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Diabetic foot ulcers (DFU) and cutaneous lupus erythematosus (CLE) are both
diseases that can seriously affect a patient’s quality of life and generate economic
pressure in society. Symptomatically, both DLU and CLE exhibit delayed healing
and excessive inflammation; however, there is little evidence to support a
molecular and cellular connection between these two diseases. In this study,
we investigated potential common characteristics between DFU and CLE at the
molecular level to provide new insights into skin diseases and regeneration, and
identify potential targets for the development of new therapies. The gene
expression profiles of DFU and CLE were obtained from the Gene Expression
Omnibus (GEO) database and used for analysis. A total of 41 common
differentially expressed genes (DEGs), 16 upregulated genes and
25 downregulated genes, were identified between DFU and CLE. GO and
KEGG analysis showed that abnormalities in epidermal cells and the activation
of inflammatory factors were both involved in the occurrence and development
of DFU and CLE. Protein-protein interaction network (PPI) and sub-module
analysis identified enrichment in seven common key genes which is KRT16,
S100A7, KRT77, OASL, S100A9, EPGN and SAMD9. Based on these seven key
genes, we further identified five miRNAs(has-mir-532-5p, has-mir-324-3p,has-
mir-106a-5p,has-mir-20a-5p,has-mir-93-5p) and7 transcription factors
including CEBPA, CEBPB, GLI1, EP30D, JUN,SP1, NFE2L2 as potential
upstream molecules. Functional immune infiltration assays showed that these
genes were related to immune cells. The CIBERSORT algorithm and Pearson
method were used to determine the correlations between key genes and
immune cells, and reverse key gene-immune cell correlations were found
between DFU and CLE. Finally, the DGIbd database demonstrated that
Paquinimod and Tasquinimod could be used to target S100A9 and Ribavirin
could be used to target OASL. Our findings highlight common gene expression
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characteristics and signaling pathways between DFU and CLE, indicating a close
association between these two diseases. This provides guidance for the
development of targeted therapies and mutual interactions.
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diabetic foot ulcer, DFU, cutaneous lupus erythematosus, CLE, bioinformatics, common
key genes, inflammatory

1 Introduction

Diabetic foot ulcer (DFU) is one of the most serious
complications of diabetes mellitus and presents as chronic, non-
healing wounds caused by diabetic sensory, motor, and autonomic
neuropathy, vascular disease, and bacterial infection (Armstrong
et al., 2023). Up to approximately 34% of individuals with diabetes
will develop a foot ulcer during their lifetime, and the mortality rate
at 5 years for patients with DFU is 2.5-fold higher than the risk for
patients with diabetes who do not suffer from foot ulcers (Walsh
et al., 2016; Armstrong et al., 2017). DFU causes significant financial
strain on patients and is associated with high medical costs.
Investigating the pathogenesis of DFU and potential targets is an
immense challenge in the field of wound healing and tissue
regeneration.

Systemic lupus erythematosus (SLE) is a chronic autoimmune
disease that is affected by gender, race, genetics and other factors.
This condition can affect multiple organ systems across the body; of
these, the skin is the second most affected organ (Lee and Sinha,
2006). It is estimated that approximately 70% of SLE cases involve
cutaneous manifestations, known as cutaneous lupus erythematosus
(CLE); however, there are currently no FDA-approved treatments
for CLE (Tsoi et al., 2019).

Skin lesions are a common symptom of DFU and CLE, and both
of these conditions usually present with persistent, non-healing
wounds (Doersch et al., 2017; Zubair and Ahmad, 2019). DFU
patients suffer from lesions and abrasions with the loss of epithelial
cells; these lesions and abrasions may extend to the dermis and
deeper layers, even to the bone and muscle (Zubair and Ahmad,
2019). This condition can manifest as hyperkeratosis and necrotic
dermal tissue, deep tissue abscess, and gangrene (Lebrun et al.,
2010). CLE patients also suffer from several clinical manifestations,
including epidermal atrophy, hyperkeratosis, inflammation at the
dermal-epidermal junction, rash and erythema (Lee and Sinha,
2006). However, evidence relating to the specific characterization
of these common traits is scarce, especially in terms of cellular and
molecular mechanisms.

