
20 Let SMin and SMax be the rays with initial point A, that pass through
points (S.z, S.y — €) and (S.z, S.y + €), respectively
21 Let SMin = max{SMinOld, SMin} and SMax = min{SMazOld, SMaz}
22 end
23 end
24 end
25 if win is not empty then
26 | EncodeWindow(win, out, w) // routine shown in Figure 3.39
27 end

FIGURE 3.35: Coding routine for algorithm variant CA y.



Chapter 3. Algorithms and Their Variants 39

The algorithm determines when to stop growing the window, i.e., when the current window win
is complete, based upon three sample points: incoming (E) is the point corresponding to the
column entry for the current iteration; archived (A) is the point most recently encoded, and it
corresponds to a single sample that precedes a window; snapshot (S) is the point most recently
added to win. The algorithm maintains a cone, determined by two rays departing from A, SMin
and SMaz, such that E is added to win as long as it lies within the cone. This cone, in turn, is
defined so that if £ is indeed added to win (thus becoming point S), all the points in win are at
a vertical distance at most e from the line segment (A, S). Since the encoding process involves
the encoding of a sequence of these segments (A, S), the absolute error between the encoded and
the original samples is guaranteed to be at most e.

In figures 3.36 and 3.37 we present an example that illustrates the key steps of the coding
algorithm. In Figure 3.36, the three points, F, A, and S, as well as the two rays departing from
A, SMin and SMaz, are shown. A is defined (and encoded) in the first iteration (Line 7), while
S and the two rays are defined in the second iteration (lines 9-10). E is the incoming point in
the third iteration, where line segment (A, E) is defined in Line 12. The slope of this segment is
between the slopes of SMin and SMaz, i.e. F lies within the cone determined by the two rays, so
the condition in Line 13 evaluates to false (we assume that |win| < w), i.e. win is not complete.
Thus, lines 18-21 are executed: S is made equal to E, and it is added to win (Line 18), and SMin
and SMaz are updated (lines 19-21). The updated information is shown in Figure 3.37.

all % sample E SMax all X sample
_.-SMax
3- 31
e . If
54 A,e::__S_*___E, _____ (A,E) 8 oo At S
. Te 16
“.SMin
0 : : “. SMin_ . 0 ' : : . :
tl t2 t3 t4 t5 tl t2 t3 t4 t5
timestamp timestamp
FIGURE 3.36: Example: key steps of the coding FIGURE 3.37: Example: key steps of the coding
algorithm. Variant CAp with e = 1. Step 1. algorithm. Variant CAp with e = 1. Step 2.

In the successive iterations, the angle of the cone keeps decreasing, until eventually either point
E lies outside of the cone, or win reaches its maximum size. When this occurs, win is complete,
and the condition in Line 13 becomes true, so the size and the last point of win, i.e. point S,
are encoded (Line 14), win is emptied (Line 15), and the process starts again, by defining and
encoding a new point A (Line 16). We point out that an iteration in which point A is updated
is always followed by an iteration in which SMin and SMaz are updated. Also, notice that point
A, and rays SMin and SMazx, are always initialized in the first two iterations, respectively, so
the cone is properly defined every time the condition in Line 13 is checked.

The coding routine for variant M invokes two auxiliary routines, EncodeArchivedPoint and
EncodeWindow, which are presented in figures 3.38 and 3.39, respectively. Notice that, since
the x-coordinates for both point A and the last point of win are already encoded in the timestamp
column (recall Line 4 in Figure 3.1), it suffices to encode their respective y-coordinates. In routine
EncodeWindow, the size of win must be encoded so that the decoder is able to figure out which
timestamp (x-coordinate) corresponds to its last point.



Chapter 3. Algorithms and Their Variants 40

input : A: archived point to encode
out: binary file encoded with algorithm variant CA ,;
1 Encode the y-coordinate of point A using B, bits

FI1GURE 3.38: Auxiliary routine EncodeArchivedPoint for algorithm variant CA .

input : win: window to encode
out: binary file encoded with algorithm variant CA ,;
w: maximum window size
1 Encode the y-coordinate of the last point in win using B, bits
2 Encode |win| using [log, w] bits

FIGURE 3.39: Auxiliary routine EncodeWindow for algorithm variant CA p.

The decoding routine for variant M is shown in Figure 3.40. It consists of a loop that keeps
running until every entry in the column has been decoded, which occurs when condition in
Line 2 becomes false. In each iteration, a point is obtained, decoding its y-coordinate, value,
from the binary file, and reading its x-coordinate from the timestamp column (lines 3-4). If
decode__point__A is true, value is the result of an encoding produced by routine EncodeArchived-
Point, so it corresponds to the y-coordinate of an archived point (A4). In this case, point A is
saved and value is written to the decoded CSV data file (lines 6-7). On the other hand, if
decode__point__A is false, value comes from an encoding produced by routine EncodeWindow, so
it corresponds to the y-coordinate of a snapshot point (S), whose x-coordinate is obtained from
the timestamp column given the decoded window size (lines 11-12). In this case, the points in
the window are modeled by a line segment, whose endpoints are A and S, so the auxiliary routine
FillSegment is called with their respective coordinates as inputs (Line 13). Routine FillSegment
(recall Figure 3.17) returns a list consisting of the (integer) sample values that are decoded from
the segment, which are then written in the decoded CSV data file (lines 14-16).

input : in: binary file encoded with algorithm variant CA
out: decoded column of CSV data file
w: maximum window size
col size: number of entries in the column
t_col: timestamp column
1 Let n =0, and decode__point_A = true
2 while n < col size do
3 Decode value using B, bits
4 Obtain timestamp for value, t,qe, from ¢ col
5 if decode point A then
6 Let A be the point with coordinates (fyqye, value)
7 Output value to out
8 Let size=1
9 Let decode _point_ A = false
10 else
11 Decode size using [log, w| bits
12 Let S be the point with coordinates ({yqme, value)
13 samples = FillSegment(t_col, A.xz, S.x, A.y, S.y) // routine in Figure 3.17
14 foreach sample in samples, value, do
15 ‘ Output value to out
16 end
17 Let decode_point_ A = true
18 end
19 n += size
20 end

F1GURE 3.40: Decoding routine for algorithm variant CA .



Chapter 3. Algorithms and Their Variants

41

3.9.1 Example

Next we present an example of the encoding of the same 12 samples of previous examples,
presented in Figure 3.6, and also shown in Figure 3.41 below. For this example we let the
interval between consecutive timestamps be equal to 60, the error threshold parameter (¢) equal

to 1, and the maximum window size (w) equal to 256.

This example involves encoding 12 samples, so no window can reach the maximum size (256).
Therefore, an incoming point (E) is added to the current window, win, as long as it lies within
the cone determined by the two rays departing from the archived point (A).

In the first iteration, the condition in Line 6 is satisfied, so A is made equal to F1, and it
is encoded via the auxiliary routine EncodeArchivedPoint, using B. bits for encoding its y-
coordinate (i.e. 1). In the second iteration, win is empty, so the condition in Line 8 is satisfied.
Therefore, the snapshot point (S) is made equal to E2, it is added to win, and two rays, SMin
and SMaz, are defined. Figure 3.41 shows both saved points, A and S, as well as both rays,
SMin and SMaz, after the second iteration is completed.

x sample
4 ;
O encoded point
34 ..SMax
2 .
1o A Ok
6 “-¥ySMin
tl t2 t3 ta4 t5 t6 t7 t8 t9 t10 tll t12
timestamp
FIGURE 3.41: Example: Algorithm variant CAy with e = 1 and w = 256. Step 1.
In the third iteration, another sample value equal to 1 is processed, but in this case win is not
empty. In Figure 3.42, point E3, as well as segment (A,FE3), defined in Line 11, is shown.
4 x sample
O encoded point
3 5 SMax
2 .
P P - N W (AE3)
0 T “‘..l SMin T T T T T T T T T T
tl t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

timestamp

FIGURE 3.42: Example: Algorithm variant CA y with e = 1 and w = 256. Step 2.




data

Chapter 3. Algorithms and Their Variants 42

Since E3 lies within the cone determined by the two rays departing from A, the condition in
Line 12 evaluates to false. Therefore, S is made equal to E3, it is added to win, and SMin and
SMax are updated (lines 18-21). Figure 3.43 shows the information after the third iteration is

completed.

x sample
O encoded point

_..SMax
Ie
1 Ag:lox SR
IE
e ¥SMin
2 Bt 5t 7 8 9 tlo tll  ti2

timestamp

FIGURE 3.43: Example: Algorithm variant CA y with e = 1 and w = 256. Step 3.

The following two iterations are similar to the previous one. In each iteration, the respective
incoming point is added to the window, and both rays, SMin and SMazx, are updated, decreasing
the angle of the cone. Figure 3.44 shows the information after the 5th iteration is completed.

L
O encoded point
.......... SMaX
.
..................... IG
i A®::::::”; x x Sx
.................. E
............... SMin
2 B @ 5t t7 8 9 tl0 tll  t12
timestamp

FIGURE 3.44: Example: Algorithm variant CA y with e = 1 and w = 256. Step 4.




data

Chapter 3. Algorithms and Their Variants 43

In the 6th iteration, sample value 2 is processed. In Figure 3.45, point E6 and segment (A,FEG)

are shown.

x sample
O encoded point

........ SMax
"""""""""" o (AIE6)
2 s ST
_conEE e mE G
1 Ag=" x x x  Sx
.............. SMin
tl t2 t3 t4 t5 t6 t7 t8 t9 t10 t1l t12
timestamp

FIGURE 3.45: Example: Algorithm variant CA y with e = 1 and w = 256. Step 5.

E6 lies within the cone, so the condition in Line 13 evaluates to false. Therefore, S is made equal
to F6, and it is added to win. In this case, SMin is updated, but SMax remains unchanged.
Figure 3.46 shows the information after the 6th iteration is completed.

x sample
O encoded point

3
o 3 3eME0E - ------------------ P . -l .-........SM il M . |
}5\ g aetll .e -
b & IG
® . MI

t1 2 t3 t4 t5 t6 t7 t8 t9 t10  t11  t12
timestamp

FIGURE 3.46: Example: Algorithm variant CA ) with e = 1 and w = 256. Step 6.



data

Chapter 3. Algorithms and Their Variants 44

In the 7th iteration, sample value 3 is processed. In Figure 3.47, point E7 and segment (A,E7)
are shown.

x sample
O encoded point
_--(A,E7)
£
L e SMax
.............................. SMin
tl t2 t3 t4 5 t6 t7 t8 t9 t10 t1l t12
timestamp

FIGURE 3.47: Example: Algorithm variant CA y with e = 1 and w = 256. Step 7.

For the first time, an incoming point, E7, lies outside of the cone. In this case, (A,E7) has a
greater slope than SMaz, so the condition in Line 13 becomes true. Therefore, auxiliary routine
EncodeWindow is invoked, which uses [log, w] = 8 bits for encoding the size (5) of win, and B,
bits for encoding the y-coordinate (2) of S, its last point. Next, win is emptied, A is made equal
to E7, and it is encoded via the routine EncodeArchivedPoint, using B, bits for encoding its
y-coordinate (i.e. 3). In the 8th iteration, win is empty, so the condition in Line 7 is satisfied.
Thus, S is made equal to ES, it is added to win, and SMin and SMax are defined once more.
Figure 3.48 shows the information after the 8th iteration is completed.

x sample _SMax
O encoded point I

tl t2 t3 t4 t5 té6 t7 t8 t9 t10 t11 t12
timestamp

FIGURE 3.48: Example: Algorithm variant CA y with e = 1 and w = 256. Step 8.

In Figure 3.49 we present the information after the coding routine has finished. After the last
iteration of the loop is executed, win is not empty, so routine EncodeWindow is invoked in
Line 26. Besides showing the encoded points and their associated line segments, in Figure 3.49
we also display the values of the decoded samples, which are the values that the decoding
routine, shown in Figure 3.40, writes to the decoded CSV data file. Overall, each of the routines
EncodeArchivedPoint and EncodeWindow is invoked three times in this example. Thus, a total
of 3% B, + 3 * ([logy w] + B.) = 24 + 6 x B, bits are required for encoding the 12 samples.




Chapter 3. Algorithms and Their Variants

45

4 x sample
O encoded point
decoded sample
3 X
2 .
14 x
0 T T T T T T T T T T T T
tl t2 t3 t4 t5 t6 t7 t8 t9 t10 t1l1 t12
timestamp

FIGURE 3.49: Example: Algorithm variant CA y with e = 1 and w = 256. Step 9.

3.9.2 Non-Masking (NM) Variant

The coding and decoding routines for variant NM of algorithm CA are similar to their variant
M counterparts, the difference being that the former routines are able to handle both sample
values and gaps. Recall that, in the coding routine for variant M, a window is encoded when
point F lies outside of the cone determined by the two rays departing from point A, or when the
maximum window size is reached (Line 13 in Figure 3.35). The coding routine for variant NM
must also encode a window if the incoming column entry is character “N” (gap in the data) and
the other entries in the window are sample points, or vice versa. We point out that, in the former
case, it doesn’t make sense defining point A, so Line 16 is not executed in this scenario. For the
same reason, Line 7 should not be executed if the first column entry is character “N”. Auxiliary
routine EncodeWindow uses the same number of bits for encoding a window that consists of gaps
than for encoding a window that consists of sample points, i.e. [logy, w| + B, where [log, w] bits
are used for encoding its size, and B, bits are used for encoding the special integer NO__DATA.
We point out that, in variant NM, every gap is encoded via auxiliary routine EncodeWindow;
this is true even for a single gap burst appearing between two sample values, in which case the
corresponding encoded window size is one.

