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Idoia Ochoa5,6, Gadiel Seroussi1,7, Pablo Smircich 3,8, José Sotelo-Silveira3,9 and
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Abstract

Motivation: The use of high precision for representing quality scores in nanopore sequencing data makes these
scores hard to compress and, thus, responsible for most of the information stored in losslessly compressed FASTQ
files. This motivates the investigation of the effect of quality score information loss on downstream analysis from
nanopore sequencing FASTQ files.

Results: We polished de novo assemblies for a mock microbial community and a human genome, and we called var-
iants on a human genome. We repeated these experiments using various pipelines, under various coverage level
scenarios and various quality score quantizers. In all cases, we found that the quantization of quality scores causes
little difference (or even sometimes improves) on the results obtained with the original (non-quantized) data. This
suggests that the precision that is currently used for nanopore quality scores may be unnecessarily high, and moti-
vates the use of lossy compression algorithms for this kind of data. Moreover, we show that even a non-specialized
compressor, such as gzip, yields large storage space savings after the quantization of quality scores.

Availability and supplementary information: Quantizers are freely available for download at: https://github.com/mri
varauy/QS-Quantizer.

Contact: almartin@fing.edu.uy

1 Introduction

The precision for quality score representation in FASTQ files has his-
torically been relatively large, where each score takes a value within a
set of more than 40 possible values. The precise definition of this set
depends on the sequencing technology; sequencers from Oxford
Nanopore Technologies (https://nanoporetech.com/) use a set of 94 dif-
ferent values (represented in FASTQ files as ASCII codes 33–126). This
high precision makes quality score sequences hard to compress and,
thus, most of the information stored in a losslessly compressed FASTQ
files corresponds to quality scores (substantially more than the genomic
information itself). With growing concerns about the economics of

storage space and bandwidth for transmission of genomic data, this
strategy is being questioned. For example, in the context of short-read
sequencing technologies, Illumina has reduced the set of possible values
for quality scores on their most modern equipment to just four different
values (Ill, 2017) and suggests similarly quantizing the values produced
by other Illumina devices (Ill, 2014). It has also been observed that it is
possible to use lossy compression algorithms, in which the decom-
pressed data may differ to some extent from the original, without gen-
erally affecting the results of commonly used pipelines (Cánovas et al.,
2014; Ochoa et al., 2013, 2016).

Nanopore sequencing, however, is a much more recent technol-
ogy and few specific data compressors suitable for nanopore data
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are available, developed by our group (Dufort y Álvarez et al., 2020,
2021) and others (Kokot et al., 2022; Meng et al., 2021). Moreover,
the lossy compression of quality scores for nanopore data has only
been explored in (Kokot et al., 2022), where the impact of quality
score information loss is assessed for some downstream analyses.
Specifically, in Kokot et al. (2022), it is shown that this information
loss has no or little impact on the construction of consensus sequen-
ces with Racon (Vaser et al., 2017) for long CHM13 reads, either
for HiFi or for Nanopore data. The impact is also shown to be small
for variant calling accuracy with HiFi reads, evaluated with
DeepVariant (Poplin et al., 2018) on HG002 HiFi reads against the
human reference genome GRCh38; variant calling for nanopore
data is not evaluated.

Adding additional new evidence to, and reinforcing the conclu-
sions of Kokot et al. (2022), in this article, we evaluate the impact of
nanopore quality score quantization on various downstream appli-
cations, by comparing the results obtained with certain non-
quantized nanopore data sets, referred to as original data, and with
quantized versions of the same data sets. Particularly we selected
data sets relevant for microbiology and human genetics, both areas
of high interest and increasing use of this sequencing technology.
The quantizers that we evaluate are mostly simple functions, where
the set of possible quality scores is partitioned into a small set of dis-
joint intervals, each of which is mapped to a fixed value. For ex-
ample, one such quantizer maps quality scores between 0 and 7 to
the fixed score 5, and all quality scores larger than 7 to the fixed
score 15. We also evaluate a slightly more complex scheme, which
uses higher quantization resolution for quality scores associated
with repetitive regions of a read. A precise definition of all evaluated
quantizers is given in Section 2.1. We point out that these quantizers
have not been optimized for any specific application; as it turns out,
these definitions suffice to obtain a performance very close to that
obtained with non-quantized data for all tested applications. A more
thorough optimization of the quantizers is likely to be application-
dependent and is deferred to future research.

