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SUMMARY
In classical neuroscience experiments, neural activity is measured across many identical trials of animals
performing simple tasks and is then analyzed, associating neural responses to pre-defined experimental pa-
rameters. This type of analysis is not suitable for patterns of behavior that unfold freely, such as play behavior.
Here, we attempt an alternative approach for exploratory data analysis on a single-trial level, applicable in
more complex and naturalistic behavioral settings in which no two trials are identical. We analyze neural pop-
ulation activity in the prefrontal cortex (PFC) of rats playing hide-and-seek and show that it is possible to
discover what aspects of the task are reflected in the recorded activity with a limited number of simulta-
neously recorded cells (% 31). Using hidden Markov models, we cluster population activity in the PFC into
a set of neural states, each associated with a pattern of neural activity. Despite high variability in behavior,
relating the inferred states to the events of the hide-and-seek game reveals neural states that consistently
appear at the same phases of the game. Furthermore, we show that by applying the segmentation inferred
from neural data to the animals’ behavior, we can explore and discover novel correlations between neural
activity and behavior. Finally, we replicate the results in a second dataset and show that population activity
in the PFC displays distinct sets of states during playing hide-and-seek and observing others play the game.
Overall, our results reveal robust, state-like representations in the rat PFC during unrestrained playful
behavior and showcase the applicability of population analyses in naturalistic neuroscience.
INTRODUCTION

Neuroscience is traditionally conducted under tight experimental

control, requiring animals to engage in simple overtrained be-

haviors. Natural behavior, however, is more complex. Although

early approaches to the study of natural behavior based on

observation separated animal behavior into different states

defining an ethogram,1 neuroscience refrains from unrestricted

behavior due to lack of control. An example of natural behavior

not amenable to controlled experiments is play.

Social play is involved in the development of adaptive behavior

and prepares animals to deal with uncertainty in novel and social

situations as adults.2,3 Disruptions in social play are associated

with cognitive and social developmental problems in rodents2,4

and humans.3,5 A brain area associated with social play is the

prefrontal cortex (PFC), and this area is also enlarged in apes,

which are among themost playful mammals.6 Although cognitive

neuroscience notes the importance of the PFC in the develop-

ment of human social cognitive skills,7–9 most studies investi-

gating rodent PFC have focused on ethologically sterile, albeit
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tightly controlled, behavioral paradigms. Correlates of multiple

variables have been identified in the PFC activity of overtrained

animals. Yet, in the lab, rodents without a cortex survive and

can learn to perform numerous behaviors.10–12 Generally, the

PFC is implicated in a range of functions, such as context repre-

sentation,13 event prediction,14 decision-making,15 adaptive

behavior,16 action monitoring,17,18 and rule learning.19

Studying the neural activity of unconstrained behavior, like

play, is a challenge. However, neuroscience is advancing quickly

by applying statistical methods to the neural data of freely mov-

ing animals.20–22 Such methods uncover regularity from the neu-

ral data in ways naive to behavioral recording. These provide a

great tool to study the brain under agency-affording paradigms23

and might help us understand the brain during natural behavior.

Recently, these methods have been used in simple behavioral

paradigms,22 but extracting the most value out of them requires

their implementation under free and complex behavior.

Our previous study23 showed that rats can play a simple version

of hide-and-seek with a human, and we later extended this study

to pairs of rats observing each other play hide-and-seek.24 In both
ors. Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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studies,we recorded the PFC of rats using tetrodes and awireless

system. In this paper, we use these datasets, attempting an in-

verse physiology approach to study the neural basis of this

behavior and to probe methods of unsupervised population anal-

ysis during naturalistic behaviors.

We applied graphical state space models to segment neural

data into behaviorally relevant epochs,20 assuming that neural

activity arises from switching between a finite number of brain

states. We ask: (1) Can states be discovered in prefrontal cortical

activity? (2) Do states correlate with behavior? (3) Does this

approach allow the discovery of novel neural correlates of

behavior?

We find that naively inferred states are related to hide-and-

seek behaviors and accelerate the discovery of events and be-

haviors relevant for the PFC.

RESULTS

In Reinhold et al.,23 four rats were trained to play hide-and-seek

with humans (Figure 1A). Rats acquired the game quickly and

learned to play both roles in a 30 m2 room (Figure 1B). In hide-

and-seek, the rats performed two types of trials, labeled after

which role the rat was playing in the game.

While the game of hide-and-seek is a more free and less

controlled form of behavior than what is usual for neuroscience

experiments, the game structure (Figure 1A) allows us to define

some time points in every trial that signal the phases of the

game. We will refer to these throughout the paper. These are: (1)

start, a time point indicating the start of a new trial; (2) box open

(only in ‘‘seek’’ trials), the experimenter is hiding and opens the

start-box remotely; (3) jump out, the rat jumps out of the start-

box to either hide or seek; (4) interaction, the experimenter initiates

interaction with the animal; (5) return transit, the animal is picked

up to be returned to the start-box; (6) jump in, the animal jumps

from the experimenter’s hand into the start-box; and (7) end, a

time point after ‘‘jump in.’’

We analyzed data of PFC neurons recorded with a wire-free

neural logger (Deuteron Tech) while the animals played the

game (N = 4, 13 sessions). As shown in our previous work,

neurons responded to events in the game, such as the cell in Fig-

ure 1C responding to closing the start-box—the main cue differ-

entiating hide from seek. Our previous analysis23 pooled neurons

from different sessions and averaged across trials, revealing

clusters of cells whose mean activity is related to game events.

Similarities in averaged activity (Figure 1D) of neurons from

different sessions suggest that the population’s activity might

be governed by a lower number of underlying factors. Recording

subsets of neurons of the ‘‘same’’ population in individual

sessions therefore means that we are looking at an underlying

population activity ‘‘through different windows.’’

First, we qualitatively replicate a part of the analysis from Rein-

hold et al.23
Figure 1. Experimental setup of the hide-and-seek paradigm

(A) Structure of the game (from Reinhold et al.23).

(B) Experimental room.

(C) Spiking activity of a neuron aligned to the ‘‘box closed’’ time point.

