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Abstract

In the article “Exposing Fake Images with Forensic Similarity Graphs”, O. Mayer and M. C.
Stamm introduce a novel image forgery detection method. The proposed method is built on a
graph-based representation of images, where image patches are represented as the vertices of
the graph, and the edge weights are assigned in order to reflect the forensic similarity between
the connected patches. In this representation, forged regions form highly connected subgraphs.
Therefore, forgery detection and localization can be cast as a cluster analysis problem on the
similarity graph. The authors present two graph clustering methods to detect and localize image
forgeries. In this paper, we present briefly the method and offer an online executable version
allowing everyone to test it on their own suspicious images.

Source Code

The source code and documentation for this algorithm are available from the web page of this
article1. Usage instructions are included in the README.txt file of the archive. The original
implementation of the method is available here2.
This is an MLBriefs article, the source code has not been reviewed!

Keywords: image forensics; forgery detection; graph clustering

1 Introduction

Seeing is no longer believing when it comes to digital contents. Indeed, during the last years, we
have observed a huge raise in the quantity of manipulated material being shared in internet. Visual
evidence, such as the one used in court, has been questioned given the ease with which it can be
tampered. To address these concerns, image forensics techniques are being developed. These tools
provide scientific evidence to help determine the authenticity of the images under question.

1https://doi.org/10.5201/ipol.2022.432
2https://omayer.gitlab.io/forensicgraph/
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Classical image forensics methods aim at reconstructing the image formation process by detect-
ing visually imperceptible traces that are left in the image at each step of the camera processing
pipeline [21]. Indeed, several methods have been proposed to tackle specific traces such as demosaic-
ing inconsistencies [1, 3], JPEG artifacts [24, 20], noise incoherence [5, 10] and more [11].

Recently, deep learning methods for forgery detection have been developed. Some of these meth-
ods are directly trained on forged images and aim at identifying specific manipulations [23, 22, 15].
However, training a network to learn all possible manipulations is not feasible.

Following this observation, other deep learning approaches have been proposed [2, 6, 12, 16].
These methods mimic the hand crafted methodology adopted by classical methods. Namely, they
aim at extracting features related to the camera processing chain, and to detect local inconsistencies
in these features. The main difference is that in this case, these features are learnt.

In [17], the forensic potential of features learnt for source camera classification is shown. Indeed,
the authors develop the “forensic similarity score” that aims at distinguishing if two image patches
share the same forensic traces or not. In this article, we explore the approach in [16] which exploits
this forensic similarity measure for forgery detection.

2 Method

2.1 Forensic Similarity Score

In their previous work [17], Mayer and Stamm introduce a new deep learning technique to identify
if two image patches carry the same or different forensic traces. Forensic traces are the visually
imperceptible artifacts left in an image during the image formation process and subsequent post-
processing. This approach takes two image patches as input and outputs a single score between 0
and 1 that measures the forensic similarity of the two image patches. Scores near 0 indicate low
coincidence of forensic traces while scores near 1 indicate that similar forensic traces were found in
both patches.

To do so, they propose a system comprising two CNN feature extractors in a siamese configuration,
followed by a comparison network that evaluates how similar both features are. The feature extractor
is trained in a first phase to learn camera model features. A second training phase is then carried
out to update the weights to target a specific task. A brief explanation of this method together with
an online executable version of it can be found in [9].

The weights used in the rest of this work are those corresponding to the source camera model
comparison task. Two pre-trained versions of the proposed network are available, one trained on
128× 128 patches and another one trained on 256× 256 patches.

2.2 Forensic Similarity Graph

A similarity graph is a graph where the edge weights represent the similarity between the connected
nodes. In [16], Mayer and Stamm propose to construct a similarity graph from the image using a
similarity measure that reflects the similarity of the processing pipeline. To do so, they represent
the image patches as nodes and assign weights to the edges according to the forensic similarity score
between them, that was previously reported by the same authors in [17]. The resulting graph is a
fully connected graph, where edges connecting patches having similar forensic traces will have weights
near 1, and edges connecting patches with low forensic similarity will have weights near 0.