To assess the effect of quality score quantization on typical bio-
informatic downstream analyses, we focused on frequently used
Nanopore applications where quality scores have a role. Long reads
are regularly used in genome assembly, but most assemblers do not
use quality scores (Kolmogorov et al., 2019; Koren et al., 2017;
Ruan and Li, 2020). Structural variation identification (Cretu
Stancu et al., 2017; Heller and Vingron, 2019; Sedlazeck et al.,
2018; Tham et al., 2020) and variant calling (Edge and Bansal,
2019; Shafin et al., 2021) are also among Nanopore most frequent
research applications, but generally just the latter makes use of qual-
ity scores. Given the high error rates of Nanopore sequencing data,
strategies involving polishing algorithms are almost mandatory,
and they are sensitive to quality scores. Based on these points, we
carried on assembly polishing for the ZymoBIOMICS Microbial
Community Standard (Zymo Research Corporation, Irvine, CA,
USA. Product D6300, Lot ZRC190633) nanopore reads using
Racon (Vaser et al., 2017) both alone and combined with Medaka
(https://github.com/nanoporetech/medaka), and MarginPolish (Shafin
et al., 2020) both alone and combined with HELEN (Shafin
et al., 2020). We also evaluated the quality of human genome
assembly from nanopore reads polished with MarginPolish both
alone and combined with HELEN, for several coverage levels. For
variant calling, we executed PEPPER-Margin-DeepVariant (Shafin
et al., 2021) on sample HG003 for several coverage level scenarios.
Details on the methods for evaluating assembly polishing and
variant calling pipelines are presented in Sections 2.2 and 2.3,
respectively.

As shown in Section 3, all the experimented pipelines yield very
similar performance on the original and quantized versions of each
data set, indicating that the effect of information loss caused by
quality score quantization is not significant in practice. For the as-
sembly polishing of a mock microbial community, setting all quality
scores to the fixed value 10 results in a number of mismatches that
is, on average over three independent runs, <1.2% higher that
obtained with the original data. A quantizer that uses four different
values for quality scores results in a number of mismatches that is,

on average, even smaller than that obtained with the non-quantized
data. This same quantizer, applied to human data, results in a num-
ber of mismatches that is essentially equivalent to that obtained with
the original data; even for a very low coverage (10% of the original
reads), the increment in the number of mismatches is only about
0.7%. Moreover, we show that the quantization of quality scores
yields very large improvements in compression performance even
for traditional non-specialized compressors such as gzip (see
Sections 2.4 and 3). For example, we report on human variant call-
ing results at 90� coverage where using 8 different values for quality
scores yields precision and recall metrics for single-nucleotide poly-
morphisms (SNPs) that differ by <10�4 from those obtained with
the original (non-quantized) data set, while saving more than 33%
of the required storage space. Even using only two different values
for quality scores, which saves almost 70% of storage space, the pre-
cision differs by <10�4 and the recall by <10�3 from those obtained
with the original data set.

2 Methods

2.1 Quantization of quality scores
We tested various quantizers, each mapping quality scores to values
on a (small) set referred to as the quantization alphabet. We denote
by Qi a quantizer for a quantization alphabet of size i, i>1, where
the quantization QiðxÞ of a quality score x depends solely on x. The
specific definitions of Q2, Q4 and Q8 are presented in Table 1. All
these quantizers collapse a large set of high-quality scores into a sin-
gle value, and define a finer partition for lower scores, which occur
more frequently (Delahaye and Nicolas, 2021). Our experiments
suggest that slight variations of quantization level thresholds and
quantization alphabet in the definitions of these quantizers have lit-
tle effect on their performance. For example, modifying Q2 so that
the values in f0 . . . 6g are mapped to 1, and those in f7 . . . 93g are
mapped to 13, produces a variation of only 0:13% on the resulting
F1 score for SNPs variant calling at 30� coverage (see Section 2.3).
We also tested constant quantizers, which map every quality score
to a fixed prescribed value. We denote by Fz a quantizer that assigns
the value FzðxÞ ¼ z to every quality score x. In our experiments, we
take z¼10, which is a common threshold for filtering low-quality
reads (see, e.g. Shafin et al., 2021).