(D) Stretched, trial-averaged, and normalized firing rates of all neurons (n = 176

clustering for visualization. Clustering applied to the time points (K-means, K = 6

2642 Current Biology 32, 2640–2653, June 20, 2022
Stretching every trial to the same length while aligning them on

the time points of the game, and ordering neurons based on their

mean activity, reveals trial-averaged neuronal activity related to

hide-and-seek game phases (Figure 1D, top).

Clustering mean activity not by neurons but by time (K-means

clustering,25 K = 6), highlights that there are distinct patterns of

population activity at different stages of the game (clusters in

colored bar, bottom plot of Figure 1D). This shows that—at this

resolution—trial-averaged rates in game phases such as

‘‘transit’’ are assigned to the same cluster in both ‘‘seek’’ and

‘‘hide,’’ meaning that activity in these stages is similar across

roles, while others show differences.

However, averaging gets rid of information encoded in trial-

specific neural fluctuations, especially in a setting where trials

have different durations and the animal’s behavior is free, unlike

in traditional experiments. Motivated by the fact that simulta-

neous analysis of all recorded neurons might offer the statistical

power needed for single-trial analysis,26 we apply unsupervised

state space models to the same neural data in a trial-by-trial

manner. Doing so might reveal features of population activity

correlated to behaviors not present in every trial or not directly

related to documented external events.

Mutual information between hidden Markov model
states and game phases
We adopt the neural population view27 and analyze the joint

activity of all simultaneously recorded PFC neurons. Neural

activity at each time point is described by a vector of firing

rates of the population’s neurons in the so-called ‘‘neural state

space,’’ and—because of correlations between neurons—can

be summarized by a set of latent factors.28 The assumption

underlying our analysis is that activity vectors corresponding

to engaging in the same behavior on different occasions

should be close in state space, and thus we can define a finite

set of discrete states, corresponding to clusters of similar ac-

tivity vectors, that make up the full set of activity vectors in a

session. This assumption is illustrated by a generative model

of neural activity in Figure 2A. In our analysis, at each time

point we look at which discrete state the current population

activity vector belongs to. Post hoc, we can investigate how

these states relate to the animal’s behavior. We illustrate our

approach on a single trial, on all trials of a session, and finally

show that similar results are obtained in multiple sessions and

datasets.

For each trial, first we bin each neuron’s spike times (250 ms)

(Figure 2B, top), then preprocess using Gaussian-process factor

analysis29 (GPFA), identifying smoothly varying lower-dimen-

sional signals underlying the population’s activity; the latent fac-

tors (Figure 2B, middle). Finally, we use a hidden Markov model

(HMM)30 fitted to the latent factors in all trials of a session to infer

the most likely sequence of discrete states assumed to have

generated the activity observed in the trial (Figure 2B, bottom).
) pooled across sessions (n = 13, top). Neurons are ordered by hierarchical

, bottom).



Figure 2. HMM state transitions coincide with events in the game

(A) Generative model of population activity. At each point in time PFC is in one of K discrete states (st) that follow each other with Markovian dynamics (bottom).

Each discrete state has stereotypical vectors of latent factors (xt, middle) associated with it, which are then assumed to underly the firing rate (rt) of the

population’s neurons (top).

(legend continued on next page)
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To visualize the segmentation, we uniquely color each discrete

hidden state and plot which state was most likely active at every

time point. Superimposing the time points at which the experi-

menters tagged an event based on the videos (Video S1)—the

events signaling game phases (Figure 1A) in black and additional

behaviors such as hiding, darting, and exploring in white—

shows that switches in the inferred states tend to coincide with

game events, as tagged from the video (see Figure 2B, vertical

lines).

Applying the same procedure to every trial of a session (Fig-

ure 2C) shows a clear consistency in the order and appear-

ance of the different latent states. This is true even though

each trial’s length, as well as the animal’s behavior, is sub-

stantially different across trials. This observation led us to sus-

pect that the states might be related to the specific actions,

mental states, and behavioral contexts of the animal. Note

that the model does not have any information about the

behavioral events or the role the animal is playing; it relies

on the neural data alone.

It is worth pointing out that the neural states identified in this

session last many seconds and their duration has some variance

(Figure S1A), which might point to the PFC encoding longer

states than is generally assumed. This result is likely biased by

our chosen timescale and the details of our analysis methods,

and analysis on different levels of description could yield com-

plementary insights.

How different discrete states correspond to clusters in neural

state space is illustrated using uniform manifold approximation

and projection (UMAP)31 embeddings of population activity

into 3 dimensions. Looking at the neural data in both ‘‘hide’’

and ‘‘seek’’ trials (Figure 2D), we see some clear differences

and similarities in the use of states between the roles. Some

states are shared, while others are more prominent in one role

(Figures S1B–S1E). Note how state #3, which is predominantly

active when the rat is inside the closed start-box, is mostly

missing in ‘‘hide’’ trials and only present after the rat has jumped

into the start-box at the end of trials.

To confirm our observations, we quantify the correspondence

betweenHMMstates and tagged behavioral epochs.We used all

time points the experimenters had tagged to divide the trials into

behavioral segments and calculated—using mutual information

(MI)—the similarity between the behavioral and HMM segmenta-

tions. Figure 2E shows the MI for the HMM in each session (or-

ange dot), compared with a distribution of randomly generated

clusters (blue, see STAR Methods). The HMM segmentation

based on neural data coincideswith the behavioral segmentation

above chance (p < 0.0001 in all sessions). The same analysis was

also performed in a cross-validated manner (Figures S2A and

S2B; see STAR Methods), and significance persists through a
(B) Analysis pipeline on a single trial. Binned spike counts (top) are projected to

discrete neural states using HMM (bottom). Black vertical lines show time points s

box, darting).

(C) Inferred discrete states in all trials of a session (session #12) show shared struc

lines indicate the game phases.

(D) 3D UMAP embedding of the latent factors, colored by states (session #12).

(E) Mutual information of behavioral and HMM states (orange points) are above

sessions. Star-code shows the p value for the bootstrap, *** = 0.001.

See Figures S1 and S2 and Video S1.
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circular shuffling procedure (Figures S2C andS2D) aswell. These

results imply that, without prior information about behavior and

structure of the game, clustering PFC population activity in time

reflects game phases and behaviors identified by Reinhold

et al.23 This correspondence was confirmed using a random for-

est classifier on the GPFA factors, showing decoding of the

behavioral state beyond chance (Figure S2E). Finally, decoding

performance increases with the number of recorded neurons

(Figure S2F) and is correlated with the MI score (Figure S2G).