3.10 Algorithm SF

Algorithm Slide Filter (SF) [38] is a linear model algorithm that supports lossless and near-
lossless compression. For SF we define a single variant, M. Since SF is a linear model algorithm,
its encoding process involves the encoding of a sequence of line segments. In Figure 3.50 we
show the coding routine for variant M, in which all the column entries are integer values (the
gaps are encoded separately). It consists of a loop that iterates over all column entries, parsing
them into consecutive windows of variable size (up to a maximum size w), such that all the
sample points in a window lie within vertical distance e from the segment used to approximate
said points. An important feature of algorithm SF is that, given two subsequent windows, it
allows for the two segments approximating the sample points in each respective window, to
be connected. In fact, this algorithm prioritizes finding such connected segments, over finding
disconnected segments that minimize the per-sample absolute error between the original and
the decoded samples in each window. We point out that, compared to the rest of the evaluated
linear model algorithms, the fact that algorithm SF allows for subsequent line segments to be
connected, affects its compression performance in opposite ways. On one hand, the total number



Chapter 3. Algorithms and Their Variants

of encoded endpoints is expected to be reduced, which improves it. On the other hand, more bits
are required for encoding each endpoint (see details in the current section), which worsens it.
There is a trade-off between these two factors, and algorithm SF is expected to outperform the
rest of the evaluated linear algorithms in cases in which the effect of the former factor outweighs

that of the latter one.

input : column: column of the CSV data file to be encoded
out: binary file encoded with algorithm variant SFj,
e: maximum error threshold
w: maximum window size
t_col: timestamp column
1 Create an empty window, win
2 Let SMin and SMax be objects that will represent straight line rays
3 foreach entry y in column do
4 Obtain timestamp for y, ¢,, from ¢_col
5 Let E be the point with coordinates (t,, y)
6 if y is the first entry in column then
7 ‘ Append E to win, then continue
8 else if |win| == 1 then
9 Let S be the single point in win
10 Let SMin be the ray with initial point (S.z, S.y + €), through point (E.z, E.y — €)
11 Let SMaz be the ray with initial point (S.z, S.y — €), through point (E.z, E.y + €)
12 Append E to win, then continue
13 end
14 Let I be the point of intersection of SMin and SMax
15 Let (I,E) be the segment with initial point I that passes through point £
16 if not slope(SMin) < slope((LE)) < slope(SMaz) or |win| == w then
17 Let LS be the set of line segments such that s € LS iff s has initial point I and
slope(SMin) < slope(s) < slope(SMaz)
18 if not segment,, ., exists then
19 segment = EncodeWinStart(LS, win, t_col, out) // rout. in Fig.3.52
20 Make segment,,., = segment
21 else
22 Let segment,,,,, € LS be a line segment connected to segment,,,.,, which
approximates the points in win
23 if segment,,,,, exists then
24 EncodeWinEndStart(segment,,,.,, segment.,,,,, out) // rout. in Fig. 3.53
25 Make segment,,,., = segment,,,,,
26 else
27 EncodeWinEnd(segment,,,, out)// routine shown in Figure 3.54
28 segment = EncodeWinStart(LS, win, ¢_col, out) // rout. in Fig.3.52
29 Make segment,,., = segment
30 end
31 end
32 Set win to an empty window, then append E to win
33 else
34 Append E to win
35 Update SMin and SMaz, considering the points in win
36 end
37 end

FI1GURE 3.50: Coding routine for algorithm variant SF .




Chapter 3. Algorithms and Their Variants 47

Another key difference with the rest of the implemented linear algorithms, is that in SF the
x-coordinate for the endpoint of an encoded line segment does not necessarily coincide with a
timestamp (integer) value. This allows for a larger universe of segments in which to search for
connected segments. Therefore, the x-coordinates of the endpoints of every line segment are
encoded as floats. The y-coordinates are also encoded as floats (recall that this is also the case
in algorithm PWLH, presented in Section 3.8). An auxiliary method EncodePoint, presented
in Figure 3.51, is used for encoding the endpoints of every segment. Observe that, besides the
coordinates for both axis, a bit, labeled connected, which indicates whether the endpoint belongs
to a connected segment or not, is output.

input : P: point to encode
out: binary file encoded with algorithm variant SF
connected: boolean indicating if the segment is connected
1 Output bit connected to out
2 FEncode P.z as a float, using 32 bits
3 Encode P.y as a float, using 32 bits

FIGURE 3.51: Auxiliary routine EncodePoint for algorithm variant SF .

The coding routine operates by successively growing the current window, win, adding one sample
point at a time until it is complete. While win is being filled, the line segment that approximates
the points in the previous window, segment,,.,, is not yet fully encoded: its slope is known,
and its first endpoint is encoded, but its last endpoint is not. Since the algorithm prioritizes
finding a segment that is connected to segment,,.,, to approximate the points in win, the last
endpoint of segment,, ., is defined (and encoded) only after win is complete. If such connected
segment, segment,,,,,, exists, i.e. the condition in Line 23 is satisfied, then the intersection point
is encoded (using an auxiliary routine EncodeWinEndStart, shown in Figure 3.53). In this case,
bit connected is encoded as 1, so that the decoding routine knows that this point is both the last
endpoint of the segment approximating the points in the previous window, as well as the first
endpoint of the segment approximating the points in win. On the other hand, if a connected
segment cannot be found, then the last endpoint of segment,,,., is encoded (using an auxiliary
routine EncodeWinEnd, shown in Figure 3.54), a new segment, segment, which approximates
the points in win, is computed, and its first endpoint is encoded (using an auxiliary routine
EncodeWinStart, shown in Figure 3.52). In this case, since segment,,,.,, is not connected, its
last endpoint is encoded with bit connected as 0, while the first endpoint of segment is encoded
with bit connected as 1. Whether a connected segment can be found or not, the segment that
approximates the points in win, of which its slope is known and its first endpoint is encoded, is
always saved as segment,,,., (lines 25 and 29), so that it is available in the following iterations,
when the process of filling win, which is emptied and added the current sample point (Line 32),
continues.

rev

rev

input : LS: set of line segments
win: window to encode
t_col: timestamp column
out: binary file encoded with algorithm variant SFj,
output: segment: line segment that approximates the points in win
1 Let segment € LS be the line segment that minimizes the MSE for the points in win
(among the segments included in LS)
2 Let P be the first endpoint of segment
3 EncodePoint(P, out, true) // routine shown in Figure 3.51
4 return segment

FIGURE 3.52: Auxiliary routine EncodeWinStart for algorithm variant SF ;.



Chapter 3. Algorithms and Their Variants 48

input : segment,,.,: line segment that approximates the points in the previous window
segment: line segment that approximates the points in win
out: binary file encoded with algorithm variant SFj,

1 Let P be the point of intersection of segment,,., and segment

2 EncodePoint (P, out, true) // routine shown in Figure 3.51

FIGURE 3.53: Auxiliary routine EncodeWinEndStart for algorithm variant SF .

input : segment,,.,: line segment that approximates the points in the previous window

out: binary file encoded with algorithm variant SF,
1 Let P be the last endpoint of segment

prev

2 EncodePoint (P, out, false) // routine shown in Figure 3.51

FIGURE 3.54: Auxiliary routine EncodeWinEnd for algorithm variant SF ;.

The algorithm determines when to stop growing the window, i.e. when the current window win
is complete, based upon two points: incoming (E) is the sample point corresponding to the
column entry for the current iteration, and intersection (1) is the point of intersection of SMin
and SMax, which are two rays that define a cone maintained by the algorithm, such that E is
added to win as long as it lies within the cone. This cone, in turn, is defined so that if E is
indeed added to win, all the points in win are at a vertical distance of at most e from the line
segment (L F).

In figures 3.55 and 3.56 we present an example that illustrates the key steps of the coding
algorithm. In Figure 3.55, the two points, F and I, as well as the two rays, SMin and SMax,
are shown. In the first iteration, the incoming point is added to win (Line 7), while in the
second iteration the two rays are defined (lines 9-11), and the incoming point is added to win
(Line 12). F is the incoming point in the third iteration, where line segment (I, £) is defined in
Line 15. The slope of this segment is between the slopes of SMin and SMaz, i.e. E lies within
the cone determined by the two rays, so the condition in Line 16 evaluates to false (we assume
that |win| < w), i.e. win is not complete. Therefore, lines 34-35 are executed: FE is added to win
(Line 34), and SMin and SMaxz are updated (Line 35). The updated information is shown in
Figure 3.56.

x sample ..-".SMax a4l % sample .SMax

3 _ 3 3 1 -

EI Ie o eI Ie

s g ©
2 X I}:T—-x————-x—E————(I,E) T 24 X -3¢ xE
1- ' 4 : 1 '
0 ~.SMin o . SMin
tl t2 t3 t4 t5 tl t2 t3 t4 t5
timestamp timestamp

FIGURE 3.55: Example: key steps of the coding FIGURE 3.56: Example: key steps of the coding

algorithm. Variant SFy with e = 1. Step 1. algorithm. Variant SFy with e = 1. Step 2.



Chapter 3. Algorithms and Their Variants 49

In the successive iterations, the angle of the cone keeps decreasing, until eventually either point
E lies outside of the cone, or win reaches its maximum size, making win complete. Recall that
this process is similar in algorithm CA, presented in Section 3.9. The differences are that, in
algorithm SF, the intersection point of the two rays, SMin and SMaz, is not fixed (it increases
its x-coordinate in the successive iterations), and the procedure for updating the two rays is
more complex, since it always considers all the points in win [38]. We point out that in the first
iteration win is added its first point, and every iteration that ends with win having a single point
is followed by an iteration in which SMin and SMaxz are updated. Thus, the cone is properly
define every time the condition in Line 16 is checked.

Auxiliary routine EncodeWinStart, shown in Figure 3.52, is invoked after win is complete, in two
different scenarios. The first scenario is when win is the first completed window. In this case, no
segment has yet been encoded, so the condition in Line 18 is satisfied, and EncodeWinStart is
invoked in Line 19. The second scenario is when a connected segment approximating the points
in win cannot be found. In this case, the condition in Line 23 evaluates to false, and auxiliary
routines EncodeWinEnd and EncodeWinStart are invoked (lines 27-28). In both scenarios, the
inputs for EncodeWinStart are the same: LS is the set of line segments defined in Line 17,
which consists of every segment with initial point I that is within the cone; win is the current
window; ¢_col is the timestamp column; out is the encoded binary file. Recall that routine
EncodeWinStart computes a new segment, segment, which approximates the points in win, and
then encodes its first endpoint. segment is the line segment that minimizes the MSE for the
points in win, among the segments included in LS. segment must belong to LS because this
guarantees that each point in win is at a vertical distance of at most € from segment.

The decoding routine for variant M is shown in Figure 3.57. We point out that this is the
only decoding routine for any of the implemented algorithms that doesn’t have a window size
parameter (w) input, which is unnecessary since the x-coordinates of the encoded points are
encoded as floats (recall that the rest of the algorithms require parameter w in order to decode
the variable size of each encoded window, reading [log, w] bits, or to know the fixed window size
in the case of algorithm PCA). The decoding routine consists of a loop that repeats until every
entry in the column has been decoded, which occurs when condition in Line 2 becomes false.

Each iteration of the loop starts by calling the auxiliary routine DecodePoint (Line 3), shown
in Figure 3.58, which returns a decoded point, P, and the connected flag. This flag indicates
whether the encoded segment to which the point belongs to is connected to the subsequent
segment or not. In the first iteration, P is set to be the initial point of the segment, P, (Line 5).
On the other hand, in the rest of iterations, P is set to be the final point of the segment, Pf
(Line 8), and the auxiliary routine FillSegment is called, with the coordinates of both endpoints
of the segment as inputs (Line 9). As we recall from Figure 3.17, routine FillSegment returns a
list consisting of the sample values that are decoded from the segment, which are then written
in the decoded CSV data file (lines 10-12). We point out that FillSegment always returns a list
of integers, even though in this case the x and y-coordinate inputs are floats. If the segment
is connected, no additional point must be decoded, since in that case the first endpoint of the
subsequent encoded segment is equal to the last endpoint of the last decoded segment (Line 14).
Otherwise, if the segment is not connected, the first endpoint of the subsequent encoded segment
must be decoded (Line 16).



Chapter 3. Algorithms and Their Variants 50

input : ¢n: binary file encoded with algorithm variant SF,,
out: decoded column of CSV data file
col size: number of entries in the column
t_col: timestamp column

1n=0

2 while n < col size do

3 P, connected = DecodePoint() // routine shown in Figure 3.58

4 if n == 0 then

5 Let P, = P

6 continue

7 end

8 Let P =P

9 samples = FillSegment(t_col, P,.x, Pr.z, P,.y, Pry) // routine in Figure 3.17
10 foreach sample in samples, value, do

11 | Output value to out

12 end

13 if connected then

14 ‘ Let P, = Py

15 else

16 | P,, connected = DecodePoint() // routine shown in Figure 3.58
17 end

18 n +=|samples|

19 end

FI1GURE 3.57: Decoding routine for algorithm variant SF .

output: P: decoded point
connected: boolean indicating if the segment is connected
Decode connected using a single bit
Decode z as a float, using 32 bits
Decode y as a float, using 32 bits
Let P be the point with coordinates (z, y)
return P, connected

(S O L

F1Gure 3.58: Auxiliary routine DecodePoint for algorithm variant SF ;.



Chapter 3. Algorithms and Their Variants 51

3.10.1 Example

Next we present an example of the encoding of the same 12 samples of previous examples,
presented in Figure 3.6, and also shown in Figure 3.59 below. For this example we let the
interval between consecutive timestamps be equal to 60, the error threshold parameter (¢) equal
to 1, and the maximum window size (w) equal to 256.

Since there are only 12 samples to encode, no window in this example can reach the maximum
size (256). Therefore, an incoming point (E) is added to the current window, win, as long as
it lies within the cone determined by the two rays, SMin and SMaz. In the first iteration, the
condition in Line 6 is satisfied, so the first incoming point, E1, is added to win (Line 7). In
the second iteration, since win has a single element, the condition in Line 8 is satisfied, so using
points S and E2, and parameter €, rays SMin and SMaz are defined (lines 9-11). Both rays are
shown in Figure 3.59. E2 is also added to win (Line 12).

al % sample ‘SMax
3 1 .
2 1 ; 3
1 - Sx x E2
eI Fo e
0 ~___4SMin
tl t2 t3 t4 t5 t6 t7 t8 t9 t10  tll 12

timestamp

FIGURE 3.59: Example: Algorithm variant SFy with e = 1 and w = 256. Step 1.

In the third iteration, another sample value equal to 1 is processed. In Figure 3.60, point E3, as
well as segment (I, £3), defined in lines 14-15, is shown.

a4l % sample ‘SMax

. % .__l____* --------------- (1,E3)

SM|n

0 T T | T T T T T T
t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

timestamp

FIGURE 3.60: Example: Algorithm variant SFy with e = 1 and w = 256. Step 2.




Chapter 3. Algorithms and Their Variants 52

Since E3 lies within the cone determined by the two rays, the condition in Line 16 evaluates
to false. Therefore, E3 is added to win (Line 34), and SMin and SMaz are updated (Line 35).
Figure 3.61 shows the information after the third iteration is completed.

x sample

.SMax
i
"4SMin
1 2 3 t4 t5 t6 t7 t8 t9  tl0 tl1  t12

timestamp

FIGURE 3.61: Example: Algorithm variant SFy with e = 1 and w = 256. Step 3.

The following six iterations are similar to the previous one. In each iteration, the respective
incoming point is added to the window, and both rays are updated, decreasing the angle of the
cone. Figure 3.62 shows the information after the 9th iteration is completed. Up to this point,
win includes the first 9 sample points, and no bits have yet been written in the binary file.

[ - SMax=SMax0ld

ple
. . | I Ml
. .s et S e . f;
. n
61
b &

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
timestamp

FIGURE 3.62: Example: Algorithm variant SFy with e = 1 and w = 256. Step 4.




Chapter 3. Algorithms and Their Variants 53

Eventually, in the 10th iteration, sample value 2 is processed. In Figure 3.63, point F10 and
segment (I, F10) are shown.

x sample ng‘””‘.. T
[ O SMin
“‘x“ x -----------------
s sl §
I '-_'___*_-__---__----_----9 ----- (IIElO)
.................. FI
v : g x x
tl t2 t3 t4 t5 t6 t7 t8 t9 t10 t1l t12
timestamp

FIGURE 3.63: Example: Algorithm variant SFy with e = 1 and w = 256. Step 5.