In addition, since repetitive patterns of bases are particularly dif-
ficult to sequence by nanopore technologies (Delahaye and Nicolas,
2021), we evaluate quantizers where the quantization of a quality
score x in a position j of a read depends not only on x but also on
the bases called in positions close to j. We say that a substring of the
base call sequence of a read is a repetitive sequence if it is comprised
of either h consecutive copies of the same symbol, i.e. an homopoly-
mer of length h, or d consecutive copies of the same pair of symbols,
i.e. a repeat of d dinucleotides. For two quantization functions, f, f 0,
we denote by hf ; f 0id a quantizer that quantizes x to f(x), if the

Table 1. Definition of quantizers Q2, Q4 and Q8

Quantizer Quality scores Quantized value

Q2 0 . . . 7 5

8 . . . 93 15

Q4 0 . . . 7 5

8 . . . 13 12

14 . . . 19 18

20 . . . 93 24

Q8 0 . . . 6 5

7 . . . 11 10

12 . . . 16 15

17 . . . 21 20

22 . . . 26 25

27 . . . 31 30

32 . . . 36 35

37 . . . 93 40
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position j of the quality score x in a read is more than d bases away
from a repetitive sequence in this read, and to f 0ðxÞ otherwise. For
example, the quantizer hF10;Q8id sets all quality scores away from
repetitive regions to the fixed value 10, and applies Q8 to quality
scores that are within or close to repetitive regions. For the experi-
ments reported in Section 3, the parameters h, d and d are set to 5, 4
and 5, respectively. Using the surrounding bases to select an appro-
priate quantizer resembles previous works on quality score compres-
sion for short-read technologies, where the quantization granularity
for all quality scores mapped to a given locus is selected based on
the bases mapped at that position (Voges et al., 2018). As they
showed in Voges et al. (2018) and we show in Section 3, using the
information from the bases to select the quantization level has no
negative effect on the subsequent downstream analyses, which fur-
ther suggests that the bases provide insightful information to guide
the selection of distortion level for the quality values.

2.2 Assembly polishing
We evaluated the impact of quality score quantization on the
genome assembly polishing for the ZymoBIOMICS Microbial
Community Standard (Zymo Research Corporation, Irvine, CA,
USA. Product D6300, Lot ZRC190633). For the experiments, we
used the data generated by the authors of (Nicholls et al., 2019) on
Oxford Nanopore GridION, R10.3 pore (https://nanopore.s3.climb.
ac.uk/mock/Zymo-GridION-EVEN-3Peaks-R103-merged.fq.gz). The
organisms in this community are 8 bacteria, each present at 12%, and
2 yeasts, each present at 2%. We assembled the genomes with Flye
(Kolmogorov et al., 2020) and kept the eight largest contigs, which
correspond to the eight bacteria. We polished this raw assembly using
various polishing pipelines:

• Racon: 2 iterations of Racon (Vaser et al., 2017).
• Medaka: 2 iterations of Racon followed by Medaka (https://github.

com/nanoporetech/medaka).
• MP: An execution of MarginPolish (Shafin et al., 2020).
• Helen: An execution of MarginPolish followed by HELEN

(Shafin et al., 2020).

Both Racon and MarginPolish are polishers that make use of
quality scores. Medaka and HELEN, on the other side, are designed
to refine the base polish obtained by Racon and MarginPolish,
respectively.

We tested each polishing pipeline on the original (non-quantized)
data, and quantized versions using F10, Q2, Q4 and Q8. To account
for randomness within the executed algorithms, we ran three execu-
tions of each combination of polisher and data set.

As a reference for the assessment of the results we used a
combination of scaffolds obtained by SPAdes (Bankevich et al.,
2012) from Illumina reads as described in Nicholls et al. (2019)
(http://nanopore.s3.climb.ac.uk/mockcommunity/v2/Zymo-Isolates-
SPAdes-Illumina.fasta). We evaluated the quality of the final assem-
bly for each run of a polishing pipeline on a data set using
MetaQUAST (Mikheenko et al., 2015) to obtain the number of mis-
matches per kilobase pairs (kbp) with respect to the combined
reference.