It is widely recognized that the immune environment of DFU is
atypical and involves a perpetual inflammatory response. Analysis of
gene expression in CLE skin samples and blood samples also
revealed over-activation of the innate immune response pathway
(Scholtissek et al., 2017; Zhu et al., 2021). Abnormal macrophage
polarization is a primary cause of delayed healing in patients with
DFU (Huang et al., 2021), and the skin afflicted by CLE is known to
have higher expression levels of M1 macrophage-related proteins
(Chong et al., 2015). Epidermal damage and hyperkeratosis are also
the clinical manifestations of DFU and CLE (Lebrun et al., 2010;
Doersch et al., 2017; Zubair and Ahmad, 2019). According to
previous studies, the apoptosis of keratinocytes can be detected

in the lesions of most patients with CLE (Järvinen et al., 2007). It is
also possible that keratinocytes participate in the pathological
process of CLE by releasing the production of proinflammatory
cytokines (Zhang et al., 2017). However, in DFU patients,
hyperglycemia can alter a number of key mechanisms and also
lead to reduced keratinocyte proliferation and migration (Hosseini
Mansoub, 2021). Overall, there are some similarities in the
molecular features of DFU and CLE, although the specific
associations and potential for crosstalk remain largely unclear. It
is crucial to determine the common molecular relationship between
DFU and CLE in terms of pathogenesis and progression if we are to
provide efficient diagnoses and therapeutic interventions.

The utilization of high-throughput sequencing technology and
bioinformatics is providing us with an effective tool with which to
investigate the association between diseases. In the present study, we
used bioinformatics methods to investigate the key genes and
pathways that are common to DFU and CLE. Assessment of the
immune landscape revealed similar immune signatures and a
transcription factor (TF)-microRNA (miRNA)-target network
while drug prediction was used to evaluate the key function and
therapeutic potentiality of key gene targets. This research provides a
deeper understanding of the pathophysiological processes that may
link DFU and CLE, thus providing novel strategies for future
diagnosis and treatment in the clinic.

2 Materials and methods

2.1 Raw data collection

First, we obtained the gene expression profiles of DFU and CLE by
searching the Gene Expression Omnibus (GEO) (Barrett et al., 2007)
(https://www.ncbi.nlm.nih.gov/) database for “diabetic toot ulcer” and
“cutaneous lupus erythematosus”. Then, the data identified
(GSE134431, GSE80178, GSE81071 and GSE95474) were
downloaded from the GEO, preprocessed, normalized and
log2 transformed into a probe expression matrix. Then, we
downloaded the annotation file from the GEO platform. By one-to-
one matching between probe ID and gene symbol, probes that did not
match the gene symbol were removed. In cases where different probes
corresponded to the same gene, the mean value of the different probes
was taken as the final expression value of the gene. Expression values
and grouping information are shown in Supplementary Table S1.

2.2 Identification of DEGs

Differentially expressed genes (DEGs) were identified by
applying the Bayesian method in the Limma package (Smyth,
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2005) (Version 3.10.3, http://www.bioconductor.org/packages/2.9/
bioc/html/limma.html). Differences in gene expression between the
two diseases were investigated by comparing the DFU experimental
group (GSE134431) and the CLE experimental group (GSE81071);
corresponding p-values and logFC values were obtained for all
genes. To eliminate false positive results from the GEO dataset,
the p-value was adjusted (to generate an adj.p-value). Differentially
expressed genes (DEGs) were identified by applying a specific
threshold: an adj.p-value < 0.05 and a | logFC |<0.585. Then, we
took the intersection of the two genes to identify specific genes that
were either up-or downregulated in both diseases, thus representing
the common genes.

2.3 Enrichment analysis of common DEGs

Next, we used the R package clusterProfilter (Yu et al., 2012) to
perform Gene Ontology (GO) (Ashburner et al., 2000) and Kyoto
Encyclopedia of Genes Genomes (KEGG) (Kanehisa, 2000) pathway
enrichment analysis on the DEGs identified earlier. p-values <
0.05 were considered as significant enrichment.