Consistent representation of game phases and tagged
behaviors
Our results hint at inferred states being active at certain game

phases, consistently across trials. This shows—without aver-

aging—the presence of distinct neural activity patterns in these

periods.

To visualize this, we time-warped the states of each trial as we

did to firing rates in Figure 1D (see STARMethods). This aligns all

trials of a session to each other, to highlight states which are

locked to the phases of hide-and-seek and appear in a given

phase on each trial (Figure 3A).

This holds for other sessions (Figure 3B), even though different

neurons from different animals are recorded in them, suggesting

that it is not specific to the small sample of neurons picked up by

the recordings. However, because disjoint sets of neurons are

recorded in every session, we need to fit a different HMM to

each session. Given that labels are assigned randomly to the

states during fitting, there is no one-to-one correspondence be-

tween states identified in different sessions. To reveal states

related to the game phases across sessions, we attempted to

match their states to each other. We use pairwise correlations

of state probabilities through time as a similarity measure and

match every session’s states to a reference session (for details,

see STAR Methods). Two examples of this matching procedure

for ‘‘seek’’ are shown in Figure 3B, where re-coloring shows that

states which are consistently locked to game phases are suc-

cessfully matched to the reference session.

After matching every session’s states to the reference, aver-

aging state probabilities across all sessions (Figure 3C) reveals

there are states which consistently occur at the same game-

phase across sessions, even though they were identified on

single trials of different sessions and/or animals instead of trial-

averaged activity pooling neurons across sessions.

While stretching trials in length and aligning them identifies

states that are locked to game phases, if our assumption that

there is a correspondence between the animal’s state in the

world and the inferred brain states is correct—because hide-

and-seek is so unrestricted—we could find states corresponding

to behaviors or internal states not locked to the game.
a lower number of latent factors using GPFA (middle), then segmented into

ignaling the game phases, white lines are non-phase-locked events (entering a

ture in the states across trials. ‘‘F’’ markings indicate failed trials. Black vertical

chance (p < 0.0001, distribution of scores by random clustering in blue) in all



Figure 3. States related to the hide-and-seek game are identified across sessions

(A) Hidden states of all trials are matched to the same length and aligned on the time points signaling the game phases (black).

(B) Stretched states in two example sessions matched to the reference. Session #8 is a different animal, and session #11 is the same animal as the reference.

(legend continued on next page)
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To start, we look at co-occurrences of the HMM states with

behavioral states of the animal (tagged based on the videos),

including behaviors not locked to game phases.

Figure 3D shows conditional probabilities, P(HMM state|

behavioral state) and P(behavioral state|HMM state), to illustrate

this point. Rows of P(behavioral state|HMM state) (Figure 3D,

top) show what behavior the animal was most likely engaged in

when a state was active, while columns of P(HMM state|behav-

ioral state) (Figure 3D, bottom) show which states were mostly

active during a tagged behavior. Using a bootstrap analysis,

we find statistically significant correspondences between

HMM and behavioral states, denoted by stars on Figure 3D

(p < 0.05 post Holm-Bonferroni correction). Performing the

same significance test on all sessions independently (Figure S3)

shows the number of sessions having an HMM state significantly

associated with a behavior, showing the repeated appearance of

game-related states.

One behavioral state not locked to game phases is darting,

which is when the animal gallops forward on a straight path

with high velocity, and can happen at different game phases.

FromP(HMMstate|behavioral state = darting) (column in the bot-

tom panel of Figure 3D corresponding to ‘‘darting’’), it is apparent

that there is a single inferred state, state #7, which is most likely

active during this behavior.

Investigating the relationship between state #7 and darting, we

extracted the most likely states during every darting event, with

1 s before and after. The probability of each state across all dart-

ing events (Figure 3E) illustrates the correspondence between

state #7 and darting. Despite this correspondence, the relation-

ship is not one-to-one. Looking at P(behavioral state|HMM

state = 7) (row in top panel of Figure 3D corresponding to state

#7) reveals that this state is not entirely specific to epochs iden-

tified by the experimenters as darting.

Generally, our data analysis is filtered by experimenters’ deci-

sions to tag or not to tag behaviors. This limitation is external to

the HMM,which infers states in the brain without behavioral bias.

Next, we used this feature to accelerate the discovery of novel,

behaviorally relevant states.

HMM segmentation discovers novel neurally relevant
behavior
Correlates of tagged behaviors emerge from neural states in-

ferred from PFC activity alone. However, our approach’s

strength lies in identifying what is represented in neural activity

in an unsupervised, bottom-up way. It is possible that there are

states that represent parts of the environment or behaviors not

anticipated as relevant, defining a brain-based ethogram.

To unbiasedly discover what states represent, for each HMM

state we extracted videoclips where that state was active. This is

related to what is done in other studies segmenting behavioral

data.32–34 It is, however, fundamentally different in that we are

not segmenting the behavior in the videos based on behavioral
(C) Probability of state occurrence through time (averaged across all sessions (n

(D) Conditional probabilities P(behavioral state|HMM state) and P(HMM state|beh

game phases. Stars represent HMM-behavioral state pairs that have significant co

analysis).

(E) Probability of each state occurring during darting events (stretched for visual

See also Figure S3.

2646 Current Biology 32, 2640–2653, June 20, 2022
data, but segmenting videos based on the neural data alone.

This is reverse physiology and comparable to doing a spike-trig-

gered average, in this case a ‘‘state-triggered collection’’ of

videoclips.

Firstly, we confirm that states earlier identified as being related

to game phases are also apparent when looking at video collec-

tions. Even if we had no prior information that there were game

phases, it would be discoverable from the extracted collections

that, e.g., state #5 is active during transit to the start-box (Fig-

ure 4A; Video S2). Figure 4A showcases a compression of the in-

formation gathered from videos in a single figure. Each time the

state is active (Figure 4A, left), we extract image regions of inter-

est that deviate froma background (i.e., we extract changes from

the background), combined and superimposed into a single im-

age on a background frame (Figure 4A, right; see STAR

Methods), producing a simultaneous graphical representation

of the behaviors during a neural state. Figure 4A shows how

the ‘‘transit state’’ being active corresponds to when the rat

was on the experimenter and transported to the start-box,

capturing paths taken by the experimenter back to the start-

box in 3 different sessions. This is not a prediction of behavior,

just an empirical characterization of what happened at the

same time as the brain was in this state. This shows that a

reverse physiology approach may confirm our pre hoc assump-

tions, but the same approach could lead to the discovery of un-

assumed descriptions for what the brain is encoding.