To analyze the results of assembly polishing on quantized quality
scores data in a different setting, we followed some of the experi-
ments reported in Shafin et al. (2020) for human genome assembly.
Specifically, we polished the assembly generated by wtdbg2 (Ruan
and Li, 2020) for one of the flows for sample HG00733 (1000
Genomes Project Consortium et al., 2015) with the polishing pipe-
lines MP and Helen. These polishing pipelines were executed both
for the original FASTQ files and for the same data quantized with
Q4, and we compared the number of mismatches per 100 kbp with
respect to the reference GRCh38 using QUAST (Gurevich et al.,
2013). We carried on this comparison for several coverage scen-
arios, which we obtained by randomly selecting a fraction (10%,
20%, 60% and 100%) of the dataset reads. We repeated each exe-
cution three times to account for algorithm randomization.

2.3 Variant calling
We compared the nanopore variant calling performance of PEPPER-
Margin-DeepVariant on sample HG003, as reported in Shafin et al.
(2021), against variant calling on quantized versions of the same data.
We performed this comparison at various coverages, ranging from
20� to 90�, and for various quantizers described in Section 2.1.

Following (Shafin et al., 2021), we used GIAB v4.2.1 truth set
against GRCh38 reference, and GIAB stratification v2.0 files with
hap.py (http://github.com/illumina/hap.py) to derive stratified vari-
ant calling results. As a result, for each coverage and each quantized
version of the data, we obtain a classification of the variants
reported by PEPPER-Margin-DeepVariant into two categories: true-
positives (TP), and false-positives (FP), and a set of true variants that
PEPPER-Margin-DeepVariant failed to identify, i.e. false-negatives
(FN). These variants are reported separately for SNPs and inser-
tions/deletions (INDELs). From these reports, we summarize the
performance of PEPPER-Margin-DeepVariant for each specific type
of variant (SNP/INDEL), on various coverage and quantization
settings, by the recall, precision and F1 score: Rec ¼ TP

TPþFN ;
Prec ¼ TP

TPþFP ; F1 ¼ 2�Prec�Rec
PrecþRec .

2.4 Compressibility
To evaluate the improvement in compressibility obtained by quan-
tizing the quality scores of nanopore FASTQ files, we used sample
HG003 (the same data set used for variant calling evaluation),
which consists of three FASTQ files that add up to �520 GB. We
compressed the original data set and quantized versions of this data
set using the general purpose compressor gzip (https://www.gnu.org/
software/gzip/). For each evaluated quantizer, we calculated the
compression ratio (CR), defined as the quotient between the size of
the compressed data set and the size of the original data set (smaller
ratios correspond to better compression performance).

3 Results

Table 2 presents the number of mismatches per 100 kbp for the as-
sembly of a mock microbial community with respect to a combined
reference (see Section 2.2), for various combinations of assembly
polishing algorithm and quality score quantizer. The number of mis-
matches, averaged over three independent runs, is very similar for
all tested combinations of polisher and quantizer, with differences
that are generally smaller than those between different runs of the
same polisher and quantizer, which arise from algorithm random-
ization in the polishing pipeline. Comparing the average number of
mismatches obtained with a certain polisher using quantized data
and using the original data, we observe that the maximum difference
is obtained for Medaka with the most heavy quantizer, F10. Even in
this case, the difference represents only 1.2% of the average number
of mismatches obtained with the original data. Notably, the results
for the quantizer Q4 are even better than those obtained with the
original data for all the evaluated polishing pipelines.

Table 3 compares the number of mismatches per 100 kbp for a
human genome assembly obtained with the original (non-quantized)
data and the data obtained by applying Q4 to quality scores. The
comparison is performed for the polishers MP and Helen for the full
data set (100%), and for downsampled versions of the data consist-
ing of 10%, 20% and 60% of the reads in the full data set (see
Section 2.2). For a 20% or larger fraction of the data, the results
obtained after quantization are essentially equivalent to those
obtained with the original data. Even for a very small fraction of the
data (10%), the percent increment in the number of mismatches
incurred by quantization, averaged over three independent runs, is
0.01% for MP and 0.7% for Helen.