For the first time, an incoming point, E10, lies outside of the cone. In this case, (I,E10) has
a smaller slope than SMin, so the condition in Line 16 becomes true. Since no segment has
yet been encoded, the condition in Line 18 is satisfied, and auxiliary routine EncodeWinStart is
invoked, with one of the arguments being LS, which is a set of line segments defined in Line 17.
Routine EncodeWinStart finds the segment included in LS that minimizes the MSE for the 9
sample points in win (among the segments included in LS), and encodes its first endpoint via
EncodePoint, using a single bit for encoding the connected flag, and 32 bits for encoding each
coordinate. In Figure 3.64 the segment and its encoded endpoint are shown. Observe that, since
this segment is included in set LS, it passes through point I, and its slope is between the slopes
of rays SMin and SMaz. The point encoded next, to be determined in a future iteration, must
also belong to this segment, and it will also belong to the subsequent segment if an appropriate
connected segment can be found. Finally, the segment is saved as segment,,,.,, (Line 20), and w
is emptied and added E10 (Line 32).

x sample x” -
encoded point .
O p Ie ----- -
3 _ “x“ x ----------------
: ...I 2ttt x |
................. EI
14 TR : gy x x
Ei ‘.“i"
tl t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 0

timestamp

FIGURE 3.64: Example: Algorithm variant SFy with e = 1 and w = 256. Step 6.




Chapter 3. Algorithms and Their Variants

54

In the 11th iteration, since win has a single element, the condition in Line 8 is satisfied, so using
points S and E11, and parameter €, rays SMin and SMazx are defined (lines 9-11). Both rays are
shown in Figure 3.65. E11 is added to win (Line 12).

x sample
4 A . X
O encoded point
3 . X x SMaX
segmentsic, GI
2 A x S % :
EI i Ie
1- x x x x x : Y XELlL
I(
0 © SMin,
tl t2 t3 t4 t5 t6 t7 t8 t9 t10 t1ll tl2
timestamp
FIGURE 3.65: Example: Algorithm variant SFy with e = 1 and w = 256. Step 7.
In the 12th and last iteration, another sample value equal to 1 is processed. In Figure 3.66, point
E12, as well as segment (I,F12), defined in lines 14-15, is shown.
4 x sample . %
O encoded point
3 x x S.Max
segmentyre, GI
2 A x x :
eI L\IE
1 x x X x x e \\‘mEEZ
Ie (1,E12)
0 9 T T T T T 1) T T T SMir]“I T
tl t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
timestamp

FIGURE 3.66: Example: Algorithm variant SFy with e = 1 and w = 256. Step 8.




Chapter 3. Algorithms and Their Variants 55

Since E12 lies within the cone determined by the two rays, the condition in Line 16 evaluates
to false. Therefore, E12 is added to win (Line 34), and SMin and SMax are updated (Line 35).
Figure 3.67 shows the information after the 12th iteration is completed.

sample

x

X
O encoded point
X X
segmentyre, EI
x > S SMaX
GI ™ €

X x X X X %3 : xE12
© SMin®
tl t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

timestamp

FIGURE 3.67: Example: Algorithm variant SFy with € = 1 and w = 256. Step 9.

After executing the last iteration of the loop, win is not empty (it consists of the last three sample
points), so a segment approximating the points in win must be encoded, executing the same code
as in lines 17-31 (this was left out of the coding routine in Figure 3.50 for clarity). In this case,
the algorithm finds a connected segment, segment,,,,,, included in set LS, so the condition in
Line 23 is satisfied, and the intersection point between segment,,., and segment,,,,, is encoded
by the auxiliary routine EncodeWinEndStart, shown in Figure 3.53. Since the last sample is
already processed, the last endpoint of the connected segment must also be encoded, in this case
by the auxiliary routine EncodeWinEnd, shown in Figure 3.54 (this step was also left out of
the coding routine for clarity). In Figure 3.68, the three encoded points and the two connected
segments are shown. The three points are encoded with auxiliary method EncodePoint, in the
first two cases with bit connected as 1, and in the last case with bit connected as 0. Thus, a total
of 3% (1 + 2% 32) = 195 bits are required for encoding the 12 samples. We point out that, even
though in this example the x-coordinate of the intersection endpoint coincides with a timestamp
(integer) value, this is not necessarily always the case.

x

sample
O encoded point

segment cony,

SMax
IE
E12
N\ e
SMin®
tl t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

timestamp
FIGURE 3.68: Example: Algorithm variant SFy with e = 1 and w = 256. Step 10.




data

Chapter 3. Algorithms and Their Variants 56

Finally, in Figure 3.69 we also display the values of the decoded samples, which are the values
that the decoding routine, shown in Figure 3.57, writes to the decoded CSV data file.

x

sample
O encoded point
decoded sample

T T T T T T T

tl t2 t3 t4 t5 t6 t7 t8 t9 t10 t1l t1l2
timestamp

FIGURE 3.69: Example: Algorithm variant SFy with e =1 and w = 256. Step 11.

3.11 Algorithm FR

Algorithm Fractal Resampling (FR) [39] is a linear model algorithm that supports lossless and
near-lossless compression. Its computational complexity is fairly low, since it was designed by
the European Space Association (ESA) to be run on spacecraft and planetary probes. For FR
we define a single variant, M.

FR is a linear model algorithm, so its encoding process involves encoding a sequence of line
segments. In Figure 3.70 we show the coding routine for variant M, in which all the column
entries are integer values (the gaps are encoded separately). The column entries are parsed into
consecutive non-overlapping windows of size w (Line 1). The sample points in each window
are modeled by a total of between one and w — 1 connected line segments, whose respective
endpoints, called the displaced points, are obtained using a simple recursive technique called
mid-point displacement (MPD). In each iteration, the set of displaced points obtained for the
window, win, is a subset of the sample points in win.

Since parameter w is always greater than 1, the condition in Line 3 might only be satisfied in
the last iteration, which corresponds to the last window. In the rest of the cases, an empty
list, displaced_points, is created (Line 7), and passed to a recursive auxiliary routine GetDis-
PointsMDP (Line 8). This routine fills the list with the indexes (relative to win, in ascending
order) corresponding to the displaced points obtained for win. The first and last entries in dis-
placed points are always 0 and w — 1, respectively, since the first endpoint of the first segment
is always the first point in win, and the last endpoint of the last segment is always the last point
in win. In lines 9-12, each of the displaced points obtained for win is encoded, using [log, w|
bits for encoding its index (relative to win), indez, and B, bits for encoding its y-coordinate.




Chapter 3. Algorithms and Their Variants 57

input : column: column of the CSV data file to be encoded
out: binary file encoded with algorithm variant FR
e: maximum error threshold
w: maximum window size
t_col: timestamp column
1 Parse column into consecutive non-overlapping windows of size w, except possibly for
the last window that may consist of fewer sample points

2 foreach window in the parsing, win, do
3 if |win| == 1 then
4 Encode the y-coordinate of the single point in win using B, bits
5 return
6 end
7 Create an empty list, displaced__points
8 GetDisPointsMDP (win, €, displaced__points, 0, |win| — 1) // routine in Fig. 3.71
9 foreach entry in displaced__points, index, do
10 Encode indez using [log, w] bits
11 Encode the y-coordinate of point win[indez] using B, bits
12 end
13 end

F1cure 3.70: Coding routine for algorithm variant FRy.

In Figure 3.71 we present the recursive routine GetDisPointsMDP. In each execution, a line
segment, with endpoints P, and Py, defined in lines 3-4, is evaluated as a candidate to model
all the points in win whose index is between i, and ;. If the segment satisfies the valid segment
condition, defined in Line 5, the absolute error between the encoded and the original samples
corresponding to that segment is guaranteed to be less than or equal to €, so no further steps are
required. If that is not the case, two recursive calls are made to the routine (lines 8-9). In each
call, a line segment is evaluated as a candidate to model a certain set of points in win. Notice
that the segments evaluated in the first and in the second call are connected by the middle point
(see half definition in Line 7). This is what gives the MPD technique its name.

input : win: window to encode
€: maximum error threshold
displaced__points: list including the indexes (relative to win, in ascending order) of
the respective displaced points
i, t: indexes (relative to win) of the endpoints of the candidate line segment
If they are not already included, add %, and i¢ to displaced_points, in ascending order
If i, + 1 > iy then return // base case
Let P,= win(i,], and let Pr= win[i]
Let segment be the line segment whose endpoints are P, and Py
Let valid__segment be true iff for every point P; in win, the vertical distance between
segment and P; is less than or equal to €
if not wvalid_segment then
Let half = | (i + i5)/2]
Recursively call GetDisPointsMDP (win, €, displaced__points, i,, half)
Recursively call GetDisPointsMDP (win, €, displaced__points, half, iy)
10 end

(2 N I VN

© w3 o

F1GurE 3.71: Auxiliary routine GetDisPointsMDP for algorithm variant FR .



Chapter 3. Algorithms and Their Variants 58

The decoding routine for variant M is shown in Figure 3.72. It consists of a loop that keeps
running until every entry in the column has been decoded, which occurs when condition in Line 2
becomes false. In each iteration of the loop, a window is decoded (lines 3-26). Since w is always
greater than 1, the condition in Line 4 may only be satisfied in the last iteration (notice that
lines 4-8 are correlated with lines 3-6 in the coding routine). In the rest of the cases, the size
of the encoded window is always equal or greater than 2, so the data samples are decoded by
means of obtaining the endpoints of the one or more line segments that model the points in a
window. The first endpoint of the first segment is decoded in lines 9-12, while the last endpoint
of each segment, which later becomes the first endpoint of each respective subsequent segment
(Line 24), is decoded in lines 14-17. Next, auxiliary routine FillSegment is called, with the
coordinates of both endpoints of the segment as inputs (Line 18). Routine FillSegment (recall
Figure 3.17) returns a list consisting of the (integer) sample values that are decoded from the
segment, which are then written in the decoded CSV data file (lines 19-23). The conditional
statement in Line 20 is meant to avoid writing the sample value associated to the last endpoint
of a segment, for every segment that models the points in the window, except in the case of the
last segment. Otherwise, those sample values would be written in the decoded data file twice,
since in each window, the last endpoint of a segment always coincides with the first endpoint of
the subsequent segment.

input : ¢n: binary file encoded with algorithm variant FR,,
out: decoded column of CSV data file
w: maximum window size
col _size: number of entries in the column
t_col: timestamp column
1n=0
2 while n < col size do
3 size = min{w, col__size — n}
4 if size == 1 then
5 Decode value using B, bits
6 Output value to out
7 return
8 end
9 Decode index using [log, w]| bits
10 Decode value using B, bits
11 Obtain timestamp for value, t,que, from t_col
12 Let P, be the point with coordinates (tyque, value)
13 while index < size do
14 Decode indez using [log, w| bits
15 Decode value using B, bits
16 Obtain timestamp for value, t,qpe, from ¢ col
17 Let Py be the point with coordinates (tyqiue, value)
18 samples = FillSegment(¢_col, P,.z, Ps.z, P,.y, P¢.y) // routine in Figure 3.17
19 foreach sample in samples, value, do
20 if value is not the last sample in samples or index == size then
21 ‘ Output value to out
22 end
23 end
24 Let P,=Ps
25 end
26 n += size
27 end

FIGURE 3.72: Decoding routine for algorithm variant FR .



Chapter 3. Algorithms and Their Variants 59

3.11.1 Example

Next we present an example of the encoding of the same 12 samples of previous examples,
presented in Figure 3.6, and also shown in Figure 3.73 below. For this example we let the
interval between consecutive timestamps be equal to 60, the error threshold parameter (¢) equal
to 1, and the maximum window size (w) equal to 256.

Since there are only 12 samples to encode, a single window, win, including the 12 sample points,
is created in Line 1 of the coding routine. In this case, since |win| is greater than 1, the window
is encoded in lines 7-12.

In Line 8, the auxiliary routine GetDisPointsMDP, presented in Figure 3.71, is invoked with
the following inputs: win, € = 1, displaced points = [|, i, = 0, and iy = 11. Figure 3.73
shows the information after lines 1-5 in said routine are executed. displaced points is equal to
[(t1,1), (t12,1)], and segment is the line segment whose endpoints are (t1,1) and (t12,1). In this
case, the valid segment condition is not satisfied, i.e. valid segment is false, since there are three
points in win, for which the vertical distance to segment is greater than e. These points are
(t7,3), (ts,3), and (tg,4). Since valid__segment is false, half = |11/2] = 5 is obtained (Line 7),
and two recursive calls to routine GetDisPointsMDP are made (lines 8-9).

x sample
4 1 . . X
© displaced point
3 X X
2 1 x x
€ €
14 X X x x x
G €
0 T T T T T T T T T T T T
tl t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
timestamp

FIGURE 3.73: Example: Algorithm variant FRy with e = 1 and w = 256. Step 1.

The first recursive call has inputs displaced points = [(t1,1), (t12,1)], %o = 0 and iy = 5, and
it adds a single point to displaced_points, making it equal to [(¢1,1), (t,2), (t12,1)]. In this
case, segment is the line segment whose endpoints are (¢1,1) and (¢¢,2), and the valid segment
condition is satisfied, since there are no points in win, with indexes between 0 and 5, for which
the vertical distance to segment is greater than e. This is shown in Figure 3.74. Since the valid
segment condition is satisfied in the execution of the first recursive call, no further calls are made
to the recursive routine.




Chapter 3. Algorithms and Their Variants 60

x sample
© displaced point

tl t2 t3 t4 t5 t6 t7 t8 t9 t10 t1l1 t12
timestamp

FIGURE 3.74: Example: Algorithm variant FRy with e = 1 and w = 256. Step 2.

However, this is not the case in the execution of the second recursive call, which has inputs
displaced__points = [(t1,1), (ts,2), (t12,1)], % = 5 and i = 11. Here, Figure 3.74 shows that
the valid segment condition is violated by three points in the window (the same three points
as before). Once again, valid__segment is false, half = |(5 4 11)/2] = 8 is obtained, and two
recursive calls to the routine GetDisPointsMDP are made. In the first execution, point (tg,4)
is added to displaced points. The valid segment condition is satisfied in both executions, so in
both cases no further calls are made to the recursive routine.

After the original invocation of the routine GetDisPointsMDP is completed (Line 8 in the coding
routine, shown in Figure 3.70), list displaced points is equal to [(t1,1), (t,2), (to,4), (t12,1)].
This information is shown in Figure 3.75. Observe that, for every point in win, its vertical
distance to the corresponding segment is at most e.

x sample
© displaced point

T T T T T T T

tl t2 t3 t4 t5 t6 t7 t8 t9 t10 t1l t12
timestamp

FIGURE 3.75: Example: Algorithm variant FRy with e = 1 and w = 256. Step 3.




Chapter 3. Algorithms and Their Variants 61

In this example, the sample points in win are modeled by three connected line segments. Their
respective endpoints are the four displaced points obtained with the recursive MPD technique,
ie. (t1,1), (t6,2), (to,4), and (t12,1), which are encoded in lines 9-12 of the coding routine.
Encoding an endpoint requires [log, w] = log, 256 = 8 bits for encoding its win index, and B,
bits for encoding its y-coordinate. Thus, a total of 4 % ([logy w] + B.) = 32 4 4 * B, bits are
required for encoding the 12 samples. The four encoded endpoints and the associated segments
are shown in Figure 3.76. In this figure we also display the values of the decoded samples, which
are the values that the decoding routine, shown in Figure 3.72, writes to the decoded CSV data
file.

x sample
O encoded point
decoded sample

T T T T T T T

tl t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
timestamp

FIGURE 3.76: Example: Algorithm variant FRy with e =1 and w = 256. Step 4.