Extending this methodology to each state, we describe what

happened in the experiment when that state was active. This

can be seen as a brain-based ethogram, naively analyzing

what elicits state changes in the PFC without looking at the

behavior first. To exemplify, we look at the reference session

(session #12).

As mentioned before, tagged behaviors cannot be considered

ground truth. We found that state #7—shown to dominate during

darting (Figure 3E)—is predominantly active when the animal is

running, and the short darting epochs identified by the subjective

criteria of the experimenters are a subset of this behavior (Fig-

ure 4B; Video S3). An approximation of the animal’s speed when

each state was active shows that—apart from the transit state

when transported by the human experimenter—the animal was

moving fastest when state #7 was active (Figures S4A and S4B).

Consistent with Figure 3C, we found a state associated with

the proximity of the experimenter mostly active during interac-

tion and play. State #8 is active during play with the experimenter

and is sometimes activated upon their approach (Video S4; Fig-

ure S5A). This state appears absent in failed trials where the play

reward is omitted (Figure S5B).

To this point, we have shown bottom-up discovery of states

for which we had pre hoc expectations. However, this method

resulted in surprising discoveries as well. For example, two

states are active when the rat is walking alongside walls (#9

and #4) (Figure 4C; Video S5, quantified in Figures S4C and
= 13) from all rats (N = 4) after matching to the reference).

avioral state) reveal states associated with behaviors not necessarily locked to

nditional probability (p < 0.05, Holm-Bonferroni correction, based on bootstrap

ization) shows that state #7 is associated with darting.
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S4D). Anecdotally, one state seems related to slowly walking

along the wall, while another presents wall exploration.

Even though tagging rest periods as meaningful behavior a

priori is uncommon, our reverse physiology of session #12

showed states consistently active when the rat seems to be

resting and inactive. The apparent examples of these states

are the long periods in two of the ‘‘seek’’ trials with switches

between states #2 and #10 (see Figure 2C). Extracting the

videos, we found that these correspond to the animal stopping

behind a cardboard wall and not looking for the experimenter.

These states are generally active when the animal is resting or

seems unengaged by the task (see speeds in Figure S4A) and

are notably present in the failed ‘‘seek’’ trial (Figure S5B). We

do not notice apparent behavioral differences from our col-

lections between both states. We note, however, that state

#2 includes longer states (Figure S1A), and state #10 some-

times activates when the animal waits in the start-box. Differ-

ences picked up by the HMM between state #2 and #10 could

be beyond our behavioral resolution or related to processes

such as attention or planning.

Some inferred states relate to the animal’s interaction with

experimental boxes. States #3 and #1 are active when the rat

is in or jumping into the start-box. Additionally, state #1 is some-

times active when the rat is in a hiding box. One very interesting

state (#6) activates when the rat is in the opened start-box. When

extracting videos for the state unbiasedly, we noticed the same

state is active when the rat peeks out of hiding boxes in the play

arena (Figure 4D, insets; Video S6).

Overall, we find that hidden states, identified purely on neural

data, reflect the behavioral state, game phase, and actions of the

animal. We wondered whether, while observing the game, the

PFC could recover states related to the behavior of another rat

playing hide-and-seek.

HMM states differ between observing and playing
behaviors
To test whether neural states in the PFC mirror states of another

rat, we applied the same method to a dataset that compares

playing hide-and-seek to observing hide-and-seek.24 Rats (N =

4, 12 sessions) were recorded while playing hide-and-seek

with the experimenter and while observing another rat play the

game from inside a glass box. Previous work24 showed that cells

during observing have lower firing rates and are not responsive

to the play going on with the other rat. We re-analyzed this

data using our bottom-up framework.

We increased the possible states (K = 18), accounting for

states that might occur when the animal is observing. State anal-

ysis confirms single-cell analysis,24 in that the activity in the PFC

during observing and playing is starkly different. Our previous

analysis was event-related, i.e., biased by the experimenter.

The model, however, without bias, infers one set of states active

during playing and another distinct set for observing (Figure 5A).
Figure 4. Discovery of new neurally relevant behaviors using video ext

(A) Bottom-up analysis confirms the ‘‘transit neural state.’’ Times when state #5 w

these times superimposed on each other (right).

(B–D) Superimposing extracted video frames illustrates behavior associated with i

and (D) peeking out of boxes (state #6). Marginal plots above: probability of stat

See also Figures S4 and S5 and Videos S2, S3, S4, S5, and S6.
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States during play (Figure 5A, top) hold a relation to game

phases, reaffirming our previous findings.

Indeed, the conditional probability of a trial being an observing

one given the active state clearly splits the set of states in most

sessions (Figures 5B and S6; see STAR Methods). Embedding

neural activity into 3 dimensions using UMAP and coloring by

HMM state (Figure 5C) demonstrates the remarkable separation

between playing and observing in neural state space. Addition-

ally, it shows how HMM states correspond to clusters in this

space.

MI on playing trials (Figures 6A and 6D) reproduces our previ-

ous findings (p % 0.001 in all sessions). Figure 6B shows the

analysis applied to neural data in the observing rat, comparing

HMM states with its own tagged behavior (grooming, engaged,

or resting; see STAR Methods). Although the correspondence

is less clear, the HMM is picking up meaningful states for the

observing rat during observing trials (Figure 6B, p < 0.05 in 8 ses-

sions). Finally, HMM segmentation of activity in the observing rat

does not show a significant relationship with the manual seg-

mentation of the other (observed) rat’s playing behavior (Fig-

ure 6C, p < 0.05 in 2 sessions only).