2.4 PPI network construction and
module analysis

The STRING database (Szklarczyk et al., 2015) (Version: 10.0,
http://www.string-db.org/) was used to predict and analyze whether
there was a mutual relationship between the proteins encoded by
commonDEGs. The input gene set included the commonDEGs and
the species was set to “Homo sapiens”. The parameter PPI score was
set to 0.15; this required that the interacting protein nodes were all
included in commonDEGs. Then we used Cytoscape (Shannon et al.
, 2003) (version 3.4.0, http://chianti.ucsd.edu/cytoscape-3.4.0/) to
construct a network diagram of the PPI relationship and generate a
PPI network. We applied the MCODE (Bader and Hogue, 2003)
(version 1.5.1, http://apps.cytoscape.org/apps/mcode) plugin with
parameters set to default (Degree Cutoff = 2; Node Score Cutoff = 0.
2; K-score = 2; Max Depth = 100) to identify genes in the network
module and the sub-network diagrams of each module. Scores are
given based on the importance of submodules. Finally, we analyzed
the topological properties of nodes in the network by
CytoNCA(Tang et al., 2015) (Version 2.1.6, http://apps.cytoscape.
org/apps/cytonca), including four attributes: Degree, Edge
Percolated Component (EPC), Maximal Clique Centrality (MCC)
and Maximum Neighborhood Component (MNC). The larger the
value of each attribute, the greater the role of the gene in the
network. We selected the top 20 genes under each attribute in
turn, and the genes obtained by intersection were used for
further analysis.

2.5 Selection and analysis of key genes

The R package clusterProfiler (Yu et al., 2012) was used to
perform GO (Ashburner et al., 2000), BP and KEGG (Kanehisa,
2000) pathway enrichment analysis of the key genes; p < 0.05 was
considered a significant result. Then, we generated a box plot to

show the distribution of expression for these key genes, as
determined by PPI topology analysis of the validation set. Then,
we used the t-test to calculate significance, and identify genes with
significant differences (up- and downregulation) between the
validation sets of the two diseases, thus generating a list of
validation genes.

2.6 Assessment of the immune landscape

The immune response is involved in the progression of both
DFU and CLE. To investigate whether the key genes identified
herein were involved in the immune response, we determined
correlations between the key genes and immune cell infiltration.
First, the CIBERSORT (Chen et al., 2018) algorithm was used to
calculate data relating to DFU and CLE and determine the
proportions of 22 types of immune cells in each sample. Next,
the correlation coefficients and p-values between key genes and each
immune cell were calculated by Pearson’s method. Finally, we
plotted a correlation heatmap. Then, we generated a scatterplot
showing the immune cells and gene pairs with the highest positive
and negative correlations.

Next, we attempted to determine the proportion of immune cells
in the microenvironment of the lesion. To do this, we used the
ESTIMATE (Hu et al., 2019) algorithm to estimate the stromal
score, immune score and ESTIMATE score of each sample based on
expression data from the two diseases. The different p-values among
subgroups were calculated by between-group Wilcox tests; then, we
plotted a violin plot.

2.7 Final key genes’s PPI network
construction

PPI analysis of the final key genes and their interacting genes was
performed in the GeneMANIA (Warde-Farley et al., 2010) database
to predict colocalization, shared protein domains, co-expression,
prediction, and correlations between pathways.

2.8 TF-miRNA-target network analysis

In order to further understand the regulatory mechanisms
associated with the key genes, we next constructed a TF-miRNA-
target network for the key genes. The interrelated miRNAs of
DFU and CLE were retrieved from the HMDD V3.0 database
(Huang et al., 2019) (http://www.cuilab.cn/hmdd); then, we
focused on the intersection of the data to identify the miRNAs
that were common for the two diseases. The miRWalk database
[R] (http://129.206.7.150/) was used to predict the miRNAs for
the key genes, select miRNAs that also existed in miRDB, and
then identify the intersection. Next, we used Cytoscape (Shannon
et al., 2003) (version 3.4.0, http://chianti.ucsd.edu/cytoscape-3.4.
0/) software to construct a network diagram. Subsequently, we
used DIANA-miRPath v3.0 (Vlachos et al., 2015) (http://www.
microrna.gr/miRPathv3/) software to perform shared miRNA
KEGG pathway analysis. Next, we used the online database
TRRUST V2.0 (Han et al., 2018) (Transcriptional Regulatory
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Relationships Unraveled by Sentence-based Text mining, http://
www.grnpedia.org/trrust/), set the species to “human”, and
predicted the upstream transcription factors of our set of key

genes. Then, we combined the targeting relationship between
miRNAs and key genes and used Cytoscape software to construct
a TF-miRNA-target network.