3.12 Algorithm GAMPS

Algorithm Grouping and AMPlitude Scaling (GAMPS) [40] is a correlation model algorithm that
supports lossless and near-lossless compression. For GAMPS we define both variants, M and
NM.

Algorithm GAMPS follows the general scheme presented in Figure 3.1, with a specific coding
routine, for variant M, shown in Figure 3.77. Notice that the first input consists of all the
columns in the CSV data file, in contrast to constant and linear model algorithms, presented in
previous sections, which receive a single column. This is due to the fact that correlation model
algorithms, such as GAMPS, also exploit the spatial correlation in the data, thus they jointly
encode the data columns.

Before encoding the data columns, algorithm GAMPS groups them into disjoint subsets of
spatially correlated columns. In each subset, a single base column is defined, while the rest of
its columns are referred to as ratio columns. As we describe in the sequel, this grouping, the
optimization of the grouping, and the choice of the base column for each subset, is done trough
an auxiliary algorithm. The base column is encoded using algorithm APCAp, which is quite
similar to algorithm APCA, presented in Chapter 3.6, the only differences being that in the
auxiliary routine EncodeWindow, shown in Figure 3.12, in the APCAyx case, floor is not applied
when calculating mid_range, and mid_range is encoded as a float (i.e. using 32 bits). The ratio
columns are first transformed, dividing each sample by the base column sample corresponding
to the same timestamp (to avoid division by zero the samples of the base column are offset),
and then encoded, which is also done using APCAg. The original ratio signals may be rough
(i.e. with abrupt changes), but, since base and ratio signals in the same subset are spatially




Chapter 3. Algorithms and Their Variants 62

correlated, the transformed ratio signals are expected to be smooth (i.e. slowly varying). As we
recall from Section 3.6, algorithm APCA achieves better compression performances on smooth
rather than rough signals, and this is also the case for algorithm APCApg. Therefore, the key
idea behind algorithm GAMPS is that, under certain circumstances, it may be more convenient
to exploit the spatial correlation in the data, and encode, for each subset, a single rough base
signal and a handful of smooth transformed signals, rather than independently encode each of
the original rough signals.

input : columns: columns of the CSV data file to be encoded
out: binary file encoded with algorithm variant GAMPS ,,
€: maximum error threshold
w: maximum window size
1 Group columns into disjoint subsets of spatially correlated columns, where in each
subset, a single base column is defined, and the rest of its columns are considered ratio
columns. Also define error threshold parameters €, and €,., for base and ratio columns,
respectively. This is done solving the facility location problem defined in [40].
Encode the number of subsets using [log, |columns|] bits
foreach subset of columns, cols _group, do
Let base_ col be the base column in cols group
Let ratio__cols be the ratio columns in cols _group
Encode the index of base col, the number of ratio columns, and the index of each
column in ratio_ cols, using [log, |columns|] bits in every case
7 Encode base__col by calling the coding routine for variant M of algorithm APCAg
with parameters base_ col, out, €, w

[ I O A

8 foreach column in ratio_ cols, ratio_col, do

9 Let trans_ratio__col be obtained by applying function ratio_ col/base_ col

10 Encode trans_ratio_ col by calling the coding routine for variant M of algorithm
APCAFr with parameters trans_ratio_ col, out, €., w

11 end

12 end

FIGURE 3.77: Coding routine for algorithm variant GAMPS ;.

The initial step in the coding routine, which gives the first part of its name to the algorithm, con-
sists of grouping the data columns into disjoint subsets of spatially correlated columns (Line 1).
A facility location problem, whose goal is to find a grouping that reduces the number of bits
required for encoding the columus, is solved in [40, §4.2.1]. Its inputs are the set of columns,
columns, and the maximum error threshold, e. The output is the grouping, including the base
column for each group, and the two maximum error threshold parameters, €, and €., used for
encoding each base column and its ratio columns, respectively. In the case that no such grouping
of spatially correlated columns is found, the trivial output consists of groups formed by a single
(base) column, and e,= e. We point out that we narrow the universe of solutions by only al-
lowing columns corresponding to signals of the same data type to be grouped together. We find
out that this not only reduces the size of the facility location problem, which is computationally
expensive to solve, but in our case it also lead to better compression results.

The next step in the coding routine consists of encoding the number of subsets (Line 2). Af-
terwards, the routine iterates through each subset of columns (lines 4-11). In each iteration, all
the data columns in the subset are encoded. In Line 6, the index of the base column, and the
number of ratio columns and their respective indexes are encoded. This information is used by
the decoding routine to recreate each subset. In Line 7, the base column is encoded by invoking
the coding routine for algorithm APCAg with an error threshold equal to €,. Finally, there is
a loop in lines 8-11, in which each of the ratio columns is transformed, as explained above, and
then encoded by invoking the APCAp coding routine with an error threshold equal to €,.. We



Chapter 3. Algorithms and Their Variants 63

point out that this loop is only executed if the output of the facility location problem solved in
the initial step of the coding routine is non-trivial.

The decoding routine is symmetric to the coding routine. To recreate each subset, the infor-
mation encoded in lines 2 and 6 of the coding routine must be decoded. For decoding the data
columns in each subset, first, the base column is decoded by invoking the decoding routine for
algorithm APCApg. Then, each of the transformed ratio columns is decoded, also by invoking the
APCAp decoding routine, and the transformation applied in Line 9 is reverted, by multiplying
the decoded base column by the decoded transformed ratio column.

3.12.1 Example

Next we present an example of the encoding of three signals with 12 samples each, illustrated
in Figure 3.78. Recall that the specific timestamp values are irrelevant for algorithm APCA,
and this is also the case for algorithm APCAg. Therefore, they are also irrelevant for algorithm
GAMPS. For this example we let the error threshold parameter (¢) be equal to 0, and the
maximum window size (w) equal to 256. We point out that this is the only example where the
coding is lossless. In this case we select € = 0 so that the facility location problem considered in
Line 1 has a straightforward solution, and we can focus on illustrating the most important parts
of the algorithm.

x

sample (signal 1)

O sample (signal 2) Q © 4 g
sample (signal 3)
® x x ® ® ®
® ®
® ®
tl t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
timestamp

FIGURE 3.78: Example: Three signals consisting of 12 samples each.

There is a high degree of spatial correlation between the three signals, with the sample values
matching for 10 of the 12 timestamps. Thus, in Line 1, a single subset including the three
columns with the samples of each signal is obtained. The first column is defined as the base
column, making the remaining two, ratio columns. Since € is equal to 0, both ¢, and €, must also
be 0. In Line 2, the number of subsets (i.e. 1) is encoded using [log, |columns|] = [log, 3] = 2
bits. Since there is a single subset, there is a single iteration. In Line 6, the information used
by the decoding routine to recreate the subset is encoded, using [log, |columns|] = 2 bits for
encoding each of the following values: the index of the base column (i.e. 0), the number of ratio
columns (i.e. 2), and the index of each ratio column (i.e. 1 and 2). Therefore, a total of 10 bits
are required for encoding the grouping of the columns in this example.

Next, in Line 7, the base column is encoded by calling the coding routine for algorithm APCAg.
Since €, is equal to 0, the encoded samples match the original samples (i.e. [1, 1, 2, 2, 3, 3, 3, 3,
4,4, 3, 3]), and 5 windows are encoded. The loop in lines 8 through 11 repeats for each of the two




Chapter 3. Algorithms and Their Variants 64

ratio columns. In both cases, the ratio column is first transformed (Line 9), and then encoded
by calling the APCAp coding routine (Line 10). Since parameter €, is equal to 0, the encoded
samples match the transformed samples, which are equal to [1,1,1,1,1,4/3,4/3,1,1,1,1,1] and
1,1,1,1,1,2/3,2/3,1,1,1,1,1], respectively, for each transformed ratio column, and 3 windows

are encoded in each case. In Figure 3.79, the encoded samples of the three signals are shown.

x encoded sample (signal 1)
4 A : X x
O encoded sample (signal 2)
encoded sample (signal 3)
3 X X 3 X x x
24 X X
O 6]
1 A ® ® o o @ o @ o O o
0 T T T T T { T T T T T T
tl t2 t3 t4 v t6 t7 t8 t9 t10 t11l t12
timestamp

FIGURE 3.79: Example: Algorithm variant GAMPS y with € = 0 and w = 256. Step 1.

We recall that the coding routine for algorithm APCA always uses the same number of bits
for encoding any window. Namely, [log, w] bits are used for encoding its size, and B, bits are
used for encoding its mid-range. Instead, the coding routine for algorithm APCAp encodes the
mid-range as a float (i.e. using 32 bits), so every window is encoded using exactly [log, w] + 32
bits. If the three original signals were independently encoded with APCAg, encoding the first
one would involve encoding 5 windows, while encoding the second and third signals would involve
encoding 7 windows in each case. However, in this example, even though encoding the base signal
also involves encoding 5 windows, encoding the transformed ratio signals involves encoding only
3 windows in each case. Therefore, grouping and encoding the transformed signals allows the
algorithm to reduce the total number of encoded windows by 8 (from 19 to 11), which reduces the
number of encoded bits by exactly 8 x ([logy w]| + 32) — 10 bits (the 10 bits that are subtracted
are used to encode the grouping of the columns). This is expected because, since there is a
high degree of spatial correlation between the signals, the transformed ratio signals are smooth,
compared to the original ratio signals, which are rough. Overall, 11 * ([logy w]| + 32) + 10 = 450
bits are required for encoding the 12 samples in this example.

3.12.2 Non-Masking (NM) variant

The coding and decoding routines for variant NM of algorithm GAMPS are quite similar to
their variant M counterparts, the difference being that the former routines are able to handle
both sample values and gaps. The coding routine for variant M of algorithm GAMPS invokes
the coding routine for variant M of algorithm APCA (lines 7 and 10 in Figure 3.77), which can
only handle sample values, since the position of the gaps is already encoded (recall Line 6 in
Figure 3.1). However, the coding routine for variant NM of algorithm GAMPS must instead
invoke the coding routine for variant NM of algorithm APCA, presented in Subsection 3.6.2,
which is able to handle both sample values and gaps.




Chapter 3. Algorithms and Their Variants 65

3.13 Implementation Details

All the algorithm variants presented in this chapter are implemented in C++. The implemen-
tation of the variants for algorithms PCA, APCA, CA and FR is completely ours, while the
variants for algorithms PWLH, SF and GAMPS reuse part of the source code from the frame-
work cited in [27]2. We implemented algorithm PWLHInt by introducing the changes described
in Subsection 3.8.2 to algorithm PWLH.

In algorithms PWLH and SF, presented in sections 3.8 and 3.10, respectively, we reuse the
framework source code for carrying out operations in the two-dimensional Euclidean space. In
algorithm PWLH these operations include computing the convex hull of the data points by
applying Graham’s Scan algorithm [53] (Line 6 in Figure 3.19), and calculating the segment
that minimizes the MSE for all the points in a window (Line 2 in Figure 3.22). In algorithm
SF the reused operations include finding connected line segments (Line 21 in Figure 3.50), and
calculating the segment that minimizes the MSE for all the points in a window (Line 1 in
Figure 3.52). In algorithm GAMPS, presented in Section 3.12, we reuse the framework source
code for grouping the data columns into disjoint subsets of spatially correlated columns, which
involves solving a facility location problem (Line 1 in Figure 3.77).

Recall that in Section 3.3 we introduce the arithmetic coder (AC), which is employed for encoding
the gaps in the masking variants. In our code we use the CACMS87 implementation [54, 55] of
the AC, which is written in C.

2The framework is available for download in the following website: http://lsirwww.epfl.ch/benchmark/



Chapter 4
Experimental Results

In this chapter we present our experimental results. The main goal of our experiments is to
analyze the compression performance of each of the algorithm variants presented in Chapter 3,
by encoding the various real-world datasets introduced in Chapter 2, and comparing the results.

In Section 4.1 we describe our experimental setting, and define the evaluated combinations of
algorithms, their variants and parameter values, and the figures of merit used for comparison.

In Section 4.2 we compare the compression performance of the masking and non-masking
variants implemented for each coding algorithm. The results show that, on datasets with few or
no gaps, the performance of both variants is roughly the same, while on datasets with many gaps
the masking variant always performs better, in some cases with a significant difference. These
results suggest that the masking variant is more robust and performs better in general.

In Section 4.3 we analyze the extent to which the window size parameter impacts the compres-
sion performance of the coding algorithm variants. We compress each dataset file, and compare
the results obtained when using the optimal window size (i.e. the one that achieves the best
compression) for the specific file, with the results obtained when using the optimal window size
for the whole dataset, when all the files in the dataset are compressed using the same window
size. The results indicate that the effect of using the optimal window size for the whole dataset,
instead of the optimal window size for each file, is rather small.

Finally, in Section 4.4 we compare the compression performance of our adapted algorithm
variants, with each other, and with the general-purpose lossless compression algorithm gzip. The
experimental results indicate that none of the algorithm variants obtains the best performance
in every scenario. For larger error thresholds, variant APCA ), achieves the best compression
rates in most cases, while for lower thresholds, the same is true for algorithm gzip and variant
PCA ;. We also study the lossless compression of the timestamp column: the results show that
variant APCA yjs achieves the best performance for this column in general.

66



Chapter 4. FExperimental Results 67

4.1 Experimental Setting

We denote by A the set of all the coding algorithms presented in Chapter 3. For an algorithm
a € A, we denote by a, its variant v, where v can be M (masking) or NM (non-masking). Recall
that there exist some a € A for which either ajs or any is invalid (see Table 3.1). We denote
by V the set of variants consisting of every wvalid variant a, for every algorithm a € A. Also,
we denote by Ajs the subset of algorithms from A consisting of every algorithm for which both
variants, aps and apnyz, are valid.

We evaluate the compression performance of every algorithm a € A on the datasets described in
Chapter 2. Considering that, in datasets with heterogeneous data, selecting different compres-
sion algorithms for different columns may lead to a better overall compression, we report our
experimental results by data type. For each algorithm we test every valid variant a,. We also
test several combinations of algorithm parameters. Specifically, for the algorithms that admit a
window size parameter w (every algorithm except Base), we test all the values of w in the set
W = {4,8,16,32,64,128,256}. For the encoders that admit a near-lossless compression mode
with an error threshold parameter € (every encoder except Base), the value of € is calculated
as a percentage fraction, denoted e, of the standard deviation of the data being encoded. For
example, for certain data with a standard deviation of 20, if e = 10, then € = 2. We test all the
values of the parameter e in the set E = {1, 3, 5,10, 15, 20, 30}.

Definition 4.1.1. We refer to a specific combination of a coding algorithm variant and its
parameter values as a coding algorithm instance (CAI). We define CI as the set of all the CAls
obtained by combining each of the variants a, € V with the parameter values (from W and E)
that are suitable for algorithm a. We denote by c<4, w,e> the CAI obtained by setting a window
size parameter equal to w and an error parameter equal to e on algorithm variant a,,.

We assess the compression performance of a CAI through the compression ratio, which we define
next. For this definition, we regard Base as a trivial CAI that serves as a base ground for
compression performance comparison (recall the definition of algorithm Base from Section 3.4).