Even though two sessions have significant MI between the

HMM states while observing and the other rat’s play, and in

some sessions there are states co-occurring in observing and

playing trials, we found no state mirroring of play. States with a

conditional probability P(observing|state) between 0.3 and 0.7

are rare (median: 12.2% of total time). With few neurons it is hard

to determine whether these infrequent finds are due to sharing

states or poor neural resolution to resolve them. What is clear, is

the robust tendency to separate state representations in the two

contexts and the value of the method to demonstrate these.

DISCUSSION

In contrast to traditional neuroscience, the hide-and-seek para-

digm23 allows rats to engage in a wide range of unrestricted

behaviors. We show that, despite no two trials of hide-and-

seek being the same, it is possible tomeaningfully analyze neural

activity, even with relatively few neurons.We here extend on pre-

vious work showcasing the power of state space analysis to un-

cover behaviorally relevant neural states.

We recognize and were influenced by work that applied akin

statistical methods to neural data. Linderman et al.20 conducted

similar analyses on the simpler behavior of C. elegans. Rubin

et al.22 report similar findings from Ca2+ recordings in mice dur-

ing much simpler behavior. Recanatesi et al.35 have shown that

HMMs fitted to neural activity in the secondary motor cortex of

rats accurately predict sequences of self-initiated actions. We

stipulate—like Rubin et al.22—that our method is useful for

exploratory analysis and identifying aspects of an experiment

and the animals’ behavior that are reflected in the neural activity

of a brain area whose function is yet unclear.
raction

as active in 3 sessions (left, after state matching). Filtered video frames during

ndividual neural states. (B) Running (state #7), (C) walking along walls (state #9),

e occurrence through time across trials of the session.



Figure 5. Playing and observing hide-and-

seek are associated with distinct sets of

neural states

(A) Stretched HMM states on each trial of a session

show the game structure when playing the game,

as well as another set of states (with no connection

to game phases) when observing.

(B) P(observing|neural state) between playing and

observing neural states. (Each dot corresponds to

a state.)

(C) 3D UMAP embedding in an example session

illustrates the separation between playing and

observing states.
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In our study, we recorded the simultaneous activity of a

maximum of 31 neurons. We find the fact that we were able to

read out the animals’ approximate behavioral states—based

on the HMM states as well as using supervised decoding—

from few neurons noteworthy. Our findings confirm previous re-

ports13,17,18,22 of PFC function, taken to higher behavioral

complexity and freedom. Our approach is similar to Recanatesi

et al.35 and Rubin et al.,22 the important advancement being

that hide-and-seek is a vastly more complex behavior than pre-

viously studied. We hypothesize that our approach’s success is

related to the functions of the PFC and are hopeful that larger-

scale recordings combined with similar analyses might provide

amore comprehensive view into the PFC during complex behav-

ior(s). Additionally, we constrained ourselves to fitting models

with an equal number of states to different sessions; yet, this

approach can be applied in a more flexible way, where the num-

ber of states can vary across sessions, days, or animals. Further-

more, though unaddressed here, detailed structure-function
Current B
work with high density probes should

clarify the difference in role, if any, be-

tween sub-regions of the rat PFC,

applying models to different areas.

The segmentation by the HMM is

perfectible. Sometimes a ‘‘single behav-

ioral state’’ (such as inside the closed

box) is partitioned into multiple states.

These longer states (many seconds long)

might be better described by models

switching between different linear or

non-linear dynamics. Such models have

been used by Linderman et al.,20 inferring

segmentations of worm behavior that

closely matches that of human experts.

Our results are in line with the findings of

Linderman et al.,20 that for segmentation

alone, simpler models are enough.

Future work should not overlook the

quantification of the animals’ behavior.

Even though the original experiment was

not technically designed for a detailed

behavioral analysis, we approximated re-

lations between some behavioral vari-

ables and latent states. We speculate

that adding more hidden states to our

models might lead to a segmentation on
a finer scale, but our behavioral data are not detailed enough

(e.g., no pose information) for a meaningful analysis on that time-

scale. As a supplementary to manual segmentation of behavior,

Wiltschko et al.34 perform unsupervised segmentation like ours

directly on the behavior of mice, using autoregressive (AR)-

HMMs decomposing mice’s pose dynamics into behavioral syl-

lables. Markowitz et al.36 use segmentation tools developed by

Wiltschko et al.34 to relate activity in striatum to ‘‘behavioral syl-

lables’’ in mice, and stipulate that switches between the behav-

ioral modules might be controlled by higher-order brain areas,

such as the PFC. Batty et al.32 also use AR-HMMs to segment

behavioral videos, producing a lower-dimensional representa-

tion of behavior and aiding the decoding of neural activity.

Unfortunately, our data had no one-to-one correspondence

between the neurons recorded in the different sessions, leading

to us having to fit separate HMMsper session. As detailed byDa-

bagia et al.,37 an interesting idea for combining data from multi-

ple recordings—assuming the structure of neural activity
iology 32, 2640–2653, June 20, 2022 2649



Figure 6. Results about playing are reproduced in a second dataset, but state mirroring is absent

(A) Mutual information of HMM states of the playing rat with its own play behavior is significant.

(B) Mutual information of HMM states of the observing rat with its own tagged observing behavior (see STAR Methods) shows significance in a different

context.

(C) There is less significant mutual information between inferred HMM states of the observing rat with the manual segmentation of the playing rat’s

behavior.

(D) Similar to Figure 3D, conditional probabilities P(behavioral state|HMM state) and P(HMM state|behavioral state) reveal significant correspondence between

certain HMM-behavioral state pairs (stars represent p < 0.05, Holm-Bonferroni correction). The star-code in (A)–(D) shows the p value for the bootstrap with * =

0.05, ** = 0.01, *** = 0.001.

See also Figure S6.
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remains stable38—could be to align the distributions of popula-

tion activity in them. Perhaps high-yield recordings allow for a

better estimate of the structure of population activity, making

alignments feasible and permitting joint analysis from different

sessions and individuals.