Tables 4 and 5 show the count of true-positives, false-positives,
and false-negatives for SNPs and INDELs, respectively, obtained
with PEPPER-Margin-DeepVariant for various quantization schemes
and coverage levels. The tables also show the metrics Rec; Prec
and F1 calculated from these counts. The complement to 1 of the F1
score, i.e. the difference 1� F1, is shown for the same quantization
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schemes and coverage levels in Figures 1 and 2 for SNPs, and in
Figure 3 for INDELs.

For SNPs, Table 4 shows high recall and precision values, spe-
cially for large coverage levels. In all cases, the difference between
the F1 score obtained with the original data and that obtained with
a quantized version of the same data is rather small. The largest dif-
ference for coverage 30� and above is smaller than 10�3 (for F10 on
90� data). For each of these coverage levels, the performance slight-
ly improves in general with the quantization precision, and the per-
formance for hQ2;Q8id lies between that of Q2 and Q4 (see Fig. 1).
For the shallowest coverage, 20�, the performance is noticeable
worse (see Fig. 2 and note the different scale compared to Fig. 1). In
this case, the F1 score does not always improve with the quantiza-
tion precision. Following the performance comparison criteria in
Shafin et al. (2021), we notice that PEPPER-Margin-DeepVariant
on 90� data still outperforms DeepVariant on Illumina short reads
(35� Illumina NovaSeq, F1 : 0:9963) for all quantizers except F10.
Another interesting reference for comparison is the variation in per-
formance obtained by using different variant calling pipelines. For
example, using Longshot (Edge and Bansal, 2019) on the 30� ori-
ginal data we obtain a precision of 0.9648 and a recall of 0.9743,
which determine an F1 score of 0.9695 for SNPs. Since Longshot
ignores quality scores, the results after quality score quantization are
exactly the same. Notice that these metric values fall below those
reported in Table 4 for every quantizer on 30� data, including F10,
which looses all quality score information from the original data.

Thus, in this example, the choice of a variant calling pipeline causes
larger performance variations than the quantization of quality
scores.

For INDELs, in agreement with Shafin et al. (2021), the recall
and precision values are significantly worse than those obtained for
SNPs. The difference between the performance obtained with non-
quantized and quantized data is still small, although more noticeable
than the difference obtained for SNPs. For INDELs, the largest dif-
ference in F1 score occurs for F10 on 90� data, with a difference ap-
proximately equal to 0.002. For Q4, the maximum difference drops
to 3:6� 10�3, and for Q8 it is 4:7� 10�4. The variant calling per-
formance for the data quantized with hQ2;Q8id lies, in general, be-
tween those obtained with Q2 and Q4.

Table 6 shows the CR obtained with gzip for various quantizers.
The table also shows the space saving obtained by quality score
quantization, calculated as the difference in size between the com-
pressed original data set and the compressed quantized data set,
expressed as a percent of the size of the compressed original data
set. For example, the table shows that gzip compresses the original
data set to roughly half the original size (the CR is 0.49), and Q4

improves the CR to 0.25, yielding a compressed data set that is
roughly half the size of the compressed original data set (a saving of
48.52%). For the coarsest quantizer, F10, the difference in com-
pressed size is almost 70% of the original compressed data set,
which in the evaluated data set amounts to more than 175 GB of
saved space. For easy assessment of the relation between CR and

Table 2. Number of mismatches per 100 kbp for the assembly of a mock microbial community, with respect to a combined reference, for

various combinations of assembly polishing algorithm and quality score quantizer

Polishing Original Q8 Q4 Q2 F10

Run Avg. Run Avg. Run Avg. Run Avg. Run Avg.

Racon 180.59 179.46 180.05 179.35 177.93 177.54 179.74 179.09 180.07 179.21

178.51 180.43 175.97 178.16 179.64

179.28 177.56 178.72 179.37 177.92

Medaka 175.14 175.56 176.24 175.22 174.32 174.17 175.01 175.18 178.10 177.69

174.97 175.78 173.20 175.56 178.01

176.56 173.63 175.00 174.97 176.95

MP 175.57 176.26 176.02 175.94 176.47 174.95 175.41 176.26 174.70 175.23

176.79 176.28 173.47 176.66 174.57

176.43 175.53 174.92 176.70 176.43

Helen 167.14 167.75 168.03 167.92 168.17 167.31 168.53 168.48 167.29 167.92

168.33 168.46 166.00 168.47 167.98

167.79 167.26 167.75 168.43 168.48

Note: For each polishing algorithm and each quantizer, we show the result for three independent runs and the average of these three results.