Definition 4.1.2. Let f be a file and z a data type of a certain dataset. We define f, as the
subset of data of type z from file f. For example, for the dataset Hail, presented in Section 2.7,
the data type z may be Latitude, Longitude, or Size.

Definition 4.1.3. Let f be a file and z a data type of a certain dataset. Let ¢ € CI be a CAL
We define |¢(z, f)| as the size in bits of the resulting bit stream obtained by coding f, with c.

Definition 4.1.4. The compression ratio (CR) of a CAI ¢ € CI for the data type z of a certain
file f is the fraction of |c(z, f)| with respect to |Base(z, f)], i.e.,
|e(z, £l

CR(¢, 2, f) = Base(s, )] (4.1)

Notice that smaller values of CR correspond to better performance. Our main goals are to
analyze which CAls yield the smallest values in (4.1) for the different data types, and to study
how the CR depends on the different algorithms, their variants and the parameter values.



Chapter 4. FExperimental Results 68

To compare the compression performance between two CAls we calculate the relative difference,
which we define next.

Definition 4.1.5. The relative difference (RD) between a pair of CAIs ¢1, o € CI for the data
type z of a certain file f is given by

_ le2(z, f)| — |ea(z, f)]
RD(¢, ¢2, 2, f) = 100 x e . (4.2)

Notice that ¢; has a better performance than ¢y if (4.2) is positive.

In some of our experiments we consider the performance of algorithms on complete datasets,
rather than individual files. With this in mind, we extend the definitions 4.1.3-4.1.5 to datasets,
as follows.

Definition 4.1.6. Let z be a data type of a certain dataset d. We define F(d, z) as the set of
files f from dataset d for which f, is not empty.

Definition 4.1.7. Let z be a data type of a certain dataset d. Let ¢ € CI be a CAI. We define
le(z,d)| as
ez d)| = Y ez - (4.3)

fEF(d,z)

Definition 4.1.8. The compression ratio (CR) of a CAI ¢ € CI for the data type z of a certain
dataset d is given by le(z, d)|

CR(c, z,d) = Base(z, )| (4.4)

Definition 4.1.9. The relative difference (RD) between a pair of CAls ¢, co € CI for the data
type z of a certain dataset d is given by

|c2(2,d)| — |er(2,d)|
|C2(Zvd)| .

RD(e1, ¢o, z,d) = 100 x (4.5)



Chapter 4. FExperimental Results 69

4.2 Comparison of Masking and Non-Masking Variants

In this section, we compare the compression performance of the masking and non-masking vari-
ants of every coding algorithm in Ajp; (recall this definition from the first paragraph in Sec-
tion 4.1). Specifically, we compare:

e« PCA); against PCAnyy

o APCA,; against APCA yps

o CA,s against CA yps

o PWLH); against PWLH yps

e PWLHInt,; against PWLHInt v,

o GAMPS),s against GAMPS yj;

For each algorithm a € Ay, and each error parameter e € E, we compare the performance of
ap and apnps. For the purpose of this comparison, we choose the most favorable window size for
each variant a,, in the sense of the following definition.

Definition 4.2.1. The optimal window size (OWS) of a coding algorithm variant a, € V, and
an error parameter e € F, for the data type z of a certain dataset d, is given by

OWS(ay, ¢, z,d) = arg min{CR(C<amw,e>, z, d)}, (4.6)

w e W

where we break ties in favor of smaller window sizes.

For each data type z of each dataset d, and each coding algorithm a € Aj; and error parameter
e € E, we calculate the RD between ccay i e> and Ccayy,w, e>r a8 defined in (4.5), where
wiy = OWS(an, e, z,d) and wi,; = OWS(anu, e, 2, d).

As an example, in figures 4.1 and 4.2 we show the CR and the RD, as a function of the error
parameter, obtained for two data types of two different datasets. Figure 4.1 shows the results for
the data type z = “SST” of the dataset d = SST, presented in Section 2.3, and Figure 4.2 shows
the results for the data type z = “Longitude” of the dataset d = Tornado, presented in Section 2.8.
In Figure 4.1 we observe a large RD favoring the masking variant for all tested algorithms. On
the other hand, in Figure 4.2 we observe that the non-masking variant outperforms the masking
variant for all algorithms. We notice, however, that the RD is very small in the latter case.



CR

CR

1.2

1.0

0.8

0.6

0.4

0.2

1.2

1.0

0.8

0.6

0.4

0.2

Chapter 4. Ezperimental Results 70
PCA APCA CA
X anm X anm X anm
e am « am e am
s X
X
. X x
< X
. X ¥
A i x X
: X X x x ¥ x x x
x X X
X X X
X x X X
X X X
X
X X £
X X
X % %
1 3 5 10 15 20 30 0O 1 3 5 10 15 20 30 0O 1 3 5 10 15 20 30
Error parameter e Error parameter e Error parameter e
PWLH PWLHInt GAMPS
X X X X X X 3
X anm X anm ¢ ¢ ¢ M ¢ ¢ | X anm
e« am « am e am
X
x f
X X
X X
X b 4
*X X X% X X x x
X
X
X
X
X
X
% X
X X
X X X
X X
X X X X X X X X
1 3 5 10 15 20 30 0O 1 3 5 10 15 20 30 0O 1 3 5 10 15 20 30

Error parameter e

Error parameter e

Error parameter e

FIGURE 4.1: CR and RD plots for variants ay and anm, for each algorithm a € A, for the
data type “SST” of the dataset SST. In the RD plot for algorithm PCA we highlight with a
red circle the marker for the maximum value (50.78%) obtained for all the tested CAls.




RD (%)

RD (%)

2.5

2.0

1.5

CR

1.0

0.5

-0.05

-0.10

-0.15

-0.20

-0.25

-0.30

2.5

2.0

1.5

CR

1.0

0.5

-0.05

-0.10

-0.15

-0.20

-0.25

-0.30

Error parameter e

Error parameter e

Error parameter e

FIGURE 4.2: CR and RD plots for variants ay and ayum, for each algorithm a € Ap, for
the data type “Longitude” of the dataset Tornado. In the RD plot for algorithm APCA we
highlight with a blue circle the marker for the minimum value (-0.29%) obtained for all the

tested CAls.

Chapter 4. Ezperimental Results 71
PCA APCA CA
X anm X anm X anm
. am e am e awm
x x
X x5 x
x X X
X X X ..%
x X X
X x
X X
X X
X = X X X
X & X X
X X % X
X X
X
X
0 1 3 5 10 15 20 30 1 3 5 10 15 20 30 1 3 5 10 15 20 30
Error parameter e Error parameter e Error parameter e
PWLH PWLHInt GAMPS
X
X anm X anm X anm
e am e am X e am
X
x
x X
x
x
x X
X X
x x x
X x
X x
x X o
A
X x oy XX« 7
X x % X x
X X S X
X
X
X
X
X
0 1 3 5 10 15 20 30 1 3 5 10 15 20 30 1 3 5 10 15 20 30




Chapter 4. FExperimental Results 72

We analyze the experimental results to compare the performance of the masking and non-masking
variants of each algorithm. For each data type, we iterate through each algorithm a € Ay,
and each error parameter e € £, and we calculate the RD between the CAls c<q,,w, > and
C<anywi, >, Obtained by setting the OWS for the masking variant ap and the non-masking
variant apypy, respectively. Since we consider 8 different error parameter values and there are
6 algorithms in A, for each data type we compare a total of 48 pairs of CAls. Table 4.1
summarizes the results of these comparisons, aggregated by dataset. The number of pairs of
CAls evaluated for each dataset depends on the number of different data types it contains.

Dataset Cases where ajs
Dataset Characteristic outperforms annr (%) RD (%) Range
IRKIS Many gaps 48/48 (100%) [3.04; 37.06]
SST Many gaps 48/48 (100%) [2.91; 50.78]
ADCP Many gaps 48/48 (100%) [2.44; 17.37]
EINino Many gaps 336/336 (100%) [3.38; 50.5]
Solar Few gaps 73/144 (50.7%) [-0.26; 1.76]
Hail No gaps 0/144 (0%) [-0.04; 0)
Tornado No gaps 0/96 (0%) [-0.29; -0.01]
Wind No gaps 0/144 (0%) [-0.12; 0)

TABLE 4.1: Range of values for the RD between the masking and non-masking variants of
each algorithm (last column); we highlight the maximum (red) and minimum (blue) values
taken by the RD. The results are aggregated by dataset. The second column indicates the
characteristic of each dataset, in terms of the number of gaps. The third column shows the
number of cases in which the masking variant outperforms the non-masking variant of a coding
algorithm, and its percentage among the total pairs of CAls compared for a dataset.

Consider, for example, the results for the dataset Wind, in the last row. The second column
shows that there are no gaps in any of the data types of the dataset (recall the dataset information
from Table 2.13). Since the dataset has three data types, we compare a total of 3 x 48 = 144
pairs of CAls. The third column reveals that in none of these comparisons the masking variant
aps outperforms the non-masking variant apyy, i.e. the RD is always negative. The last column
shows the range for the values attained by the RD for those tested CAls.

Observing the last column of Table 4.1, we notice that, in every case in which the non-masking
variant performs best, the RD is close to zero. The minimum value it takes is —0.29%, which
is obtained for the data type “Longitude” of the dataset Tornado, with algorithm APCA, and
error parameter e = 30. In Figure 4.2 we highlight the marker associated to this minimum with
a blue circle. On the other hand, we observe that, for the datasets in which the masking variant
performs best, the RD reaches high absolute values. The maximum (50.78%) is obtained for the
data type “VWC?” of the dataset SST, with algorithm PCA, and error parameter e = 30, which
is highlighted in Figure 4.1 with a red circle.

The experimental results presented in this section suggest that if we were interested in com-
pressing a dataset with many gaps, we would benefit from using the masking variant of an
algorithm, ay;. However, even if the dataset didn’t have any gaps, the performance would not
be significantly worse than that obtained by using the non-masking variant of the algorithm,
any- Therefore, since masking variants are, in general, more robust in this sense, in the sequel
we focus on the set of variants V* that we define next.

Definition 4.2.2. We denote by V* the set of all the masking algorithm variants a s for a € A.

Notice that V* includes a single variant for each algorithm. Therefore, in what follows we
sometimes refer to the elements of V* simply as algorithms.



Chapter 4. FExperimental Results 73

4.3 Window Size Parameter

In this section, we analyze the extent to which the window size parameter impacts on the
performance of the coding algorithm variants. For these experiments we consider the set of
algorithms V*, defined in 4.2.2, and we only consider the four datasets that consist of multiple
files, i.e. IRKIS, SST, ADCP and Solar (recall this information from Table 2.13). For each file,
we compare the compression performance when using the OWS for the dataset, as defined in
(4.6), and the LOWS for the file, defined next.

Definition 4.3.1. The local optimal window size (LOWS) of a coding algorithm variant a,, € V*,
and an error parameter ¢ € F, for the data type z of a certain file f is given by

LOWS(&U, €, 2, f) = arg min{CR(C<aq,,w,e>v 2, f)}» (4'7)
w e W

where we break ties in favor of smaller window sizes.

For each data type z of each dataset d, and each file f € F(d,z), coding algorithm variant
a, € V*, and error parameter e € E, we calculate the RD between Cayw?pne> and C<q, wr e,
as defined in (4.2), where Wyiopar = OWS(ay, e, z,d) and wj, ., = LOWS(ay, €, 2, f). In what
follows, we sometimes denote the OWS and the LOWS as wy,,,,; and wj, ., respectively.

*

As an example, in figures 4.3 and 4.4 we show W, Wi, and the RD between cca, v, e>
and c<q,,w;,_.e>, as a function of the error parameter e, obtained for the data type z = “VWC?,
for two different files of the dataset d = IRKIS, presented in Section 2.2. Figure 4.3 shows the
results for the file f = “irkis-1202.csv”, and Figure 4.4 shows the results for f = “irkis-1203.csv”.
Observe that the values of Wyope aT€ the same for both figures, which is expected, since both
are obtained from the same data type of the same dataset.

In Figure 4.3 we notice, for instance, that for variant APCA j; the OWS and LOWS values match
for every error parameter e, except 3 and 10. The OWS is larger than the LOWS when e = 3, but
it is smaller when e = 10. In these two cases, the RD values are 1.52% and 1.76%, respectively.
In Figure 4.4 we observe that in every case the OWS is larger than or equal to the LOWS. We
highlight the marker for the maximum RD value (10.6%) obtained for all the tested CAls, and
we further comment on this point in the remaining of the section. Notice that in both figures
the RD is non-negative in every plot, which makes sense, since the CR obtained with the OWS
can never be lower than the CR obtained with the LOWS.



Window parameter w

Window parameter w

256
128
64
32
16

(o]

RD (%)
N

256
128
64
32
16

RD (%)
N}

Chapter 4. Ezperimental Results

74

PCA APCA PWLH PWLHINnt
|. LOWS X OWS [ LOWS xows] [. LOWS X OWS |. LOWS xows]
TR0 D ¢ b B D JHb I ¢ b JHD T IS ¢
X X X
x x . L]
X X e XXX
[RED SED S ¢ b > L . .
XX
XXX
X
X
X
X X
X x X
M Y M X ¥ Y X M X bV ¥ Y Y| X ¥ Y Y Y X b ¥ M Y X
01 3 510152030 O 1 3 510152030 O 1 3 510152030 O 1 3 5 10152030
Error parameter e Error parameter e Error parameter e Error parameter e

Error parameter e

FIGURE 4.3: Plots of w},pa1, Wiyear, and the RD between coq, v

¥ X M X
0 1 3 51015
Error parameter

N
('Doi(

Error parameter e

»
global®

e> and C<a, ,2wit

CA SF FR GAMPS
|. LOWS xows] [. LOWS xows] [. LOWS xows] [. LOWS xows]
> D I b I D JHD JIB JHD T I ¢ > T I ¢
x X x
x X X
XXX X WK KWK K.
o o X e
X e
X
X
X
X X
X
0 oo Moo N N N N ¥ X b hd b AT, AT, TP, 1 oo N N .
0 1 3 5 10152030 30 0 1 3 5 10152030 5 10 15 20 30

h AT A, 4
01 3
Error parameter e

e>y as a

local’

function of the error parameter e, obtained for the data type “VWC?” of the file “irkis-1202.csv”
of the dataset IRKIS.



Window parameter w

RD (%)

A~ O

Window parameter w

RD (%)

256
128

64
32
16

(oo}

10

256
128

64
32
16

(oo}

10

Chapter 4. Ezperimental Results 75
PCA APCA PWLH PWLHInt
|. LOWS X OWS [. LOWS X ows] [. LOWS X OWS |. LOWS X ows]
X X X b S GHD SED b ¢ X XXX
X e e X X-e
X -e X e °
x X e X XX
X X X X X o e
X X e . .
> S QD ¢
>
X
X X X
X X X
NN N N 7 X X N X (v X N~ N N o N (v (VAR
0 1 3 51015203 0 1 3 510152030 0 1 3 510152030 O 1 3 5 10152030
Error parameter e Error parameter e Error parameter e Error parameter e

CA SF FR GAMPS
|. LOWS X OWS [ LOWS xows| [. LOWS X OWS |. LOWS xows]
> D T S b I D JHb JID JHD T I ¢ > T I ¢
X e X e X
x x X
b I D ¢ X XX KKK X
o o b ¢ L IEEERRC RERERR JEEERRY SEPURR TUCERY 'RRIRY SOCERN )
X e
X
X
X
X X
2 X X X X X X
AV V. V. " A, V. V4 b S SO, B A N N L. A .
0 1 3 5 10152030 3 5101 3 0 1 3 51015203 0 1 3 5 10152030

Error parameter e

FIGURE 4.4: Plots of wjypat; Wipea, and the RD between c<q, w*

N N
01
E

N
(DO(

rror parameter

Error parameter e

globa.