FIGURE 1
(A)Data-set information. (B) Venn diagram showing the intersection of differentially expressed genes for the two diseases in training set. (C) Volcano
plot of differentially expressed genes in diabetic wounds in training set (red indicates upregulated genes, blue indicates downregulated genes, and gray
indicates non-significant gene differences). (D) Volcano plot of differentially expressed genes in cutaneous lupus erythematosus in training set (red
indicates upregulated genes, blue indicates downregulated genes, and gray indicates non-significant gene differences). (E)GOenrichment bar chart
showing common differentially expressed genes. (F) KEGG enrichment bubble chart showing common differentially expressed genes.
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2.9 Predictive analysis of key gene drugs

Finally, we used the DGIdb gene-drug interaction database
(Cotto et al., 2018) to search for therapeutic drugs that could
target the key genes and investigate whether there are drugs that
could target the key genes to treat DFU and CLE. Cytoscape software
was used the visualize the drug-gene interaction network.

3 Results

3.1 Identification and function of DEGs

Information provided by the dataset used in this analysis is
shown in Figure 1A. According to our specific threshold, we
identified 796 upregulated and 2045 downregulated genes for
DFU, and a total of 375 upregulated genes and
352 downregulated genes for CLE; detailed information is
provided in Supplementary Table S2. The identified DEGs are
shown as volcano plots in Figures 1C, D. A total of
16 consistently upregulated genes and 25 consistently
downregulated genes were identified by considering the
intersection of consistent genes between the two diseases, as
shown in Figure 1B. See Supplementary Table S2 for further details.

In order to further understand the biological significance of
these DEGs, we performed GO functional analysis and KEGG
pathway enrichment analysis on the common DEGs. In terms of
biological processes, GO analysis showed that the DEGs were mostly
related to keratinocyte differentiation, epidermis and skin
development, and epidermal cell differentiation. In terms of
cellular components, GO analysis showed that the DEGs were
mostly related to the cornified envelope, intermediate filament
cytoskeleton, intermediate filament and keratin filament. GO
analysis also identified several molecular functions for the DEGs,
including RAGE receptor binding, Toll-like receptor 4 binding,
arachidonic acid binding, and icosanoid binding (Figure 1E;
Supplementary Table S3), all of which play important roles in
the occurrence and development of excessive/chronic
inflammation. Furthermore, KEGG analysis showed that the

DEGs were mainly enriched in the IL-17 signaling pathway and
hematopoietic cell lineage (Figure 1F; Supplementary Table S3).

3.2 PPI network construction and
module analysis

Next, we constructed a PPI network for the common DEGs, as
shown in Figure 2A. We identified 78 interaction pairs featuring
30 genes and proteins, thus indicating close interaction between
these genes; these interactions may play an important role in disease
progression (Supplementary Table S4). Furthermore, we analyzed
sub-modules of the PPI network and identified the most specific
sub-module (Nodes with a high topological score are considered as
important nodes in the network, proteins in the submodules because
of the core proteins in the PPI network), featuring a total of 10 genes
(with a score of 8.444): SPRR1B (small proline rich protein 1B),
SPRR2E (small proline rich protein 2E), KRT16 (keratin 16), S100A7
(S100 calcium binding protein A7), KRT6C (keratin 6C), LCE3D
(late cornified envelope 3D), PI3 (peptidase inhibitor 3), KRT72
(keratin 72), LCE3E (late cornified envelope 3E) and IGFL1 (IGF like
family member 1). The red color of the first six proteins is deeper,
suggesting that these proteins play an important interaction in the
development of the disease. Network diagrams for each sub-module
are shown in Figure 2B.

3.3 Identification of key genes

The topological properties of the nodes were analyzed using the
cytoNCA plug-in. We selected the top 20 genes under each attribute
for intersection, as shown in Figure 3A. Finally, 18 genes were
identified in the top 20 genes of each attribute; these were considered
key genes. Next, we performed GO functional analysis (Figure 3B)
and KEGG pathway analysis (Figure 3C) for the shared key genes.
GO results showed that the key genes were mainly related to the
keratinization and differentiation of skin-related cells, intermediate
filament cytoskeleton, and RAGE receptor binding. IL-17 signaling
pathway was also significantly enriched, as determined by KEGG

FIGURE 2
(A) PPI network constructed by common differential genes. The gray line represents the interaction between the corresponding proteins of the
genes; the redder the color, the more critical the gene is. (B) The key sub-module in the PPI analysis with a score of 8.444. The redder color indicates an
important interaction in the development of the disease.
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pathway enrichment. The enriched genes were S100A7, S100A9 and
S100A8; see Supplementary Table S5 for details.

