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Fruit cracking, a widespread physiological disorder affecting various fruit crops

and vegetables, has profound implications for fruit quality and marketability. This

mini review delves into the multifaceted factors contributing to fruit cracking and

emphasizes the pivotal roles of environmental and agronomic factors in its

occurrence. Environmental variables such as temperature, relative humidity,

and light exposure are explored as determinants factors influencing fruit

cracking susceptibility. Furthermore, the significance of mineral nutrition and

plant growth regulators in mitigating fruit cracking risk is elucidated, being

calcium deficiency identified as a prominent variable in various fruit species. In

recent years, precision farming and monitoring systems have emerged as

valuable tools for managing environmental factors and optimizing fruit

production. By meticulously tracking parameters such as temperature,

humidity, soil moisture, and fruit skin temperature, growers can make informed

decisions to prevent or alleviate fruit cracking. In conclusion, effective prevention

of fruit cracking necessitates a comprehensive approach that encompasses both

environmental and agronomic factors.
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1 Introduction

Fruit cracking is a disorder prevalent among various fruit crops and vegetables.

Cracking has a detrimental impact on the quality of fleshy fruits from various species

(Brüggenwirth and Knoche, 2017; Lara et al., 2019; Schumann et al., 2019) not only due to

poor fruit appearance but also to shelf-life reduction, and increased susceptibility to

infections by fungi and other pathogens, hence causing significant losses in the fresh market

(Khadivi-Khub, 2015; Butani et al., 2019; Wang et al., 2021). Numerous factors and
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mechanism have been shown to contribute to fruit cracking

susceptibility such as agronomic factors (e. g., nutrition

imbalance, unmanaged irrigation), environmental factors (e.g.,

high temperature, high relative humidity), genetic factors as well

as the physiology and biochemistry of the species (Correia et al.,

2018; Kaur et al., 2019). These factors do not only contribute to fruit

cracking, but they also have the potential to modify the composition

and morphology of the cuticle. The plant cuticle is a supramolecular

composite that can be considered as a modification of the epidermal

cell wall (Domıńguez et al., 2011). It is mainly constituted by the

polyester cutin, waxes and discrete amounts of plant phenolics. The

plant cuticle is also subjected to changes due to developmental,

environmental and hormonal factors (Tafolla-Arellano et al., 2018).

The cuticle is a primary barrier against water and solute transport

and fruit rot pathogens, responding to environmental conditions

like water deficit, changes in relative humidity, temperature or light

intensity (Knoche, 2019; Lara et al., 2019). It is strongly related to

fruit cracking resistance due to the provides mechanical support

provided (Zarrouk et al., 2018).

Two hypotheses have been developed to try to explain the

mechanism of fruit cracking: the critical turgor and the zipper

model. In both of these models there is a strong influence of

environmental and agronomic factors. Critical turgor hypothesis

initially investigated in grapes (Vitis vinifera L.) and reported by

(Considine and Kriedemann, 1972) suggests that the causes of fruit

cracking are moisture accumulation due to low evaporative demand.

This can be worsened by none or poor pruning technique, thus

resulting in an increasing in fruit internal pressure that can lead to

fruit cracking. More recently Knoche (2019) proposed the zipper

model hypothesis, which was developed in sweet cherries (Prunus

avium L.). This model outlines how tension stresses in the fruit cuticle

during fruit ripening lead to the development of microcracks, which

can then be aggravated by high relative humidity and water deposition

on the surface. These cuticle microcracks formed during the ripening

stage, allows water uptake of the outer mesocarp cells with higher

negative osmotic potential, subsequent bursting, and leak of the cell

malic acid causing the plasmolysis of skin cell that leads to cell wall

swelling. This continuous cycle of events decreases the fracture pressure

and causes visible cracking. Chang and Keller (2021) proposed that, in

grape cracking both the critical turgor hypothesis and the recent zipper

model hypothesis should be considered complementary.

In this mini review we will discuss how fruit cracking is strongly

influenced by agronomic (mineral nutrition, plant growth regulators,

bagging technique, irrigation and post-harvest management) and

environmental factors (relative humidity and temperature). We will

also highlight and emphasize the potential of machine learning and

precision agriculture and how these techniques could provide some

predictive models for the effective handling of the environmental

factors, as well the vulnerabilities in agronomic management or

soil deficiencies.
2 Environmental factors

Environmental conditions have a fundamental role in shaping

the growth and quality of fruit production, and the effects are
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observed during developmental stages (Jiang et al., 2010). Given the

current situation of global climate change, and the postulated role of

the cuticle in cracking, it’s essential to grasp the biophysical

characteristics of the cuticle and comprehend how environmental

factors such as temperature, UV radiation, and relative humidity

influence both the formation of the cuticle and its functional

characteristics and properties (Domıńguez et al., 2011; Singh

et al., 2020).