Table 3. Number of mismatches per 100 kbp obtained by MP and Helen for a human genome assembly, under various coverage scenarios,

for the original (non-quantized) data and for the data obtained by applying Q4 to quality scores

Polishing Quantization 10% 20% 60% 100%

Run Avg. Run Avg. Run Avg. Run Avg.

MP Original 1480.01 1480.01 935.24 935.24 132.89 132.89 100.32 100.32

1480.01 935.24 132.89 100.32

1480.01 935.24 132.89 100.33

Q4 1480.01 1480.16 935.24 935.24 131.01 132.26 100.33 100.32

1480.24 935.24 132.89 100.32

1480.24 935.24 132.89 100.32

Helen Original 1470.56 1460.03 907.05 907.05 125.94 125.94 99.65 99.65

1454.77 907.05 125.94 99.65

1454.77 907.05 125.94 99.65

Q4 1470.56 1470.56 907.05 907.05 125.98 125.98 99.65 99.65

1470.56 907.05 125.98 99.65

1470.56 907.05 125.98 99.65

Note: For each combination of polisher, quantizer and coverage, we show the result for three independent runs and the average of these three results.
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variant calling performance, Table 6 shows, for each quantizer, the
F1 score obtained with quantized 90� coverage data.

The tradeoff between storage space and variant calling perform-
ance is also illustrated in Figure 4. For each quantizer and coverage
level ‘ (excluding 20�), we multiply the gzip CR for that quantizer
by the coverage level ratio, ‘=90. This value represents the fraction
of storage space required by the data with coverage level ‘, quan-
tized and compressed with gzip, with respect to the full (uncom-
pressed, 90�) data set. These fractions of storage space are plotted
in the figure against the F1 score obtained for SNPs in each case.
Notice, for example, that higher coverage data quantized with Q4

yields better performance than lower coverage non-quantized data
(except at 90� coverage), while requiring actually less storage
space.

4 Conclusions

Our experiments on various usage scenarios for nanopore sequenc-
ing data, including different applications and coverage levels, show
that the precision that is currently used for quality scores may be un-
necessarily high. A quantizer like Q4, which uses only four different
values for quality scores, yields results similar to those obtained
with the original data in all tested scenarios. We point out that all
these results were obtained with applications as they are provided,
with no special tuning or training for quantized quality scores, nor
with any quantizer optimization. Although such specific application
tuning may improve the performance of these applications (for