In order to verify the expression levels of the key genes, we
generated box plots showing the distribution of expression levels for
the 18 key genes bymining a diabetic wound training set and cutaneous

lupus erythematosus in the training set. As shown in Figures 3D, E,
respectively, a total of seven genes were successfully verified; of these,
KRT16, S100A7, OASL, S100A9, EPGN and SAMD9 were upregulated,
and KRT77was downregulated. Of these, KRT16 and S100A7 were also
present in the sub-modules analyzed by MCODE.

FIGURE 3
(A) Intersections of each topological property ranking the top 20 nodes in the PPI network. Where the abscissa are Edge Percolated Component
(EPC), Maximal Clique Centrality (MCC) and Maximum Neighborhood Component (MNC) (B) Bar chart showing the key genes identified by GO
enrichment. (C) Bubble chart showing the key genes identified by KEGG enrichment. (D) Box plot showing the distribution of expression levels for seven
key genes in the set of DFU validation samples. (E) Box plot showing the distribution of expression levels for the seven key genes in the set of CLE
validation samples.

Frontiers in Physiology frontiersin.org06

Wu et al. 10.3389/fphys.2024.1297810

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1297810


3.4 Association between key gene and
immune infiltration

Next, we investigated the association between immune cell
infiltration and our list of key genes. We used the CIBERSORT
algorithm and the LM22 gene set to determine training data sets
for DFU and CLE; this gave us the proportions of 22 different
types of immune cells in each sample (Supplementary Table S6).
We calculated the correlation coefficients and p-values between
each key memory and each immune cell by Pearson’s correlation.
The correlation heat map for DFU is shown in Figure 4A. As
shown in Figure 4B, the highest positive correlation was detected
between OASL and gamma delta T cells, with a correlation of
0.76. The highest negative correlation was identified between
S100A7 and activated NK cells, with a correlation of −0.77, as
shown in Figure 4C. Figure 4D shows the correlation heat map
for CLE. The highest positive correlation was identified between
KRT77 and resting mast cells, with a correlation coefficient of
0.76 (Figure 4E). The highest negative correlation was identified
between OASL and activated mast cells, and between SAMD9 and
activated mast cells, both with a correlation coefficient of −0.75,
as shown in Figure 4F.

3.5 PPI network construction of key genes

Next, we constructed PPI networks for the DEGs with the aim of
identifying the close relationship between these genes and

identifying significant key genes by topological analysis of the
nodes of the PPI network of DEGs. In order to predict the co-
localization, shared protein domains and co-expression of these key
genes, and to predict the correlation between key gene pathways, we
used the GeneMANIA database to conduct PPI analysis of the final
key genes and interaction genes, as shown in Figure 5. The pathways
associated with these seven key genes were closely related to skin
development, especially keratinocyte differentiation, as well as to the
regulation of nuclease activity, adenylyl transferase activity, and
response to type I interferon.

3.6 TF-miRNA regulatory network analysis

Transcription factors (TF) and miRNAs, as key factors in
transcriptional and post-transcriptional regulation, play an
important role in gene expression regulation of cells. In order to
further elucidate the functions of common mirnas, we constructed
Gene-TF-MIRNA networks to more systematically understand the
regulatory pathways of key genes and provide important clues for
the occurrence and development of diseases and targeted therapy.
Based on the HMDD database, we retrieved miRNAs that were
related to cutaneous lupus erythematosus, but failed to identify any
miRNAs that were specifically related to diabetic wounds. Then, we
intersected the miRNAs related to cutaneous lupus erythematosus
and the miRNAs predicted by the common key genes. Next, we
performed functional pathway analysis for the common miRNAs;
the results are shown in Figure 6A. The most significant function of

FIGURE 4
(A)Heat map showing the correlation between key genes and immune cells in diabetic wounds. (B) Scatter plot of OASL and gamma delta T cells in
diabetic wounds. (C) Scatter plot of S100A7 and activated NK cells in diabetic wounds. (D) Heat map showing the correlation between key genes and
immune cells in systemic lupus erythematosus. (E) Scatter plot of KRT77 and resting mast cells resting in CLE. (F) Scatter plot of OASL and activated mast
cells in CLE.
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the common miRNAs was the biosynthesis of fatty acids. Diabetes is
a disorder of glucose metabolism in the blood; fatty acid biosynthesis
is also an aspect of glucose metabolism in the blood. This provides
evidence that the common miRNAs are also involved in the
development of DFU. Then, we constructed a network diagram
based onmiRNAs and target genes, as shown in Figure 6B, including
hsa-mir-532-5p (targeting S100A7, OASL, KRT77), hsa-mir-324-3p