Error parameter e

pe> and c<(L1],‘lUZ"_"’l,C>7 as

a function of the error parameter e, obtained for the data type “VWC?” of the file “irkis-
1203.csv” of the dataset IRKIS. In the RD plot for variant PCAp we highlight with a red
circle the marker for the maximum value (10.6%) obtained for all the tested CAls.



Chapter 4. FExperimental Results 76

We analyze the experimental results to evaluate the impact of using the OWS instead of the
LOWS on the compression performance of the tested coding algorithms. For each algorithm,
we iterate through each error parameter, and each data type of each file, and we calculate the
RD between the CAI with the OWS and the CAI with the LOWS. Since we consider 8 different
error parameter values and there are 13 files with a single data type and 4 files with 3 different
data types each, for each algorithm we compare a total of 8 x (13 +4 x 3) = 200 pairs of CAls.
Table 4.2 summarizes the results of these comparisons, aggregated by algorithm and the range
to which the RD belongs.

RD (%) Range

Algorithm 0 [ (01 | (1,21 [ (25] | (5,11]

PCA 186 (93%) 3(15%) | 4(2%) 2 (1%) | 5(2.5%)
APCA 174 (87%) 13 (6.5%) | 7(3.5%) | 6 (3%) 0
PWLH 184 (92%) 13 (6.5%) | 3 (1.5%) 0 0
PWLHInt 180 (90%) 8 (4%) | 9 (45%) | 3(1.5%) 0
CA 181 (90.5%) 8 (4%) 6 (3%) | 5(2.5%) 0
SF 199 (99.5%) | 1 (0.5%) 0 0 0
FR 171 (85.5%) 14 (7%) 8 (4%) 7 (3.5%) 0

GAMPS 167 (83.5%) | 15 (7.5%) | 11 (5.5%) | 3 (1.5%) | 4 (2%)

| Total [ 1,442 (90.1%) [ 75 (4.7%) | 48 (3%) | 26 (1.6%) [ 9 (0.6%) |

TABLE 4.2: RD between the OWS and LOWS variants of each CAIL
The results are aggregated by algorithm and the range to which the RD belongs.

For example, consider the results for algorithm CA, in the fifth row. The first column indicates
that the RD is equal to 0 for exactly 181 (90.5%) of the 200 evaluated pairs of CAls for that
algorithm. The second column reveals that for 8 pairs of CAls (4%), the RD takes values greater
than 0 and smaller than or equal to 1%. The remaining three columns cover other ranges of RD
values. Notice that for every row (except the last one), the values add up to a total of 200, since
we compare exactly 200 pairs of CAls for each algorithm.

The last row of Table 4.2 is obtained by adding the values of the previous rows, which combines
the results for all algorithms. We notice that in 90.1% of the total number of evaluated pairs of
CAls, the RD is equal to 0. In these cases, in fact, the OWS and the LOWS coincide. Moreover,
in 97.8% of the cases, the RD is less than or equal to 2%. This means that, for the vast majority
of CAI pairs, either the OWS and the LOWS match or they yield roughly the same compression
performance. This result suggests that we could fix the window size parameter in advance, for
example by optimizing over a training set, without significantly compromising the performance
of the coding algorithm. This is relevant, since calculating the LOWS for a file is, in general,
computationally expensive.

We notice that there are only 9 cases (0.6%) in which the RD falls in the range (5, 11]. This only
occurs for algorithms PCA and GAMPS. The maximum value taken by RD (10.6%) is obtained
for the data type “VWC” of the file “irkis-1203.csv” of the dataset IRKIS, with algorithm PCA,
and error parameter e = 15. In Figure 4.4 we highlight this maximum value with a red circle.
In this case, the OWS is 16 and the LOWS is 8. According to these results, the performance of
algorithms PCA and GAMPS seems to be more sensible to the window size parameter than the
rest of the algorithms. Except for these few cases, we observe that, in general, the impact of using
the OWS instead of the LOWS on the compression performance of coding algorithms is rather
small. Therefore, in the following section, in which we compare the algorithms performance, we
always use the OWS.



Chapter 4. FExperimental Results 7

4.4 Algorithm Compression Performance

In this section, we compare the compression performance of the coding algorithm variants pre-
sented in Chapter 3, by encoding the various datasets introduced in Chapter 2. We begin by
comparing the variants with each other, and in Subsection 4.4.1 we compare them with gzip
[10], a popular general-purpose lossless compression algorithm. In Subsection 4.4.2 we study the
lossless compression of the timestamp column.

We analyze the performance of the algorithm variants on complete datasets (not individual files),
so we always apply definitions 4.1.6-4.1.9. Following the results obtained in sections 4.2 and 4.3,
we only consider the masking variants of the evaluated algorithms (i.e. set V*), and we always
set the window size parameter to the OWS (recall Definition 4.2.1).

For ecach data type z of each dataset d, and each coding algorithm variant a, € V* and error
parameter e € E, we calculate the CR of c<q,uy,,,,e>> as defined in (4.4), where wg,,,,, =
OWS(ay, €, z,d). The following definition is useful for analyzing which CAI obtains the best

compression result for a specific data type.

Definition 4.4.1. Let z be a data type of a certain dataset d, and let e € E be an error
parameter. We denote by c®(z,d,e) the best CAI for z,d,e, and define it as the CAI that
minimizes the CR among all the CAls in CI, i.e.,

A(z,d,e) = arg min{CR(CQme*l . l7e>,z,d)}. (4.8)
ceCl grove

bx

global 38 the best coding variant and the

b _ b
When ¢”(z,d, €) = g, b et We refer to a; and w
best window size for z,d, e, respectively.

Our experiments include a total of 21 data types, in 8 different datasets (recall this information
from Table 2.13). As an example, in Figure 4.5 we show the CR(C<“M“ZMW,7€>’ z,d) and the
window size parameter leo var» @5 @ function of the error parameter e, obtained for each algorithm
a, € V*, for the data type z = “Sea Temp.” of the dataset d = ElNino, presented in Section 2.5.
For each error parameter e € E, we use blue circles to highlight the markers for the minimum
CR value and the best window size (in the respective plots corresponding to the best coding
variant). For instance, for e = 0, the best CAI achieves a CR equal to 0.33 using algorithm PCA
with a window size of 256. Thus, in this case, algorithm PCA is the best coding variant, and
256 is the best window size. For the remaining 7 values of the error parameter, the blue circles
indicate that in every case the best algorithm is APCA, and the best window size ranges from

4 up to 32.



Chapter 4. Ezperimental Results

78

PCA

APCA

PWLH

PWLHInt

1.5

x 1.0

C

0.5

) X x x
X % 5

®®®®®®@

= N
N U
S~ 00 O

[
o o

Window parameter w
w
D N

XoXo X XXX

1.5

« 1.0

@

0.5

= N
D N U
H 00 O

[
o

Window parameter w
w
N

IN

&

O
®
x QRO®

XX

XX

0 1 3 5 10152030
Error parameter e

CA

0 1 3 5 10152030
Error parameter e

SF

0 1 3 5 10152030
Error parameter e

FR

0 1 3 5 10152030
Error parameter e

GAMPS

X
X X
X
X

X X X X X X X X

XKoo XXX

XKoo X X YKo X X X

XKoo XXX

XKoo XXX X X X X

0 1 3 5 10152030
Error parameter e

0 1 3 5 10152030
Error parameter e

0 1 3 5 10152030
Error parameter e

0 1 3 5 10152030
Error parameter e

FI1GURE 4.5: CR and window size parameter plots for every evaluated algorithm, for the data
type “Sea Temp.” of the dataset ElNino. For each error parameter e € E, we use blue circles to
highlight the markers for the minimum CR value and the best window size (in the respective
plots corresponding to the best coding variant).



Chapter 4. Ezperimental Results 79

Table 4.3 summarizes the compression performance results obtained by the evaluated coding
algorithms, for each data type of each dataset. Each row contains information relative to certain
data type. For example, the 13th row shows summarized results for the data type “Sea Temp.”
of the dataset EINino, which are presented in more detail in Figure 4.5. For each error parameter
value, the first column shows the CR obtained by the best CAI, the second column shows the
base-2 logarithm of its window size parameter, and the cell color identifies the best algorithm.

‘ PCA ‘ APCA ‘ CA ‘ FR ‘
e=20 e=1 e=3 e=5 e=10 e=15 e =20 30
‘ Dataset ‘ Data Type | CR ‘ w CR ‘ w CR ‘ w CR ‘ w CR ‘ W CR ‘ w CR ‘ w C ‘ w
IRKIS VWC 0.20 | 4 || 0.18 | 4 || 0.12 | 5 || 0.07 | 6 || 0.03 | 7 | 0.02 &8 | 0.02 | 8 || 0.01 | 8
SST SST 0.61 | 8 || 028 | 3|/ 0.14| 5| 0.09 | 6| 0.05| 7 | 003 81| 002 8| 0.02| 8
ADCP Velocity 068 | 81068806721 061]2(048] 2] 041 2035|3026/ 3
Solar GHI 0.78 | 2 || 075 | 4| 070 | 4 | 0.67 | 4|/ 059 | 4| 052 41| 047 | 4 | 0.38 | 4
DNI 0.76 | 2 || 072 | 4|1 0.66 | 4 | 061 | 4 |/ 054 | 4| 049 4| 043 | 4 | 0.36 | 4
DHI 0.78 | 2 || 077 | 2 |1 0.72 | 4 | 068 | 4 |/ 0.60 | 4 | 064 4| 048 | 4 | 0.39 | 4
ElNino Lat 0.16 | 4 || 0.16 | 4 || 0.16 | 4 || 0.15 | 4 || 0.12 | 4 | 0.10 5 |[ 0.09 | 5 || 0.06 | 6
Long 0.17 | 3 || 017 | 4|/ 013 | 4| 0.12 | 5|/ 0.09 | 6 | 0.0T 6 | 0.05| 7 | 0.02 | 8
Zon. Wind | 0.31 | 8 || 0.31 | 8 || 0.31 | 8 || 0.31 | 8 || 027 | 2 | 024 2 | 0.21 | 2 || 0.16 | 3
Mer. Wind | 0.31 | 8 || 0.31 | 8 || 0.31 | 8 || 0.31 | 8 || 029 | 2 | 0.26 2 | 0.23 | 2 || 0.19 | 2
Humidity 023 | 8 || 023 | 8| 023 |8 | 0238|021 |2 ] 018 21 0.16 | 2 || 0.13 | 2
Air Temp. | 033 | 8 || 033 [ 8 || 030 | 2 || 027 |2 ([022]2 | 019 3 0.17 | 3 || 0.13 | 4
Sea Temp. | 0.33 | 8 || 0.31 | 2 || 025 | 2 || 0.21 | 2 || 0.14 | 3 | 0.11 4 | 0.08 | 4 | 0.05 | 5
Hail Lat 1.00 | 8 || 1.00 | 8 || 090 | 2 || 0.83 | 2 || 0.71 | 2 | 0.65 3 | 0.57 | 3| 047 | 3
Long 1.00 | 8 || 1.00 | 8 || 0.86 | 2 || 0.78 | 2 |[ 065 | 2 | 0.55 3 || 049 | 3 || 0.39 | 4
Size 081 | 2|08 |2 08|21 08 |2 08 |2] 08 21 081 1|2]| 064 |3
Tornado | Lat 1.00 | 8 || 0.85 | 2| 071 |2 | 065| 21 054 |3 | 047 3 | 042 | 41 033 | 4
Long 1.00 | 8 || 0.82 | 2 (065 |2 || 0558|3046 | 3| 040 4 | 035 | 4 || 0.28 | 4
Wind Lat 1.00 | 8 || 1.00 | 8 || 0.89 | 2 || 0.81 | 2 || 0.70 | 2 | 0.62 3 | 0.56 | 3 || 047 | 3
Long 1.00 | 8 || 095 | 2 (080 |2 || 073| 21 062|3]| 054 3| 049 | 3| 040 | 4
Speed 065 | 41044 | 31]/026| 6| 017 | 7] 016 | 5| 012 6 | 0.10 | 6 || 0.08 | 6

TABLE 4.3: Compression performance of the best evaluated coding algorithm, for various error

values on each data type of each dataset. Each row contains information relative to certain

data type. For each error parameter value, the first column shows the minimum CR, and the

second column shows the base-2 logarithm of the best window size for the best algorithm (the

one that achieves the minimum CR), which is identified by a certain cell color described in the
legend above the table.

We observe that there are four algorithms (PCA, APCA, CA, and FR) that obtain the best com-
pression results in at least one of the 168 possible data type and error parameter combinations.
Algorithm APCA is the best algorithm in exactly 132 combinations (79%), including every case
in which e > 10, and most of the cases in which e € [1,3,5]. PCA is the best algorithm in 31
combinations (18%), including most of the lossless cases. CA and FR are the best algorithms in
only 2 (1%) and 3 (2%) combinations, respectively, in each case for a single data type.

Since there is not a single algorithm that obtains the best compression performance for every
data type, it is useful to analyze how much is the RD between the best algorithm and the rest,
for every experimental combination. With that in mind, next we define a pair of metrics.




Chapter 4. FExperimental Results 80

Definition 4.4.2. The mazimum RD (mazRD) of a coding algorithm a € A for certain error
parameter e € F is given by

maxRD(a,e) = max {RD(cb(z, d,e), c<av7w;loba“e>)}, (4.9)

where the maximum is taken over all the combinations of data type z and dataset d, and we
recall that c?(z,d,e) is the best CAI for z,d, e.

The maxRD metric is useful for assessing the compression performance of a coding algorithm «a
on the set of data types as a whole. Notice that maxRD is always non-negative. A satisfactory
result (i.e. close to zero) can only be obtained when a achieves a good compression performance
for every data type. In other words, bad compression performance even on a single data type
yields a poor result for the maxRD metric altogether. When maxRD is equal to zero, a achieves
the best compression performance for every combination. Analyzing the results in Table 4.3, we
observe that maxRD(APCA,e) = 0 for every e > 10. Since the best algorithm is unique for
every combination (i.e. exactly one algorithm obtains the minimum CR in every case), it is also
true that, when a # APCA, maxRD(a,e) > 0 for every e > 10.

Definition 4.4.3. The minmaz RD (minmazRD) for certain error parameter e € F is given by

acA

minmaxRD(e) = min {mamRD(a, e)}, (4.10)
and we refer to arg min,c , as the minmax coding algorithm for e.

Again, minmaxRD is always always non-negative. Notice that minmaxRD(e) = 0 for certain e,
if and only if there exists a minmax coding algorithm a such that maxRD(a, e) = 0. Continuing
the analysis from the previous paragraph, it should be clear that APCA is the minmax coding
algorithm for every e > 10, since maxRD(APCA, e) = 0 for every e > 10.