In this representation, patches that have undergone the same processing operations are expected
to form communities. Communities are characterized by strong connections within the members and
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weak connections to non-members. This way, forgery detection can be formulated as a community
detection problem, and forgery localization as a community partition problem.

2.3 Forgery Detection and Localization

As mentioned in the previous section, the problem of forgery detection and localization can be
regarded as a clustering problem, where one needs to establish the number of clusters (one for non-
tampered images, bigger than the one for forged images) and the partition in case there is more than
one cluster. Several community detections techniques have been reported in the literature [8]. In
their work, Mayer and Stamm focus on two particular techniques: spectral clustering and modularity
optimization. However, it is important to notice that it is straightforward to extend the proposed
approach to other clustering methods.

2.3.1 Spectral Clustering

A weighted graph G = (V,W ) is a pair where V = {v1, . . . , vn} is the set of vertices and W is a
symmetric matrix satisfying Wij ≥ 0 for all i, j = 1, . . . , n and Wii = 0 for all i = 1, . . . , n. The
weight matrix W can be considered as an extension of the adjacency matrix for non-weighted graphs.
Indeed, if Wij ∈ {0, 1}, both definitions become equivalent.

Spectral clustering methods aim at partitioning the graph G based on the spectrum of W itself
or any other matrices built on it. In this work, the authors focus on the study of the spectrum of
the graph Laplacian matrix, defined as

L = D −W, (1)

where D is the degree matrix defined as Dii =
∑

j Wij and Dij = 0 if i 6= j. The matrix D generalizes
the degree matrix for non-weighted graphs. Indeed, if Wij ∈ {0, 1}, for all i, j, both definitions are
equivalent.

Since, by construction, all the rows of L sum up to 0, λ1 = 0 is always an eigenvalue for L, corre-
sponding to the eigenvector (1, 1, . . . , 1). Furthermore, its multiplicity corresponds to the number of
connected components in the graph. Indeed, the membership vectors (i.e. vectors having ones for the
connected nodes and zeros for the other nodes) will be eigenvectors associated to the 0 eigenvalue.
This property of the graph Laplacian can be applied to community structure detection, by observing
that if there are weakly linked sub-graphs, the smallest non-zero eigenvalue will still be close to
zero [7].

The authors use the eigengap heuristic [14] to detect if more than one community exists by
computing the second smallest eigenvalue λ2, and comparing it to a pre-defined threshold τ = 100,
derived empirically. If λ2 is smaller than τ , the image is classified as forged and if it is bigger, as
non-forged.

In case the image is considered as tampered, forgery localization can be performed by finding the
community partition. The authors only consider the case when two communities exist. In this case,
graph bipartition can be achieved from the eigenvector of the second smallest eigenvalue λ2 of the
graph Laplacian matrix [7]. To do so, it is enough to compute an eigenvector u2 associated to λ2
and partition the graph according to the sign of each component of u2. Indeed, for each vertex vi,
labels are assigned according to

ci =

{
1, if ui2 ≥ 0

0, if ui2 < 0,
(2)

where ci denotes the predicted community for the node vi.
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2.3.2 Modularity Optimization

Modularity was introduced as a measure of the quality of a particular graph partition [19]. It is built
on the observation that random graphs are not expected to have communities structures. Therefore,
by comparing the observed edge density within a community to the expected edge density given
by the background model, one can assess the meaningfulness of the given community structure.
Modularity can be expressed as

Q =
1

2m

∑
i,j

(Wij − E(Wij)) δ(ci, cj), (3)

where the sum is taken over all the pairs of vertices, m is the weighted total number of edges

m =
∑

i,j Wij

2
, W is the weights matrix, E(Wij) is the expected weight for an edge connecting vertices

i and j given by the background model, δ is the Kronecker δ-function and ci is the community to
which vertex i belongs.