(targeting KRT77) and hsa-mir-20a-5p/hsa-mir-106a-5p/hsa-mir-
93a-5p (targeting EPGN). Finally, we performed upstream
transcription factor prediction analysis for the seven key genes.
We constructed a TF-miRNA-target network based on the
combined miRNA information. A total of seven transcription
factors (CEBPA, CEBPB, GLI1, EP300, JUN, SP1, NFE2L2) were
predicted, as shown in Figure 6C.

FIGURE 5
PPI network of key genes and their interacting genes. (Firstly, the related miRNA were searched in HMDD V3.0 database, and the key gene miRNA
were predicted bymiRWalk database, and the intersection of the two was taken. Then, we used DIANA-miRPath for pathway analysis, combined with the
targeting relationship between MIRNA and key genes. Finally, we used Cytoscape software to construct a network diagram).
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3.7 Drug prediction of key gene

Finally, we used the DGIdb gene-drug interaction database to
identify therapeutic drugs that could target the key genes. The

predicted relationship between drugs and genes is detailed in
Supplementary Material 8 and the network relationship is shown
in Figure 6D. The results showed that Paquinimod, Tasquinimod
and Ribavirin are potential drugs that could target S100A9 and

FIGURE 6
(A) KEGG results showing the significant enrichment of commonmiRNAs for the two diseases (the redder the color, the greater the significance). (B)
Interaction diagram showing themiRNA-target gene network relationship. (C) TF-miRNA-target network (yellow hexagon represents transcription factor
(TFs), red triangle represents miRNAs, green circle represents key genes). (D)Drug-target network (blue squares represent drugs, green circles represent
key genes).
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OASL. Paquitimod and Tasquinimod both are immunomodulatory
compounds targeting S100A9, which inhibits the pro-inflammatory
cytokine response of monocytes by blocking the binding of
S100A9 to TLR4 and RAGE (Cesaro et al., 2012; Bresnick, 2018;
Le Bagge et al., 2020). Ribavirin is a guanosine analogitic, which is
currently used in the treatment of hepatitis virus infection due to its
extensive antiviral activity. It is mainly used in combination with
polyethylene glycol to inhibit the expression of OASL, IFITI,
CXCL10 and other cytokines (Brodsky et al., 2007; Su et al.,
2008; Boros and Vécsei, 2020).

4 Discussion

Skin lesions are common symptoms of both DFU and CLE, and
present as persistent and non-healing wounds. However, few studies
have investigated the relationship and differences between the
pathogenesis and progression of DFU and CLE, especially in
terms of specific cellular and molecular mechanisms. In this
study, we used a bioinformatic approach to identify common
DEGs between these two diseases. We also identified potential
key genes involved in the interaction between DFU and CLE,
including 16 upregulated genes and 25 downregulated genes.
After validation of the second dataset, 7 key genes with
consistent differential expression trends were finally identified in
the two diseases. Of these, KRT16, S100A7, OASL, S100A9, EPGN
and SAMD9 were upregulated while KRT77 was downregulated.