Table 4.4 shows the maxRD(a, e) obtained for every pair of coding algorithm variant a, € V*
and error parameter e € E. For each e, the cell corresponding to the minmaxRD(e) value (i.e.
the minimum value in the column) is highlighted.

maxRD (%)

Algorithm [ e=0|e=1]|e=3|e=5]|e=10|e=15|e=20|e=30
PCA 40.51 | 42.27 | 53.11 | 62.01 | 71.71 75.28 77.15 | 80.21
APCA 33.25  15.64 | 9.00 | 29.96 0 0 0 0
PWLH 73.46 | 72.93 | 72.52 | 82.14 | 83.24 | 86.86 | 88.94 | 91.19
PWLHInt | 29.72 | 29.85 | 37.17 | 59.17 | 61.68 | 69.96 74.72 79.89

CA 29.55 | 30.26 | 48.39 | 56.26 | 59.01 67.90 72.96 78.46
SF 85.84 | 85.77 | 85.26 | 85.17 | 84.36 83.64 83.17 82.88
FR 48.75 | 49.85 | 52.21 | 52.70 | 54.82 55.35 54.48 64.72

GAMPS 72.51 | 77.43 | 89.05 | 92.87 | 96.28 97.47 98.08 98.62

TABLE 4.4: maxRD(a, €) obtained for every pair of coding algorithm variant a, € V* and error
parameter e € E. For each e, the cell corresponding to the minmaxRD(a) value is highlighted.

In the lossless case, CA is the minmax coding algorithm, with minmaxRD being equal to 29.55%.
This value is rather high, which means that none of the considered algorithms achieves a CR that
is close to the minimum simultaneously for every data type. Recalling the results from Table 4.3
we notice that e = 0 is the only error parameter value for which the minmax coding algorithm
doesn’t obtain the minimum CR in any combination. In other words, when e = 0, CA is the
algorithm that minimizes the RD with the best algorithm among every data type, even though
it itself is not the best algorithm for any data type.



Chapter 4. FExperimental Results 81

When e € [1,3,5], the minmax coding algorithm is always APCA, and the minmaxRD values
are 15.64%, 9.00% and 29.96%, respectively. Again, these values are fairly high, so we would
select the most convenient algorithm depending on the data type we want to compress. Notice
that in the closest case (algorithm FR for e = 5), the second best maxRD (52.70%) is about
75% larger than the minmaxRD, which is a much bigger difference than in the lossless case.

When e > 10, the minmax coding algorithm is also always APCA, but in these cases the
minmaxRD values are always 0. In the closest case (algorithm FR for e = 20) the second best
maxRD is 54.48%. If we wanted to compress any data type with any of these error parameter
values, we would pick algorithm APCA, since according to our experimental results, it always
obtains the best compression results with a significant difference over the remaining algorithms.

4.4.1 Comparison with Algorithm gzip

In this subsection we consider the results obtained by the general-purpose lossless compression
algorithm gzip [10]. This algorithm only operates in lossless mode (i.e. the error parameter can
only be e = 0), and it doesn’t have a window size parameter w. Therefore, for each data type z
of each dataset d, we have a unique CAI (and obtain a unique CR value) for gzip.

In all our experiments with gzip we perform a column-wise compression of the dataset files,
which, in general, yields a much better performance than a row-wise compression. This is due to
the fact that in most of our datasets, there is a greater degree of temporal than spatial correlation
between the signals. All the reported results are obtained with the “~-best” option of gzip, which
targets compression performance optimization [56].

Table 4.5 summarizes the compression performance results obtained by gzip and the other eval-
uated coding algorithms, for each data type of each dataset. Similarly to Table 4.3, each row
contains information relative to a certain data type, and for each error parameter value, the first
column shows the CR obtained by the best CAI, the second column shows the base-2 logarithm
of its window size parameter (when applicable), and the cell color identifies the best algorithm.
We point out that, for e > 0, we compare the gzip lossless result with the near-lossless results
obtained by our algorithms. Although this comparison may seem unintuitive or even “unfair”
at first, we present it to highlight the fact that there are cases where lossless gzip outperforms
lossy variants.

We observe that, in the lossless case, algorithm gzip achieves the best compression results for
10 (48%) out of the 21 data types, while algorithms PCA and FR obtain the best results for
10 (48%) and 1 (4%) of the data types, respectively. Among the near-lossless cases, algorithms
APCA, PCA, and FR obtain the best results in 106 (72%), 13 (9%) and 2 (1%) of the 147 possible
data type and error parameter combinations. Even though gzip is a lossless algorithm, it still
manages to outperform our near-lossless algorithms in the remaining 26 (18%) combinations.

We notice that gzip obtains the best relative results against the other algorithms for smaller
values of e, which is expected, since the performance of near-lossless algorithms improves for
larger values of e. However, even for e = 0, gzip is outperformed by the rest of the algorithms
in about a half (11 out of 21) of the data types. There are 6 data types for which it is even
outperformed by algorithm Base (these are the data types for which the minimum CR is equal
to 1). Algorithm APCA is still the best algorithm for most of the cases in which e > 3. However,
now there is no value of e for which APCA outperforms the rest of the algorithms for every data
type, since gzip is the best algorithm for at least one data type in every case. In particular, gzip
obtains the best compression results for the data type “Size” of the dataset Hail for every e.



Chapter 4. FExperimental Results 82
| GzIP PCA [ APCA | FR |

e=20 e=1 e=3 e=25 e=10 e=15 e =20 e =230
‘ Dataset ‘ Data Type CR ‘ w CR ‘ w CR ‘ w CR ‘ w CR ‘ w CR ‘ w CR ‘ w CR ‘ w
IRKIS [ VWC 0.13 0.13 012 5[ 007[6]003]7] 002 8 002]8T]001]38
SST SST 0.52 028 [ 30145100961 0057|003 80028/ 002]8
ADCP | Velocity 0.61 0.61 0.61 061 | 2048 [ 2] 041 21 035]31 0.26]3
Solar GHI 0.69 0.69 0.69 067 | 4059 4] 052 4104741 038] 4
DNI 0.67 0.67 066 | 40614 054]4] 049 40043 [ 41 036 4
DHI 0.61 0.61 0.61 0.61 060 | 4] 054 41 048] 41 039] 4
EINino | Lat 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.06 | 6
Long 0.07 | 0.07 0.07 1 0.07 0.07 007 6] 005]| 71 002]8
Zon. Wind | 031 [ 8[| 031 8 ([ 0318|0318 (0272 024 202120163
Mer. Wind | 031 [ 8 [ 031 | 8 [ 031 |8 (031 |8 020|2] 026 2023|2019 ]2
Humidity | 0.23 | 8 ([ 023 |8 (023 |8 (023 |8 021|2]018 2016|2013 |2
Air Temp. | 0338 [ 033803020272 022]2] 019 3] 017 |3 013]4
Sea Temp. | 0.32 031202520212 014]3] 011 4100841 005]5
Hail Lat 1.00 | 8 {100 | 8]/ 090 |2 08 |2 071 |2] 065 31 057 |31 047 | 3
Long 1.00 | 8|[1.00 | 808 |2 0782 065]2] 055 310493 1039]4

Size 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37
Tornado | Lat 1.00 | 8085|2071 |2 065|21 0543047 3] 042 4] 033] 4
Long 1.00 | 8J[082 2065|2058 |3(046|3 ] 040 410354 ] 028]4
Wind Lat 1.00 | 8 J[100 | 8089|2081 |2 0702 062 31056371 0473
Long 1.00 | 8 095|208 |2 073|2[]062|3] 054 31049310404
Speed 065 41044 [31]026]61 017710165 012 6 [ 0.10 | 6 || 0.08 | 6

TABLE 4.5: Compression performance of the best evaluated coding algorithm, for various

error values on each data type of each dataset, including the results obtained by gzip. Each

row contains information relative to certain data type. Each row contains information relative

to certain data type. For each error parameter value, the first column shows the minimum

CR, and the second column shows the base-2 logarithm of the best window size for the best

algorithm (the one that achieves the minimum CR), which is identified by a certain cell color

described in the legend above the table. Algorithm gzip doesn’t have a window size parameter,
so the cell is left blank in these cases.

Similarly to Table 4.4, Table 4.6 shows the maxRD(a, e) obtained for every pair of coding algo-
rithm variant a, € V* U {gzip} and error parameter e € E. For each e, the cell corresponding
to the minmaxRD(e) value is highlighted.

We observe that, for every e, the minmaxRD values are rather high, the minimum being 26.66%
(algorithm gzip for e = 0). We conclude that none of the considered algorithms achieves a
competitive CR for every data type, and the selection of the most convenient algorithm depends
on the specific data type we are interested in compressing.

gzip is the minmax coding algorithm when e € [0, 1], and in both cases the minmaxRD values are
rather high, i.e. 26.66% and 47.99%, respectively. APCA remains the minmax coding algorithm
for every e > 3, but its minmaxRD values are now not only always greater than zero, but also
quite high, ranging from 42.85% (e = 30) up to 54.36% (e = 3). This implies that there exist
some data types for which the RD between the APCA and gzip CAls is considerable, which
means that, if we have the possibility of selecting gzip as a compression algorithm, APCA is no
longer the obvious choice for compressing every data type when e > 10, as we had concluded in
the previous section.




Chapter 4. FExperimental Results 83

maxRD (%)
Algorithm | e=0]e=1]e=3]e=5[e=10[e=15]e=20]e=230

GZIP 26.66 4799 | 73.79 | 82.94 | 91.10 93.94 95.40 96.69
PCA 73.93 | 73.54 | 68.27 | 67.21 | 71.71 75.28 77.15 80.21
APCA 59.11 | 58.39 | 54.36 | 54.35 | 54.34 54.33 54.32 42.85

PWLH 87.51 | 87.45 | 87.35 | 87.26 | 87.01 86.86 88.94 91.19
PWLHInt | 71.26 | 70.81 | 64.80 | 63.74 | 61.97 | 69.96 74.72 79.89

CA 71.19 | 70.71 | 64.63 | 63.45 | 61.64 67.90 72.96 78.46
SE 93.41 | 92.72 | 92.64 | 92.25 | 91.82 91.57 91.37 90.21
FR 76.46 | 76.12 | 72.78 | 71.97 | 67.37 64.31 64.00 64.72

GAMPS 83.73 | 83.73 | 89.05 | 92.87 | 96.28 97.47 98.08 98.62

TABLE 4.6: maxRD(a, €) obtained for every pair of coding algorithm variant a, € V* U {gzip}
and error parameter e € E. For each e, the cell corresponding to the minmaxRD(a) value is
highlighted.

4.4.2 Timestamp Compression

In this subsection we study the compression of the timestamp column of the various datasets
introduced in Chapter 2. Recall, from Section 2.1, that this column represents the timestamps
associated with the data from the rest of the columns in a dataset CSV file. Since the timestamp
column does no contain any gaps, we only consider the non-masking variants of the evaluated
algorithms. Notice that this is the single place in the current section in which we do so. In this
case, we only evaluate the compression performance of the constant model algorithm variants,
i.e. PCAnpr and APCA yjs. Recall, from Section 3.7, that the encoding scheme for linear model
algorithms requires encoding a sequence of line segments in the two-dimensional Euclidean space,
where the x and y-axis correspond to timestamp and sample values, respectively. Thus, this type
of algorithms cannot be used for encoding a single column. We also discarded variant GAMPS vy,
since correlation model algorithms are not ideal for encoding a single column. The timestamp
column must always be losslessly compressed, so in our experiments we only considered the error
parameter e = 0.

Table 4.7 summarizes the timestamp compression performance results obtained by PCA yjs and
APCA . Each row contains information relative to certain dataset. For example, the second
row shows summarized results for the timestamp column of the dataset SST. In this case, the
minimum CR for variant PCA y; is 0.11, which is obtained with window size parameter w = 2%,
while the minimum CR for variant APCA yys is 0.01, which is obtained with w = 28. The RD
between the corresponding CAls, as defined in (4.5), is equal to -791.41%.

We observe that APCA ;s obtains better compression results in the first five datasets, while
PCA s works best in the last three. This can be explained due to the characteristics of the
timestamp signal: in the first five datasets it is smooth, while in the last three it is rough.
The RD between the corresponding CAls is much larger in the first five datasets, ranging from
-125.77% (in dataset TRKIS) to -841% (in dataset ADCP); in the last three datasets it ranges
from 1.05% (in dataset Wind) to 8.06% (in dataset Tornado). Thus, the results indicate that
APCA yjs performs better in general, obtaining significantly better compression results in some
cases, and marginally worse results in others. Since it is the most robust variant for times-
tamp compression among our evaluated algorithm variants, our general encoding scheme always
encodes the timestamp column using APCA yjs (recall Line 4 in Figure 3.1).



Chapter 4. Ezperimental Results

84

‘ PCApnu || APCA Ny

| Dataset | CR | w || CR | w [ RD(PCAny, APCANy) (%) |
IRKIS 0.01 | 71 0.01| 8 -125.77

SST 0.11 | 4 || 0.01 | 8 -791.41

ADCP 0.08 | 5 0.01 | 8 -841

Solar 0.03 | 6 || 0.01 | 8 -319.83

EINino 0.04 | 6 || 0.01 | 8 -443.72

Hail 1.00 | 8 || 1.06 | 2 5.74

Tornado | 1.00 | 8 || 1.09 | 2 8.06

Wind 1.00 | 8 || 1.01 | 2 1.05

TABLE 4.7: Lossless compression performance of algorithm variants PCAny and APCA nu,

for the timestamp column of each dataset. For each variant, the first column shows the

minimum CR, and the second column shows the base-2 logarithm of the best window size (the

window size that achieves the minimum CR). For each dataset, the cells corresponding to the

algorithm that obtains the best result are colored, and the last column shows the RD between
the corresponding CAls, as defined in (4.5).



Chapter 5

Conclusions and Future Work

In this work, we study the compression of multichannel signals with irregular sampling rates and
with data gaps. Our experiments consider different real-word datasets consisting of signals with
these characteristics, which are often gathered by WSNs. In such case, the irregular sampling
rates can be caused by different groups of sensors being out of sync or malfunctioning. Besides,
errors might arise when acquiring, transmitting or storing the data, causing gaps in the data.
Nevertheless, state-of-the-art algorithms designed for sensor data compression reported in the
literature [27, 28] assume, in general, that the signals gave regular sampling rate and that there
are no data gaps. Thus, our main contributions are introducing and analyzing the compression
performance of a number of variants of state-of-the-art algorithms, which we design and imple-
ment so that they are able to encode multichannel signals with irregular sampling rates and data

gaps.

The experimental datasets come from multiple sources [29-33], each using a different data repre-
sentation format. Thus, we define our own format, into which we transformed all the experimen-
tal datasets. This format can be used to represent various kinds of datasets, and our implemented
algorithm variants should be able to encode any data file that follows its specifications.

For most algorithms we implement two variants, masking (M) and non-masking (NM). They
differ in the technique used for encoding the position of the data gaps. In variant M, the position
of all the data gaps is encoded first, and the data values are encoded separately, next. Our
proposed strategy to compress the gaps in variant M uses arithmetic coding [41, 42] combined
with a Krichevsky-Trofimov probability assignment [43] over a Markov model. On the other
hand, in variant NM, the gaps and the data values are encoded together. With both variants,
the gaps in a decompressed signal always match the gaps in the original signal, regardless of the
value of the error threshold parameter (e).