The choice of the null model is not entirely unconstrained according to Newman [18]. Firstly,
E(Wij) should be equal to E(Wji) since we are considering undirected graphs. Secondly, Q should
be equal to 0 when all the vertices belong to a single community. Setting ci = cj for all i, j = 1, . . . , n
it follows that ∑

i,j

Wij =
∑
i,j

E(Wij) = 2m. (4)

Despite these constraints, there are several possible background models satisfying these condi-
tions. Mayer and Stamm adopt the same null model as Newman [18]. Firstly, this model imposes
that the expected degree of each vertex is equal to the actual degree in the graph,∑

i

E(Wij) = Djj. (5)

This condition implies automatically the constraint
∑

i,j E(Wij) = 2m. Secondly, the null model
suggested by Newman imposes that the expected weight of an edge connecting vertices i and j is the
product of a function f of their degrees

E(Wij) = f(Dii)f(Djj). (6)

Equation (5) and Equation (6) imply

E(Wij) =
DiiDjj

2m
. (7)

Therefore, under this background model, modularity can be written as

Q =
1

2m

∑
i,j

(
Wij −

DiiDjj

2m

)
δ(ci, cj). (8)

Modularity optimization aims at finding the community partition for which the modularity is maxi-
mized, i.e.

Qopt = max
c1,...,cn

1

2m

∑
i,j

(
Wij −

DiiDjj

2m

)
δ(ci, cj). (9)

Different strategies to optimize the modularity have been addressed in the literature [8]. Mayer
and Stamm use the fast greedy technique introduced in [4], where vertices are successively joined to
form larger communities in a way such that modularity increases.
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If the optimal value for the modularity is close to 0, there is no evidence of community struc-
ture [19]. Therefore, to detect if an image is tampered the authors compare Qopt to a pre-defined
threshold τ = 0.025. Then, if the observed Qopt is larger than τ , the image is classified as forged;
otherwise, the image is classified as pristine.

In case the image is classified as forged, the same optimization problem can be used to partition
the image into clusters. Indeed, in that case the optimization problem can be expressed as

copt1 , . . . , coptn = argmax
c1,...,cn

1

2m

∑
i,j

(
Wij −

DiiDjj

2m

)
δ(ci, cj).

The authors impose two clusters, and set an edge weighting threshold equal to 0.9, meaning that all
the edges with lower weights are set to 0. Figure 1 shows an example of the results obtained using
the modularity optimization algorithm.

Forged image Forgery mask 1 Forgery mask 2

Extracted patches Weights matrix Detected communities

Figure 1: Examples of weight matrices and graph partitions on a forged image from the MISD Dataset [13], having two
spliced regions. The community detection algorithm used for these examples is the modularity optimization, with patches
of size 128 × 128 and 50% of overlap. The edge weight threshold used is equal to 0.9. We observe that the community
partition found by the algorithm points to the forgery masks (in red).

2.4 Pixel-level Masks

Once an image is classified as forged and a community partition has been performed, labels are
assigned to the nodes. In our setting, nodes are patches, which are usually taken with overlap.
Therefore, it is necessary to aggregate this information to produce pixel-wise masks. To do so,
Mayer and Stamm first construct a pixel-map. For the case in which the number of clusters is equal
to 2, as it is in our setting, we can assume that there are only two labels: 0 and 1. The pixel-map
can be then expressed as

P (x, y) =
1

# {R : (x, y) ∈ R}
∑

R:(x,y)∈R

c(R), (10)
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where (x, y) is a pixel, R is a patch and c(R) is the predicted label for the patch. The factor
1

#{R:(x,y)∈R} normalizes the pixel-map to take into account the fact that pixels near the borders are
covered by fewer patches.

This pixel-map is further smoothed using a 32× 32 Gaussian kernel and compared to a threshold
in order to produce a binary output. The threshold used by the authors is equal to 0.5. Finally, the
smallest region is marked as forged and the largest one as pristine.