Matas et al. (2005) demonstrated that temperature and relative

humidity (HR) influence the mechanical characteristics of the

isolated cuticle suggesting that environmental factors can have a

crucial role in cracking. Chen et al. (2020) have reported that in

blueberries (Vaccinium spp.) there is a positive relationship between

fruit water loss and the amount of wax esters; this relationship,

however, wasn’t found in grape (Fernández-Muñoz et al., 2022).

Fruit cracking intensity has been reported to vary considerably

among years, pointing to a significant relationship with

environmental factors (Aliviela et al., 1994). Several authors have

reported the influence of environmental conditions in causing and

enhancing fruit cracking, e.g. Choi et al. (2015) reported that fruit

cracking in pear (Pyrus communis L.) cv Mansoo was influenced by

the photoperiod during the fruit development; with a shorter sunlight

exposure fruit cracking was higher than with a more prolonged

sunlight exposure, this is likely since both gene expression and plant

metabolism are influenced by the amount and quality and the angle

of interception of light that plants receive directly impacts fruit

growth, overall productivity, and susceptibility to disorders (Lin

et al., 2017). Regarding temperature, Seo et al. (2022) reported in

pear that unexpected drops in temperature during the blossoming

phase can result in a decrease of on fruit production and trigger the

occurrence of fruit cracking. Also, differences between day and night

temperatures were shown to stimulate fruit cracking in pomegranate

(Punica granatum L.) (El-Rhman, 2010). Simon (2006) reported that

in sweet cherries (P. avium L.), there was a linear increase in fruit

cracking with temperature. More recently, Singh et al. (2020) clearly

showed that the water stress caused by high environmental

temperature measured as leaf relative water content and water

potential, directly impacted the extent of cracking in pomegranate

fruits. On the other hand, Choi et al. (2020) noted that fruit cracking

severity in pear cv Whasan increased in orchards that underwent

rapid change from dry soil condition to heavy rainfall. The rapid

fluctuation of soil moisture increased the water potential in the fleshy

cells and led to higher turgor pressure in the cork and stone cells, thus

inducing fruit cracking. Moreover, heavy rainfall during the period of

rapid fruit growth was correlated with cracking in grape (Clarke et al.,

2010), and in apricot (Gülsen et al., 1995). In mandarin (Citrus

reticulata Blanco) cv Nova, grown during dry hot summers in the

Mediterranean basin, seasonal water deficit followed by heavy rain

during the cell enlargement stage was also linked to fruit cracking

(Almela and Agustı,́ 1990).
3 Agronomic factors

All commercial orchards require a correct balance of both

macro and micronutrients to achieve satisfactory growth,
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development, and productivity (Seo et al., 2022).It has been

reported that the mineral nutritional status of crop and, therefore,

of fruits is closely related to fruit cracking (Shi et al., 2022). Among

all the mineral elements necessary for the growth of orchards,

calcium participates in numerous vital processes due to its role in

the structural integrity and stability of the cell walls and middle

lamella. Calcium is a connecting link between pectin molecules,

enhancing the robustness of cell membranes by strengthening

phospholipid bonds. Furthermore, it acts as a secondary

messenger in stress signal transduction pathways (Ranty et al.,

2016; Yu et al., 2020).

Calcium is not the only mineral element to play a key role in

physiological processes, potassium, zinc, boron, copper, manganese,

and molybdenum also govern fruit growth and development. A

deficiency in any of these nutrients during the growth phase can

lead to fruit cracking (Sheikh and Manjula, 2012). Moreover, it was

reported that copper hydroxide at low concentrations or in

combination with calcium hydroxide, significantly reduced fruit

cracking (Brown et al., 1995). On the other hand, calcium deficiency

has been identified to be one of the main causes of fruit cracking in

grape (Yu et al., 2020), lemons (Citrus limon L. (Osbeck)) (Devi

et al., 2018), litchis (Litchi chinensis Sonn.) (Martıńez Bolaños et al.,

2017), pomegranates (Davarpanah et al., 2018), and many other

fruit crops (Khadivi-Khub, 2015; Fischer et al., 2021).

Plant growth regulators (PGRs) have been used for years for

different purposes in orchards, from fruit thinning (Davis et al.,

2004) to control fruit shape and size in several crops (Ginzberg and

Stern, 2016; Continella et al., 2023). It has been reported that high

endogenous levels of gibberellic acid (GA) are associated with a

thicker cuticle and lower incidence of russeting in apple (Eccher,

1986; Eccher and Hajnajari, 2006). External application of PGRs in

orchards has also been shown to reduce russeting or cracking

incidence by affecting the epidermal tissue (Ginzberg and Stern,

2016). Stern et al. (2013) and Ginzberg et al. (2014) suggested that

application of a mixture of PGRs (i.e., mixtures of 6-benzyladenine

(BA) and GA4 + 7) may affect skin characteristics in apple cv Pink

lady and reduce calyx-end cracking. Regarding this topic, some

apparently contrasting results have been reported. In apple fruits

(Malus domestica (Suckow) Borkh), it was suggested that GA4 + 7

treatment did not affect the amount or rate of cutin or wax

deposition, but rather the epidermal and hypodermal tissues

(Knoche et al., 2011). Conversely, in tomato fruit, GA increased

cuticle mass per fruit surface and reduced micro-cracking (Knoche

and Peschel, 2007). These apparently conflicting results may have

been due to the use of different formulas or concentrations of the

GA applied as well as different timing of the treatment with respect

to the fruit phenological stage. Thus, it is important to indicate that

the role of PGRs is linked to the stage of development and formula

concentration, and these parameters should be determined for each

individual species (Ginzberg and Stern, 2016).