The main objective of our experimental work is to analyze the compression performance of
our implemented algorithm variants by encoding our various experimental datasets. For each
variant, we test several combinations of parameters. In particular, we consider an extended
range of values for the error threshold parameter, including the lossless compression case (i.e.
e = 0). We asses the compression performance of an algorithm variant through the compression
ratio (CR) metric (see Definition 4.1.4), and we compare the compression performance between
a pair of algorithm variants through the relative difference (RD) metric (see Definition 4.1.5).

Our first analysis consists of comparing the compression performance of our implemented variants
ap and apyy, for each algorithm a that supports both variants. The results show that, on
experimental datasets with few or no gaps, both variants have roughly the same performance,

85



Chapter 5. Conclusions and Future Work 86

i.e. RD(ap,ann) is always close to zero, ranging between —0.29 and 1.76%. However, on
datasets with many gaps, ajs always performs better, sometimes with a significant difference,
with RD(apr, anps) ranging between 2.44 and 50.78%. Thus, our experimental results suggest
that variant M is more robust, and performs better in general.

Both state-of-the-art algorithms and our implemented variants depend on a window size param-
eter, w. It defines a fized window size for both variants of algorithm PCA, and a mazimum
window size for the rest of the variants. Our experiments consider an extended range of values
for parameter w, which allows us to analyze the sensitivity of the different algorithm variants to
this parameter. For each dataset, we compress each data file, and compare the results obtained
when using a window size optimized for said specific file, against the results obtained when us-
ing a window size optimized for the whole dataset. The results indicate that the difference in
compression performance is generally rather small, with the RD being less than or equal to 2%
in 97.8% of the experimental cases. Obtaining the optimal w for a specific data file is, in general,
a computationally expensive task, so these results have meaningful practical consequences, since
they imply that we could fix parameter w in advance, for example by optimizing over a training
set, without compromising the overall compression performance of an algorithm variant.

The most significant part of our experimental analysis consists of comparing the compression
performance of our implemented algorithm variants, with each other, and with the general-
purpose lossless compression algorithm gzip [10]. Following the experimental results presented
in the previous two paragraphs, for this analysis we only consider variant M of each algorithm,
and we always use the optimal window size for the whole dataset. Our experimental results
reveal that none of the variants obtains the best compression performance in every scenario,
which means that the optimal selection of a variant depends on the characteristics of the data to
be compressed, and the error threshold (¢) that is allowed. In some cases, even a general-purpose
compression algorithm such as gzip outperforms the specific variants. Nonetheless, some general
conclusions can be obtained from our analysis. For large error thresholds, variant APCA
achieves the best results, obtaining the minimum CR. in 90.5% of the experimental cases. On the
other hand, algorithm gzip and variant PCA j; are preferred for lower thresholds scenarios, since
they obtain the minimum CR in 42.9% and 40.5% of the cases, respectively. We also analyze the
lossless compression of the timestamp column, and the results indicate that variant APCA yy
generally achieves the best results.

We conclude this chapter suggesting a couple of ideas to develop as future work:

e In our experimental analysis, which is presented in Chapter 4, we asses the compression
performance of the implemented algorithm variants through the CR metric (recall Defini-
tion 4.1.4). It would be interesting to consider additional metrics, such as the computa-
tional time and the sensitivity to outliers [27]. We could also consider additional datasets,
which would increase the running time of our experiments, but may provide new insights
regarding the compression performance of the implemented algorithms.

e The results presented in Section 4.4 reveal which of the implemented algorithm variants
obtains better compression results for each data type in the experimental datasets. This
information could be taken into account as part of a strategy to implement a universal coder
(i.e. a coder that compresses signals from which no information is known a priori). For
this purpose, it would be useful to analyze why it is the case that a certain variant achieves
better compression results for a certain data type over other variants. In order to do this,
we would need to examine the signals for each data type, analyze their characteristics (e.g.
whether they are smooth or rough signals, the number of outliers, periodicity), and observe
if there exists a relation between these characteristics and the algorithm variant that obtains
the best compression performance. This would be useful for predicting which variant is
the best for compressing certain signal, only by analyzing the signal characteristics. If,



Chapter 5. Conclusions and Future Work 87

given certain statistics of a signal, we could programmatically select a good compression
algorithm variant for the signal, this could prove to be beneficial for online compression,
as it would allow a universal coder to select a different variant as the trends in the signal
vary over time.



Acknowledgements

The author would like to express his sincere gratitude to his supervisors, Alvaro Martin and
Gadiel Seroussi, for their time and knowledge.

He would also like to thank Programa de Desarrollo de las Ciencias Bdsicas (PEDECIBA) and
Universidad de la Repiblica (Udelar) for their support.

88



Bibliography

1]

V. Turner, D. Reinsel, J.F. Gantz, and S. Minton. The Digital Universe of Opportunities:
Rich Data and the Increasing Value of the Internet of Things. IDC Analyze the Future,
2014.

D. Reinsel, J. Gantz, and J. Rydning. The Digitization of the World: From Edge to Core.
IDC White Paper, 2018.

T. Pendlebury.  Spotify vs. Apple Music: Is there a difference in sound qual-
ity? http://www.cnet.com/news/apple-music-vs-spotify-is-there-a-differenc
e-in-sound-quality/, July 5, 2015. [Accessed May 5, 2022].

G. Morrison. What is HEVC? High Efficiency Video Coding, H.265, and 4K compression
explained. http://www.cnet.com/news/what-is-hevc-high-efficiency-video-codin
g-h-265-and-4k-compression-explained/, April 18, 2014. [Accessed May 5, 2022].

M. Robin and M. Poulin. Digital Television Fundamentals. McGraw-Hill Education, 2nd
edition, 2000.

T. Hoff. A Short on How Zoom Works. http://highscalability.com/blog/2020/5/14/
a-short-on-how-zoom-works.html, May 14, 2020. [Accessed May 5, 2022].

B. Sat and B.W. Wah. Analysis and Evaluation of the Skype and Google-Talk VoIP Sys-
tems,. Proc. 2006 IEEE International Conference on Multimedia and Expo (ICME 2006),
pages 2153-2156, 2006.

Nikon Corporation. DSLR Camera Basics: Image Quality and File Type (NEF/RAW,
JPEG, and TIFF). https://imaging.nikon.com/lineup/dslr/basics/26/01.htm. [Ac-
cessed May 5, 2022].

B. Carnathan. Should I Use Canon’s C-RAW Image File Format? https://www.the-dig

ital-picture.com/Canon-Cameras/Canon-C-RAW-Image-File-Format.aspx. [Accessed
May 5, 2022].

GNU Gzip. https://www.gnu.org/software/gzip/, 2020. [Accessed May 5, 2022].

WinRAR at a glance. https://www.win-rar.com/features.html, 2021. [Accessed
May 5, 2022].

A.J. Casson, D.C. Yates, S.J.M. Smith, J.S. Duncan, and E. Rodriguez-Villegas. Wearable
electroencephalography: What Is It, Why Is It Needed, and What Does It Entail? IEFEE
Eng. Med. Biol. Mag., 29(3):44-56, 2010.

H. Mamaghanian, N. Khaled, D. Atienza, and P. Vandergheynst. Compressed Sensing
for Real-Time Energy-Efficient ECG Compression on Wireless Body Sensor Nodes. IEEFE
Trans. Biomed. Eng., 58(9):2456-2466, 2011.

89



Bibliography 90

[14]

[15]

[16]

[21]

[22]

(23]

J. Beckett. HP on Mars: Labs technology used to send most accurate images possible.
https://www.hpl.hp.com/news/2004/jan-mar/hp_mars.html, January 2004. [Accessed
May 5, 2022].

M. Tramz. Photographing Pluto: This Is How New Horizons Works. https://time.com
/3944157 /new-horizons-pluto/, July 14, 2015. [Accessed May 5, 2022].

K. Sohraby, D. Minoli, and T. Znati. Wireless Sensor Networks: Technology, Protocols, and
Applications. Wiley-Interscience, 2007.

A. Ali, Y. Ming, S. Chakraborty, and S. Iram. A Comprehensive Survey on Real-Time
Applications of WSN. Future Internet, 9(4):77, 2017.

J. Uthayakumar, T. Vengattaraman, and P. Dhavachelvan. A survey on data compression
techniques: From the perspective of data quality, coding schemes, data type and applica-
tions. Journal of King Saud University - Computer and Information Sciences, page 77,
2018.

A.J. Hussain, A. Al-Fayadh, and N. Radi. Image compression techniques: A survey in
lossless and lossy algorithms. Neurocomputing, 300:44-69, 2018.

G. Vijayvargiya, S. Silakari, and R. Pandey. A Survey: Various Techniques of Image Com-
pression. International Journal of Computer Science and Information Security (IJCSIS),
11(10), 2013.

M. Hans and R.W. Schafer. Lossless compression of digital audio. IEEE Signal Processing
Magazine, 18(4):21-32, 2001.

K. Brandenburg. MP3 and AAC explained. AES 17th International Conference on High-
Quality Audio Coding, 1999.

J.-S. Lee and T. Ebrahimi. Perceptual Video Compression: A Survey. IFEE Journal of
Selected Topics in Signal Processing, 6(6):684-697, 2012.

R.V. Babu, M. Tom, and P. Wadekar. A survey on compressed domain video analysis
techniques. Multimedia Tools and Applications, 75(2):1043-1078, 2014.

I. Capurro, F. Lecumberry, A. Martin, I. Ramirez, E. Rovira, and G. Seroussi. Efficient
Sequential Compression of Multichannel Biomedical Signals. IEFEE Journal of Biomedical
and Health Informatics, 21(4):904-916, 2017.

A. Nait-Ali and C. Cavaro-Ménard. Compression of Biomedical Images and Signals. ISTE-
Wiley, 2008.

N.Q.V. Hung, H. Jeung, and K. Aberer. An Evaluation of Model-Based Approaches
to Sensor Data Compression. IEEE Transactions on Knowledge and Data Engineering,
25(11):2434-2447, 2013.

T. Bose, S. Bandyopadhyay, S. Kumar, A. Bhattacharyya, and A. Pal. Signal Charac-
teristics on Sensor Data Compression in IoT - An Investigation. 2016 15th Annual IEEE
International Conference on Sensing, Communication, and Networking (SECON), pages
1-6, 2016.

N. Wever. IRKIS Soil moisture measurements Davos. SLF. https://doi.org/10.16904/
17, 2017. [Accessed May 5, 2022].

El Nino Data Set. https://archive.ics.uci.edu/ml/datasets/El+Nino, 1999. [Accessed
May 5, 2022].



Bibliography 91

[31]

[32]

33]

[34]

[35]

NOAA - TAO Data Download. https://tao.ndbc.noaa.gov/tao/data_download/sear
ch_map.shtml, 2016. [Accessed May 5, 2022].

SolarAnywhere - Data. https://data.solaranywhere.com/Data, 2020. [Accessed
May 5, 2022].

Storm Prediction Center - Severe Weather Database Files (1950-2017). https://www.spc.
noaa.gov/wcm/#data, 2016. [Accessed May 5, 2022].

I. Lazaridis and S. Mehrotra. Capturing Sensor-Generated Time Series with Quality Guar-
antees. Proc. ICDE, pages 429440, 2003.

E. Keogh, K. Chakrabarti, S. Mehrotra, and M. Pazzani. Locally Adaptive Dimensionality
Reduction for Indexing Large Time Series Databases. ACM Transactions on Database
Systems, 27(2):188-228, 2002.

C. Buragohain, N. Shrivastava, and S. Suri. Space Efficient Streaming Algorithms for the
Maximum Error Histogram. Proc. ICDE, pages 10261035, 2007.

G.E. Williams. Critical Aperture Convergence Filtering and Systems and Methods Thereof.
US Patent 7,076,402, Jul. 11, 2006.

H. Elmeleegy, A.K. Elmagarmid, E. Cecchet, W.G. Aref, and W. Zwaenepoel. Online Piece-
wise Linear Approximation of Numerical Streams with Precision Guarantees. Proc. VLDB
Endowment, 2(1):145-156, 2009.

J.A.M. Heras and A. Donati. Fractal Resampling: time series archive lossy compression
with guarantees. PV 2018 Conference, 2013.

S. Gandhi, S. Nath, S. Suri, and J. Liu. GAMPS: Compressing Multi Sensor Data by Group-
ing and Amplitude Scaling. Proc. ACM SIGMOD International Conference on Management
of Data, pages 771-784, 2009.

Arithmetic Coding + Statistical Modeling = Data Compression. https://marknelson.u
s/posts/1991/02/01/arithmetic-coding-statistical-modeling-data-compression
.html, 1991. [Accessed May 5, 2022].

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley-Interscience,
2nd edition, 2006.

R.E. Krichevsky and V.K. Trofimov. The performance of universal encoding. IEEE Trans-
actions on Information Theory, 27(2):199-207, 1981.

N. Wever, F. Comola, M. Bavay, and M. Lehning. Simulating the influence of snow surface
processes on soil moisture dynamics and streamflow generation in an alpine catchment.
Hydrol. Earth Syst. Sci., 21:4053-4071, https://doi.org/10.5194/hess-21-4053-2017,
2017.

TAO - History of the Array. https://tao.ndbc.noaa.gov/proj_overview/taohis_ndbc.
shtml, 2013. [Accessed May 5, 2022].

A F. Cheng, S.E. Hawkins III, L. Nguyen, C.A. Monaco, and G.G. Seagrave. Data Com-
pression Using Chebyshev Transform. US Patent 7,249,153, 2007.

T. Sheltami, M. Musaddiq, and E. Shakshuki. Data Compression Techniques in Wireless
Sensor Networks. Future Generation Computer Systems, 64:151-162, 2016.

G.K. Wallace. The JPEG Still Picture Compression Standard. IEEE Transactions on
Consumer Electronics, 38(1):xviii—xxxiv, 1992.



Bibliography 92

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

J.J. Rissanen. Generalized Kraft Inequality and Arithmetic Coding. IBM Journal of Re-
search and Development, 20(3):198-203, 1976.

J. Rissanen. Universal Coding, Information, Prediction, and Estimation. IEEE Transactions
on Information Theory, 30(4):629-636, 1984.

E.N. Gilbert. Capacity of a Burst-Noise Channel. Bell Syst. Tech. J., 39(5):1253-1265,
1960.

E.O. Elliott. Estimates of Error Rates for Codes on Burst-Noise Channels. Bell Syst. Tech.
J., 42(5):1977-1997, 1963.

R. Graham. An Efficient Algorithm for Determining the Convex Hull of a Finite Planar
Set. Information Processing Letters, 1:132-133, 1972.

I.H. Witten, R.M. Neal, and J.G. Cleary. Arithmetic Coding for Data Compression. Com-
munications of the ACM, 30(6):520-540, 1987.

Data Compression With Arithmetic Coding. https://marknelson.us/posts/2014/10/
19/data-compression-with-arithmetic-coding.html, 2014. [Accessed May 5, 2022].

GNU Gzip Manual - Invoking gzip. https://www.gnu.org/software/gzip/manual/html_
node/Invoking-gzip.html, 2018. [Accessed May 5, 2022].