Table 4. Metrics TP; FP; FN; Rec; Prec and F1 for the SNPs obtained

with PEPPER-Margin-DeepVariant under various coverage scen-

arios, for the original (non-quantized) data and for the data

obtained by applying various quality score quantizers

Cov. Quant. TP FP FN Rec Prec F1

90� Original 3 317 116 10 041 10 376 0.9969 0.9970 0.9969

Q8 3 317 064 10 071 10 428 0.9969 0.9970 0.9969

Q4 3 316 599 9994 10 893 0.9967 0.9970 0.9969

Q2 3 315 132 10 023 12 360 0.9963 0.9970 0.9966

F10 3 310 775 9522 16 717 0.9950 0.9971 0.9961

hQ2;Q8id 3 315 867 10 121 11 625 0.9965 0.9970 0.9967

50� Original 3 314 614 13 842 12 878 0.9961 0.9958 0.9960

Q8 3 314 564 14 160 12 928 0.9961 0.9957 0.9959

Q4 3 314 059 14 488 13 433 0.9960 0.9956 0.9958

Q2 3 312 857 14 693 14 635 0.9956 0.9956 0.9956

F10 3 310 166 14 337 17 326 0.9948 0.9957 0.9952

hQ2;Q8id 3 313 530 14 780 13 962 0.9958 0.9956 0.9957

40� Original 3 312 510 20 159 14 982 0.9955 0.9940 0.9947

Q8 3 312 554 20 778 14 938 0.9955 0.9938 0.9946

Q4 3 312 056 21 237 15 436 0.9954 0.9936 0.9945

Q2 3 310 979 21 442 16 513 0.9950 0.9936 0.9943

F10 3 308 694 21 260 18 798 0.9944 0.9936 0.9940

hQ2;Q8id 3 311 573 21 820 15 919 0.9952 0.9935 0.9943

30� Original 3 307 863 60 007 19 629 0.9941 0.9822 0.9881

Q8 3 307 922 63 022 19 570 0.9941 0.9813 0.9877

Q4 3 307 467 62 382 20 025 0.9940 0.9815 0.9877

Q2 3 306 457 61 682 21 035 0.9937 0.9817 0.9876

F10 3 303 993 61 874 23 499 0.9929 0.9816 0.9872

hQ2;Q8id 3 306 928 62 256 20 564 0.9938 0.9815 0.9876

20� Original 3 285 668 466 868 41 824 0.9874 0.8756 0.9282

Q8 3 285 516 494 441 41 976 0.9874 0.8692 0.9245

Q4 3 284 787 464 226 42 705 0.9872 0.8762 0.9284

Q2 3 283 171 432 505 44 321 0.9867 0.8836 0.9323

F10 3 277 795 442 196 49 697 0.9851 0.8812 0.9302

hQ2;Q8id 3 283 622 442 501 43 870 0.9868 0.8813 0.9311

Table 5. Metrics TP; FP; FN; Rec; Prec and F1 for the INDELs

obtained with PEPPER-Margin-DeepVariant under various cover-

age scenarios, for the original (non-quantized) data and for the

data obtained by applying various quality score quantizers

Cov. Quant. TP FP FN Rec Prec F1

90� Original 303 517 29 403 200 983 0.6016 0.9136 0.7255

Q8 303 713 29 607 200 787 0.6020 0.9131 0.7256

Q4 301 600 30 180 202 900 0.5978 0.9110 0.7219

Q2 296 238 30 968 208 262 0.5872 0.9074 0.7130

F10 289 838 28 569 214 662 0.5745 0.9123 0.7050

hQ2;Q8id 304 333 37 142 200 167 0.6032 0.8935 0.7202

50� Original 287 895 43 665 216 605 0.5707 0.8709 0.6895

Q8 287 890 44 025 216 610 0.5706 0.8699 0.6892

Q4 286 319 43 663 218 181 0.5675 0.8703 0.6870

Q2 283 147 44 307 221 353 0.5612 0.8673 0.6815

F10 279 418 42 311 225 082 0.5539 0.8711 0.6772

hQ2;Q8id 289 053 51 537 215 447 0.5729 0.8515 0.6850

40� Original 278 841 51 239 225 659 0.5527 0.8476 0.6691

Q8 278 920 51 314 225 580 0.5529 0.8475 0.6692

Q4 277 724 51 171 226 776 0.5505 0.8473 0.6674

Q2 275 492 51 998 229 008 0.5461 0.8442 0.6632

F10 272 761 50 237 231 739 0.5407 0.8474 0.6601

hQ2;Q8id 280 046 59 427 224 454 0.5551 0.8281 0.6646

30� Original 265 283 63 876 239 217 0.5258 0.8092 0.6374

Q8 265 193 64 151 239 307 0.5257 0.8085 0.6371

Q4 264 442 64 213 240 058 0.5242 0.8079 0.6358

Q2 263 047 65 037 241 453 0.5214 0.8051 0.6329

F10 260 681 63 727 243 819 0.5167 0.8069 0.6300

hQ2;Q8id 266 429 72 561 238 071 0.5281 0.7894 0.6329

20� Original 239 522 96 040 264 978 0.4748 0.7177 0.5715

Q8 239 532 96 766 264 968 0.4748 0.7162 0.5710

Q4 238 938 95 403 265 562 0.4736 0.7185 0.5709

Q2 237 475 94 862 267 025 0.4707 0.7185 0.5688

F10 235 169 92 383 269 332 0.4661 0.7219 0.5665

hQ2;Q8id 239 968 102 876 264 532 0.4757 0.7039 0.5677

Fig. 1. Plot of 1� F1 score for the SNPs obtained with PEPPER-Margin-

DeepVariant for the original (non-quantized) data and for the data obtained by

applying various quality score quantizers, for coverages 90�; 50�; 40� and 30�
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example through neural network retraining), the fact is that excel-
lent results are obtained with no software adjustment and no quant-

izer optimization. The quantization of quality scores results in large
storage space savings, even using a general purpose compressor,
such as gzip.
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