3 Demo

The online demo takes as input a suspicious image. The goal is to firstly classify the image as forged
or pristine and, in the former case, to localize the forgery. The user is required to select the size of
the patches, being 128× 128 and 256× 256 the two available options. The user can also decide the
overlap with which these patches will be taken (50% or 75% of the patch size). Finally, the user can
choose whether to use spectral clustering (Section 2.3.1) or modularity optimization (Section 2.3.2).

The demo prints the classification as tampered or non-tampered, according to the eigengap if
spectral clustering is the chosen clustering algorithm, or according to the optimal modularity in
case modularity optimization is chosen. The thresholds used to decide between tampered and non-
tampered are those used by Mayer and Stamm, as explained in Section 2.3. If the image is classified
as non-forged, a black mask is shown as output. On the other hand, if the image is classified as
tampered, forgery localization is performed according to the chosen clustering technique, and the
output mask shows the obtained results.

4 Experiments

4.1 Forged Images

We first test the proposed approach on forged images. In these cases, the method should manage
to identify the image as forged, and then perform forgery localization. Figure 2 shows the results
obtained on some images from [11], for both clustering techniques and both patch sizes. In all these
experiments, the patch overlap was set to 75%.

We observe that in most cases the method is able to detect the images as forged, except for one of
the examples when using the spectral clustering technique and blocks of size 128×128. Interestingly,
the eigengap seems to be very sensitive to the patch size, with significant lower values for larger
patches. On the other hand, the optimal modularity seems to be more stable.

Regarding forgery localization, both techniques show significant agreement between the ground
truth mask and the estimated mask. However, modularity optimization shows some falsely detected
regions that are not present when using spectral clustering.

4.2 Authentic Images

In these experiments we assess the performance of the studied approach when the input image is not
tampered. Figure 3 shows examples of the obtained results for several authentic images from [11].

The method is able to correctly identify the images as non-tampered in most cases. However,
spectral clustering, when patches are of size 256 × 256, delivers some false detections, as well as
modularity optimization when used with 128×128 patches. These false detections seem to correspond
to image regions having a distinctive texture. However, not all textured zones generate false alarms,
as can be seen in the second image where none of the clustering techniques have false detections,
despite the fact that the image has textured and flat zones.
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Spectral Clustering Modularity Optimization
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Forged image eigengap = 85.945 < 100 Qopt = 0.0400 > 0.025

25
6
×

2
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es

Ground truth mask eigengap = 36.235 < 100 Qopt = 0.0453 > 0.025

Spectral Clustering Modularity Optimization
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es

Forged image eigengap = 17.458 < 100 Qopt = 0.1264 > 0.025

25
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×
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Ground truth mask eigengap = 7.404 < 100 Qopt = 0.1223 > 0.025

Spectral Clustering Modularity Optimization
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Forged image eigengap = 178.579 > 100 Qopt = 0.0890 > 0.025

25
6
×

25
6
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es

Ground truth mask eigengap = 38.598 < 100 Qopt = 0.0677 > 0.025

Figure 2: Results obtained using the demo for some spliced images from the Columbia dataset [11]. The overlap is set to
75% of the patch size in all cases.
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Spectral Clustering Modularity Optimization
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eigengap = 458.976 > 100 Qopt = 0.0022 < 0.025
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eigengap = 71.269 < 100 Qopt = 0.0178 < 0.025

Spectral Clustering Modularity Optimization
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eigengap = 678.299 > 100 Qopt = 0.0014 < 0.025
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eigengap = 134.239 > 100 Qopt = 0.0073 < 0.025

Spectral Clustering Modularity Optimization

Authentic image
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eigengap = 104.728 > 100 Qopt = 0.0641 > 0.025

25
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×

25
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eigengap = 45.229 < 100 Qopt = 0.0143 < 0.025

Figure 3: Results obtained using the demo for some authentic images from the Columbia dataset [11]. The overlap is set
to 75% of the patch size in all cases.
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