Despite all these challenges, we have used HMMs to

naively detect meaningful behaviors that resulted in state
2650 Current Biology 32, 2640–2653, June 20, 2022
changes in the PFC. We have contributed to showing the

robust differences in state representation between play and

observing play, pointing toward the value of studying the

PFC in different arousal states. Combining these methods

with experiments where animals engage in many dissimilar

tasks, behaviors, and contexts would contribute to under-

standing the PFC.
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Overall, our work shows that a few simultaneously recorded

neurons from the PFC are enough to decode the hide-and-seek

game phases in a ‘‘state-by-state’’ manner. The ease with which

a simple HMM allows us to infer such changes in behavior sig-

nifies the clear role of the PFC in representing behavioral states

in naturalistic and complex conditions. These conclusions are

in line with work demonstrating the PFC’s role in the representa-

tion of current rules16 and its putative role in computing belief

states.39 Such a representation of state is an important piece of

the puzzle in the reinforcement learning framework. Overall, it is

apparent that HMM neural state analyses expand our ability to

relate multi-neuron activity to behavior, and hence this type of

analysis addresses a fundamental issue in neuroscience. Our

analysis of the observing-playing dataset uses a novel approach

to address the question of ‘‘mirroring’’ from a state perspective

(‘‘mirror states’’) during observing play behavior in the PFC. We

think our brain-state-driven approach could in the future be im-

plemented in more controlled tickling experiments where there

is evidence of behavioral contagion and neural mirroring in the

somatosensory cortex.40 The combination of reverse physiology

with neural state analyses will also undoubtedly play a future role

in the neuroscience of naturalistic behavior. Specifically, recent

advances in recording technologies41 applied to freely living an-

imals would help to clarify the role of PFC in action selection

and execution of an animal’s complete ethogram.
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PonyORM N/A https://github.com/ponyorm/pony/

ssm N/A https://github.com/lindermanlab/ssm

Elephant N/A http://neuralensemble.org/elephant/

xarray N/A https://xarray.pydata.org/

scikit-learn N/A https://scikit-learn.org/

MoviePy N/A https://zulko.github.io/moviepy/

Datasets

https://doi.org/10.12751/g-node.ib9tty
Hide-and-seek dataset Custom
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Juan Ignacio Sangui-

netti-Scheck (jsanguinettischeck@fas.harvard.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability

Data have been deposited at a G-Node repository and are publicly available as of the date of publication under the link https://gin.

g-node.org/bagibence/hidenseek_hmm. DOIs are listed in the key resources table

Code necessary for reproducing the analysis has been deposited in Zenodo and are publicly available as of the date of publication

at https://github.com/bagibence/hidenseek_hmm. DOIs are listed in the key resources table.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

The present study includes data from two studies that introduced hide-and-seek as amodel for complex play behavior with male rats

(n=8 total). For full description of the training, behavioural methodology, classification of behaviour and protocols (G 0297/18) please

see Reinhold et al.23 and Concha-Miranda et al.24

METHOD DETAILS

Video recordings
We acquired wide angle video of the rats’ behavior via one or two overhead Flir Chameleon 3 cameras (FLIR� Systems, Inc., USA)

running at 30 frames per second. A second Flir Chameleon 3 camera recorded either the room itself or the observer behavior inside

the observer cage. The images obtained and the corresponding camerametadata related to frame identity and digital input pin states

were recorded using Bonsai42 performing online tracking of the rat.

Behaviors pertaining to hide-and-seek were manually classified according to Reinhold et al.23 and Concha-Miranda et al.24 using

the software ELAN.

In the case of the Concha-Miranda et al.24 paper, when the recorded rat is in the observer position, the experimenters behaviorally

tagged the hide-and-seek behaviors of the playing (not recorded) rat, as well the behavior of the observing (recorded) rat into 3 cat-

egories (engaged, resting, grooming).
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Neural acquisition
We implanted 8 male Long–Evans rats with Harlan-8 tetrode Drives (Neuralynx Inc., USA) in the medial prefrontal cortex (Cg1, PL, IL)

at coordinates (Bregma + 3, lateral + 0.5). Tetrodes were arranged in a 2 by 4 matrix resulting in recordings between 2.3 mm and

3.8mm anterior from bregma and 0.25mm and 0.75mm lateral from bregma. Tetrodes were turned from 12.5 mmdiameter nichrome

wire (California Fine Wire Company) and gold plated to 250–300 kU impedance. In order to identify tetrodes in the anatomy of PFC,

tetrodes were stained with fluorescent tracers DiI and DiD (ThermoFisher Scientific Inc., USA) before implantation. Before surgery,

animals were initially anesthetized with isoflurane (cp-pharma, 31303 Burgdorf) followed by an intraperitoneal injection of ketamine

(100 mg/kg, Medistar Arzeneimittelvertrieb, 59387 Aschberg) and xylazine (7.5 mg/kg, WDT, 30827 Garbse). During surgery body

temperature was kept at 36�C with a thermal blanket, and a non-traumatic head holder was used. Surgeries took 2–3 hr, after which

the animals woke up and were treated with carpofen (5 mg/kg, Zoetis Deutschland GmbH 10785 Berlin) for 2 days. Animals were

checked on regularly to ensure proper recovery from the surgery. No complications occurred. After 2–3 days of surgery, rats

were gradually re-habituated to play hide-and-seek. The first 2 days, rats freely explored the room or remained as observers while

a demonstrator rat played. Once animals showed interest in playing again, the hide-and-seek protocol was restarted.

We recorded neural signals using a 32-channel wire-free neural logger developed by Deuteron Technologies, recording extracel-

lular signals at 32 kHz. The system consists of a headstage performing amplification and digitalization, where themultiplexed signal is

then processed in a processor board and stored on a micro SD card on the head of the animal. The whole system is mechanically

attached to the cap of the Harlan-8 drive and covered by a protective case that also served as a red target in our online movement

tracking.

The processor board of the Neural Logger receives and transmits radio signals allowing for communication with a base station.

Radio communication is fast enough to enable synchronization via TTL’s between the base station and the logger. Hardware copies

of these TTL’s are also sent to the cameras via I/O pins.

Extracellular recordings were spike detected and sorted using Kilosort.43 After the initial sorting, clusters were manually curated

using Phy in Python. Cluster quality was assessed by spike shape, cluster separation of its principal components. SNR and ISI-histo-

gram with lack of contamination in a 1 ms refractory period.