S100A7 first came to public attention because it was identified as
a secreted protein that was over-expressed in psoriatic skin (Madsen
et al., 1991). Both DFU and psoriasis are related to abnormal
keratinocyte functionality (Granata et al., 2019). DFU patients
exhibit slow re-epithelialization of keratinocytes along with a
chronic inflammatory environment and healing disorders at
lesion sites (Yang et al., 2022; Fu et al., 2023). Previous studies
showed that the S100A7 mouse model of psoriasis exhibited lesions
that were characterized by leukocyte inflammation (Webb et al.,
2005). Interestingly, the failure of DFU wound healing is associated
with a reduction in the number of M2 reparative macrophages at the
wound site (Aitcheson et al., 2021). In addition, S100A7 was shown
to be significantly upregulated in the skin ulcers of patients with
DFU (Shaorong et al., 2023). As mentioned earlier, the apoptosis of
keratinocytes is also closely related to the pathogenesis of CLE skin
lesions. Keratinocytes may also participate in lupus skin lesions by
releasing proinflammatory cytokines (Doersch et al., 2017). We
identified S100A7 as a key gene for both DFU and CLE; thus,
this particular gene is associated with two different types of skin
damage. Previous studies have shown that the abnormal
morphology and functionality of keratinocytes caused by the
upregulation of S100A7 may be involved in the skin damage
experienced by patients with DFU and CLE. In a hyperglycemic
environment, S100A9 not only activates the proinflammatory
activity of macrophages via the RAGE pathway; it also induces
the secretion of proinflammatory cytokines in macrophages via the
NF-kB pathway (Kawakami et al., 2020). S100A9 is also a relevant
marker for CLE patients (Soyfoo et al., 2009) and is expressed in
important immune cells such as monocytes, neutrophils and B cells
during the CLE inflammatory response (Lood et al., 2011).
Therefore, as a known proinflammatory factor, S100A9 also

seems to play a role in perpetuating and extending inflammation
in DFU and CLE.

Other key genes also suggest avenues to explore. The keratin
gene KRT77 plays a key role in the transcriptional programming of
early epidermal maturation; the expression levels of this gene are
known to be suppressed during normal epidermal differentiation
and subsequent development (Sevilla et al., 2010), our analysis
confirmed these previous findings. EPGN is the ligand for
epidermal growth factor receptor (EGFR) (Singh et al., 2016); the
upregulation of EPGN affects EGFR homeostasis and leads to
hyperplasia of the sebaceous gland in mice (Dahlhoff et al.,
2010). Unfortunately, there is an insufficient body of data to
confirm the effect of EPGN upregulation on the occurrence and
development of CLE and DFU. Further research is required to
address this issue. SADM9 is a gene located on human chromatid
7 that exhibits anti-tumor and anti-virus activities (Inaba et al.,
2018). Some researchers have found that there are domains related
to inflammation and apoptosis in the SADM9 protein (Mekhedov
et al., 2017). The main role of OAS family is regarded as an
immunomodulator, and OASL level is associated with
autoimmune diseases and chronic infections (Choi et al., 2015).
OASL expression is upregulated in SLE patients (Gao et al., 2020),
and OASL expression is present in type I IFN response in CLE
patients and type I diabetic patients (Sarkar et al., 2018; Pedersen
et al., 2021). Moreover, OASL regulates IFN activation to promote
abnormal proliferation and differentiation of keratinocytes in
psoriatic lesions (Huang et al., 2022). Therefore, we tentatively
hypothesize that the upregulation of SADM9 and OASL
expression in response to IFN signal might be involved in the
development and persistence of inflammation and in both
DFU and CLE.

Our analysis also demonstrated that the key genes identified
were mainly related to the keratinization and differentiation of skin
cells and inflammatory pathway-related receptors such as rage
receptor binding and TLR4 receptor binding. On the one hand,
the physiological environment of hyperglycemia in diabetic patients
stimulates the AGE-RAGE pathway, thus triggering a persistent
inflammatory response that inhibits the healing of ulcers in DFU
patients (Song et al., 2022). The inflammatory damage caused by
oxidative stress and the AGEs-RAGE pathway has also been
detected in CLE patients (Martens et al., 2012). On the other
hand, TLR4 can induce the production of various
proinflammatory cytokines and is also involved in inflammatory
responses in pancreatic islets, fat, liver and kidney tissues, all of
which have been implicated in the development of diabetes and
systemic lupus erythematosus (Wada and Makino, 2016; Zhang
et al., 2016). Furthermore, activation of the TLR4 pathway by a
hyperglycemic environment is known to impair wound healing in
mice (Portou et al., 2020). Collectively, our results suggest that both
RAGE and TLR4 are involved in the inflammatory response in CLE
and DFU patients. Arachidonic acid and eicosanoid acid are fatty
acids related to inflammation. The metabolism of arachidonic acid is
abnormally accelerated in diabetic patients and damages pancreatic
β cells exposed to the inflammatory environment caused by
arachidonic acid and eicosanoid acid metabolism (Halushka
et al., 1985; Das, 2013). Similarly, the circulating composition of
inflammation-associated fatty acids has also been shown to be
altered in patients with CLE; this was coincident with a
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significant increase in the plasma levels of arachidonic acid
(Aghdassi et al., 2011). The enrichment results of our
experiments identified key genes that were related to arachidonic
acid and eicosanoid receptor binding. Collectively, these data
provide evidence that DFU and CLE have similar
pathological processes.