After conclusion of the experiment, rats were anesthetized with urethane and depth positions on selected tetrodes were marked

with electrolytic lesion. The lesions were conducted using a NanoZ (Neuralynx Inc., USA) with a DC current of�8 (mA) for 8 s, tip nega-

tive. The rats then received an overdose of the anaesthetic andwere transcardially perfused using a prefix solution followed by PFA at

4%. The brains were extracted and post-fixed in 4% PFA for 18–24 hr before being sectioned coronally into 100 mm thick sections.

Before proceeding with tissue staining, slices were photographed at an epi-fluorescencemicroscope to reveal differential patterns of

fluorescence dyes (DiI or DiO) on different tetrodes. This allowed for further identification of each individual tetrode. To finalize the

histology tissues went through cytochrome oxidase staining and were imaged under a bright field microscope to visualize the lesions

and identify the anatomical location of each tetrode in the brain, in according to the Paxinos & Watson rat brain atlas (Sixth edition,

2007).

QUANTIFICATION AND STATISTICAL ANALYSIS

Selecting sessions for analysis
One session where a single neuron was recorded (session #6) was excluded from the analysis. The analyzed sessions had the

following number of recorded neurons: 9, 12, 7, 5, 11, 14, 15, 16, 9, 8, 31, 31, 8. The observing data set had 12 sessions with the

following number of recorded neurons: 11, 12, 12, 11, 13, 10, 16, 11, 8, 8, 17, 13.

Segmenting neural data in time
In all our analyses, spikes on each trial are binned into 250 ms long non-overlapping bins.

For Figure 1D spikes are smoothed with a Gaussian window with 500 ms half-width and the resulting firing rates are scaled be-

tween 0 and 1 per neuron. K-means clustering is performed with K=6. The number of clusters in time is determined by cross-valida-

tion using TimeSeriesSplit in scikit-learn with 20 segments and the kneedle44 algorithm for finding the knee of the test-score curve.

For visualization, neurons are ordered according to a hierarchical clustering, using correlation through time as a distance measure.

The main component of our analysis is segmenting the neural data recorded during the hide-and-seek games in an unsupervised

manner by inferring sequences of discrete states underlying the spiking activity in each trial. To fit the HMMs to our data, we used the

ssm package.45 For each session, we initialize with 40 different random seeds and pick themodel whichmaximizes the log-likelihood

of the observed data. We used ’’sticky’’ transitions, increasing the probability of self-transitions, which has been shown to reduce

rapid switching of states in a variety of task,46,47 with the default parameters in ssm (a = 1, k = 100). The effect of ’’sticky’’ transitions

is similar to what Rubin et al.22 achieve by filtering out short deviations from clusters.

Additionally, we have found that pre-processing spike trains using GPFA (implemented in the elephant Python package48) can

effectively ‘‘denoise’’ the data and further reduce rapid switching. Therefore, we bin spike times into 250 ms long non-overlapping

time bins, and these spike counts are fed to the GPFA algorithm. Next, we fit HMMs on the factors found by GPFA. Since the factors,

xi, are Gaussian processes, HMM observations, yi, at each time point are normally distributed.

Since the GPFA factors are designed to capture the shared activity in the recorded neuronal population, we attempted to set the

number of factors to the dimensionality of the population activity for each recording separately. To determine this dimensionality (i.e.
Current Biology 32, 2640–2653.e1–e4, June 20, 2022 e2
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pick the number of factors of a session), we used the two-step technique based on factor analysis and cross-validation, described in

Williamson et al.49 and also applied by Semedo et al. 50: (1) We fitted FAmodels with increasing number of dimensions and picked the

model that maximized the cross-validated log-likelihood on the session’s firing rates. (2) We picked the GPFA dimensionality as the

smallest dimensionality that captured 95%of the variance of the shared covariancematrix, CTC, of themodel from the previous step.

It is generally hard to pick the number of states (K) in hidden Markov models if one does not know it in advance.51 This is precisely

the case in our situation, we have no prior information about the number of activity patterns present in PFC activity. To infer the num-

ber of states, we performed cross-validation (10-fold) where we fitted HMMs varying the number of states on a subset of trials in a

session, then recorded the log-likelihood of the activity on held-out trials normalized by the number of time points in those trials.

Please note that given the behavioral diversity in our experiments from trial-to-trial, we do not think cross-validation can uncover

the ‘‘ground truth’’ regarding the number of states. However, testing the values K ˛ {5, ., 45}, based on this cross-validation pro-

cedure we concluded K ˛ {9,..., 16} to be an appropriate range for the number of HMM states in the reference session, with K=10

maximizing the test-likelihood. Fitting on all trials of the session, we have qualitatively found that adding an additional state

(K=11), while being as simple as possible, results in a clearer representation of transit and interaction with the experimenter. Addi-

tionally, in our experience models with K ˛ {9,., 16} produce qualitatively similar results.

Although we should not expect the activity in different sessions to be described by the same number of states, we imposed this

number on every session to be able to match states between them.

We emphasize that the methods used here are not critical details of the general approach, we obtain qualitatively similar results

fitting HMMswith Poisson observations on the spike counts directly (skipping preprocessing usingGPFA), using different bin lengths,

or by further embedding the factors using UMAP and applying K-means clustering.

Visualization using UMAP
While UMAP could in principle be applied as a non-linear dimensionality reduction step in the analysis pipeline, here we use it for

visualization purposes only, embedding GPFA factors into 3 dimensions with the settings n_components=3, n_neighbors=40.

Stretching
Trials are stretched to the same length and aligned to each other by first establishing a shared set of reference time points by taking

the median across trials for each of the time points that signal a change in the phases of the game, then stretching time in individual

trials to align with these using interpolation, also used by Kobak et al.52 In the case of firing rates linear interpolation is used, while for

aligning states (which have discrete values) the value at the nearest time coordinate is taken.

Mutual information
Just as hidden Markov models segment the trials into intervals based on the neural data, the time points tagged based on the videos

signaling behavioral changes define another segmentation of the same trials. Treating the two segmentations as two clusterings of

the same set of time points, we can use themutual information (MI) score – ameasure of similarity between two clusterings – to quan-

tify their correspondence. In our analysis, we concatenate states – behavioral and HMM separately – from all trials of a session and

obtain a single MI score per session.