According to previous studies, DFU and CLE have similar
immune manifestations in skin lesions. Patients with DFU are
also known to have higher levels of many inflammatory
cytokines, including IL-8, TNFα, and CRP (Tecilazich et al.,
2013). He levels of cytokines (IL-1β, TNF-α, IFN-γ and IL-10)
are also increased in CLE patients (McCarthy et al., 2014).
Interestingly, despite similar expression differences of these key
genes in both diseases, their correlation with immune cell
responses exhibits divergent, and even opposing trends. In
Diabetic Foot Ulcers (DFU), OASL showed a positive correlation
with gamma delta T cells in DFU, whereas negatively correlated with
activated mast cells in CLE. This observed variance in correlation
across different diseases may reflect the distinct pathological
mechanisms underlying DFU and CLE, as well as the differential
responses of the immune system in varying disease contexts. DFU,
being a chronic wound associated with metabolic disease, likely
presents a fundamentally different immunological environment
compared to CLE, an autoimmune skin condition, particularly in
terms of immune cell activity and regulation.

Finally, we found that paquinimod and taquinmod can target
S100A9 while ribavirin can target OASL, as demonstrated by a
DGIdb gene-drug interaction database. Paquinimod has shown a
similar efficacy to the currently used immunosuppressants
prednisolone and mycophenolate mofetil in mice with lupus
(Bengtsson et al., 2012). In the skin models of systemic
sclerosis and psoriasis mice, which are also autoimmune
diseases, the use of paquinimod targeting S100A9 reduced skin
fibrosis and improved skin inflammation (Stenström et al., 2016;
Khaleel and Zalzala, 2023; Silva De Melo et al., 2023). Such an
autoimmune suppressant also prevented the development of type
1 diabetes in mice (Tahvili et al., 2018; Le Bagge et al., 2020). All
of this evidence suggests the availability of pacquimod as a
potential therapeutic agent for DFU and CLE. The
pharmacological activity of taquinmod is more associated with
anti-vascular and anti-prostate cancer effects (Isaacs et al., 2006;
Olsson et al., 2010; Boros and Vécsei, 2020). In the pathological
environment of high glucose, taquinmod inhibits proliferation,
migration and lumen formation of human retinal endothelial
cells (Jin et al., 2022). Ribavirin, as an antiviral drug, is
considered as a potential candidate for the treatment of
HFMD(Leung et al., 2022). Paradoxically, ribavirin combined
with cyclophosphamide or interferon has a high risk of skin and
appendage adverse reactions (rash, cutaneous sarcoidosis, etc.)
(Kato et al., 2021; Zheng et al., 2022).The efficacy of ribavirin in
DFU and CLE remains to be further clarified.

However, there are some limitations of our study that need to
be considered. First, the specific role of the two keratin genes in
the disease process has yet to be elucidated. The expression of
KRT77 was upregulated during epidermal development, while
KRT77 was downregulated in the DFU and CLE datasets we
analyzed. More data are needed to confirm that KRT77
downregulation and KRT16 upregulation are associated with

the pathological changes of these two diseases. Further in vitro
studies are now needed to better explain the mechanisms by
which S100A9, EPGM, SADM9 and OASL can cause skin lesions
in DFU and CLE and the therapeutic effects of paquinimod and
taquinmod on DFU and CLE. Finally, there is not enough
evidence to prove that ribavirin can treat the pathological
state caused by the abnormal expression of OASL; this still
needs to be verified in future clinical trials.

5 Conclusion

In summary, we identified a set of DEGs shared by DFU and
CLE from datasets in public databases. Enrichment analysis
revealed that the genes common to DFU and CLE were
related to pathological changes and inflammation of the
epidermis. PPI network construction identified seven common
key genes, including KRT16, S100A7, OASL, S100A9, EPGN
SAMD9 and KRT77. A quite different patterns of immune cell
infiltration indicated that similar final inflammatory mechanism
could be associated with different upstream immunopathological
mechanisms. In addition, TF-miRNA regulatory network
analysis and drug prediction provided a positive indicative
role in identifying targets for subsequent research and
treatments.
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