To test if the segmentation by the HMMs is more similar to the behavioral segmentation than what we could expect by chance, we

generate 10.000 ’’fake segmentations’’ and a distribution of mutual information scores we could expect if we segmented the trials

randomly. These fake clusterings are generated by, for every trial, randomly shuffling the order of the HMM state segments. Finally,

segmentations on all trials of a session are concatenated and the MI with the behavioral segmentation is calculated the same way as

for the ‘‘real’’ HMM segmentation.

The same random segmentations are used to test the significance of the conditional probabilities in Figure 3D. We calculate, for

each combination of HMM- and behavioral states, the conditional probabilities P(HMMstate | behavioral state) and P(behavioral state

| HMM state). Doing the same using the randomly generated clusterings produces a null-distribution of conditional probabilities we

can compare the original values to.When calculatingwhich conditional probabilities are significant, we only consider caseswhere the

real conditional probability is larger than 0.001. To generate Figure S3, we repeated this same analysis for every session, and for each

behavioral state counted in how many sessions we found an HMM state for which P(HMM state | behavioral state) was significantly

higher than chance.

We further tested for the significance of timing alone by comparing mutual information with cyclic rotations of the HMM segmen-

tation obtained, keeping both the statistics of segment lengths, as well as the statistics of the transitions between them. This was

done by concatenating the HMM states from all trials of a session and generating a null-distribution of scores by shifting the state

labels by every possible number of time bins.

These bootstrapping analyses are done on each session separately and are independent of the matching procedure.

Another but similar approach is taken when analysing the second, ’’observing’’ data set (Figure S6). In this case we use mutual

information to quantify the relationship of the inferred states in a trial with the observing or playing role of the animal in that trial.

This is done by calculating the mutual information of the HMM states with a binary labeling in which every time point in observing

trials is class A, every time point in playing trials is class B. To compare the achieved score to the distribution of MI scores we would

get by chance, we keep the transition points of the segmentation inferred by the HMM but randomly relabel every segment (i.e.,

assign it a class label from {1,..., K}), and calculate the MI score of these random labels with the binary labeling mentioned above.
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Decoding analysis
To decode the tagged behavioral states from neural activity, we used a random forest classifier with the default settings in scikit-

learn. For testing whether the random forest’s performance was above chance level, we compared it to two ‘‘dummy classifiers’’.

The dummy classifier with the ‘‘stratified’’ strategy chooses a random label for each data point in the test set by drawing from the

distribution of the labels in the training data. The dummy classifier with the ‘‘most frequent‘‘ strategy predicts the most frequent label

in the training data. We performed 10-fold cross-validation, training on 9/10 of the trials and testing on the remaining ones, then

compared the distributions of decoding scores using a one-sided Wilcoxon signed-rank test. We performed the test against both

the ‘‘stratified’’ and the ‘‘most frequent’’ dummy classifiers and took the larger p-value in each session.

Matching
Because we record a different subset of neurons in different sessions, we have to fit a different HMM to each session. In order to

generate Figures 3B and 3C and demonstrate that states that are locked to the phases of the game are found in multiple sessions,

we attempted to match states identified on different sessions to each other. To do this, first we calculated for each state the prob-

ability of it being active at every time point in each session.We calculated themedian values of the time points signaling the phases of

the game across every trial of every session – for hide and seek separately in order to include the ‘‘box open’’ point in seek trials. We

stretched every trial to the same length by aligning them to these median points. Then to match the states of two sessions, we calcu-

lated the correlations of these time series for every pair of states in the two sessions’ models, again in hide and seek separately. This

results in 2 correlation matrices. We then applied the Hungarian algorithm53 to the (negative) average of these correlation matrices to

find the pairingwith the highest total correlations. To pick a reference session, we sumup the correlations between the identified state

pairs between every pair of sessions. The sessionwith the highest average correlation to all the other sessions (session #12) is chosen

as the reference session. We then permute the states’ identities in all the other sessions so that they match the order of the reference

session. (e.g., if state #9 of session #5 ismatched to the state #1 of the reference session, we relabel the states of session #5 such that

what used to be state #9 becomes state #1.)

We tried alternative ways of matching the states such as using other distance measures between the time series, as well as using

contingency matrices between behavioral and HMM states instead of state probabilities in time, with similar results as this method.

Video summary figures
In Figure 4 we aim to summarize what happened in the videos while particular neural states were active. In short, we extract the parts

of the videos where the state was active and combine the frames into a single image by stacking them on top of each other. More

precisely, first we extract a frame on which neither the animal, nor the experimenter are present and use it as a background. Then for

Figures 4B–4D, for – to avoid overlapping extractions – every second framewhen the neural state was active, we identify the animal’s

location and extract a bounding box around it from the video frame. Finally, we overwrite the background image at this location with

the part extracted from the frames.

For Figures 4A and S5 a slightly different technique is used. Here, instead of based on the animal’s position, we try to identify po-

sitions in the frames where something ‘‘interesting’’ happened. To do this, for every second frame when the state is active, we calcu-

late the structural similarity score between the background and the frame at each pixel, use adaptive thresholding to binarize the

image, then find patches where they are different. We tag these areas as ‘‘interesting’’ and used them to overwrite the background

image’s corresponding pixels. This way, areas where the frame is different from the background are included in the final summary

image. This way not only the rat’s but also the experimenter’s activity can be potentially included in the final summary image.

Software tools
All analyses were done in the Python programming language, making extensive use of the following libraries: Jupyter Notebooks,54

matplotlib,55 numpy,56 pandas,57,58 xarray,59 seaborn,60 scipy,61 scikit-learn,62 PonyORM, ssm,45 elephant, MoviePy.
Current Biology 32, 2640–2653.e1–e4, June 20, 2022 e4


	Unsupervised discovery of behaviorally relevant brain states in rats playing hide-and-seek
	Introduction
	Results
	Mutual information between hidden Markov model states and game phases
	Consistent representation of game phases and tagged behaviors
	HMM segmentation discovers novel neurally relevant behavior
	HMM states differ between observing and playing behaviors

	Discussion
	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Method details
	Video recordings
	Neural acquisition

	Quantification and statistical analysis
	Selecting sessions for analysis
	Segmenting neural data in time
	Visualization using UMAP
	Stretching
	Mutual information
	Decoding analysis
	Matching
	Video summary figures
	Software tools