Among phytohormones, ethylene plays an important role in

fruit ripening, but also plays a major role in various developmental

processes such as seed germination, flowering, organ senescence,

programmed cell death and the response to biotic and abiotic

stresses (Lin et al., 2009; Liu et al., 2015; Gao et al., 2020). Both

in pre-harvest and post-harvest, ethylene seems to have an indirect
Frontiers in Plant Science 03
role in affecting fruit cracking: indeed, in Charentais-type melon cv

‘Vedrantais’ producing high ethylene rates, stem-end splitting was

already noticed 2h after the ethylene peak (Fernández-Trujillo et al.,

2013). In post-harvest, among the methods that can be used to

reduce the incidence of cracking, 1-methylcyclopropene (1-MCP),

which inhibits ethylene perception by binding receptors to form an

ethylene-receptor complex, delayed fruit ripening, significantly

reducing the susceptibility to cracking in apples cv. ‘Royal Gala’

(Lee et al., 2016).

The role of ethylene is highlighted also by (Santos et al., 2023)

that reported its connection with various cracking-related genes

included in the ethylene production pathway such as: aA, SS, TLP,

ACCS, H1 in litchi (Wang et al., 2019b,Wang et al. 2019a), ACO, ACS

in litchi and sweet cherry (Wang et al., 2019a; Michailidis et al., 2021)

and ER in tomatoes (Xue et al., 2020). These genes associated with

ethylene biosynthesis could contribute to the development of hybrids

that are not only resistant to cracking, but also more suitable for a

longer shelf-life: (Liao et al., 2020) targeted in watermelon the

ethylene-sensitive transcription factor 4 (ClERF4) as the causative

gene relevant to rind hardness, an important factor for genetic

improvement in cracking resistance. As a whole, numerous

scientific evidences underlined the reduction of ethylene

production as an efficient tool during post-harvest management.

Irrigation is another agronomic factor crucial for fruit

production and preventing cracking. It was demonstrated that

water stress followed by a high volume irrigation could cause

rapid meristematic growth and increase fruit cracking in

pomegranate (Galindo et al., 2014) and apple (Goodwin et al.,

2022). A good irrigation management, including sustained deficit

irrigation (SDI) and deficit irrigation (DI) can be useful to reduce

fruit cracking without losing yield, as reported by (Blanco et al.,

2022) in sweet cherries.

To minimize fruit quality deterioration within the orchards,

farmers employ a set of agricultural practices as means of

safeguarding their fruits from various factors that could cause

damages. One of these practices is the “bagging” technique to

protect fruits from direct sunlight and direct heat that can cause

excessive evapotranspiration from the fruit surface, resulting in

excessive moisture loss. This technique is widely used to improve

fruit quality with a broad range of different types of materials as

shown by Ali et al. (2021). Singh et al. (2020) reported several

scientific articles in pomegranate related to the reduction of fruit

cracking using the bagging technique. Additionally in pear and

apple, fruit bagging at the early stage of growth was shown to

prevent fruit cracking (Choi et al., 2015) and Kasai et al. (2008)

noted that bagging significantly reduced fruit cracking in apple

cv Fuji.
4 Precision farming and
machine learning

Modern agriculture benefits significantly from precision

farming and monitoring systems. These systems play a pivotal

role in optimizing various aspects such as water use efficiency

(WUE), weed control, fertilizer utilization, and early identification
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of conditions favoring fungal infections (Monteiro et al., 2021). The

integration of machine learning tools has become increasingly

prevalent across different fields. For example, machine learning

algorithms, including K-Nearest Neighbor (KNN), Random Forest

(RF), Support Vector Machine (SVM), and Artificial Neural

Network (ANN) are currently being employed to classify fruit fly

species based on morphometric data (Salifu et al., 2022). Clearly, the

use of these techniques are having an impact on fruit quality that is

expected to increase in future years.

Nowadays, monitoring the parameters useful to enhance fruit

production as well as to obtain high-quality fruits is possible. This

kind of monitoring can be divided into two groups:
Fron
1. Epigean parameters: air temperature, relative humidity,

radiation, sum of daily radiation, wind speed, wind

direction, rain counter, evapotranspiration calculation,

and dew point.

2. Hypogean parameters: volumetric water content of the soil,

tensiometers (tension of soil water), multi-level soil

humidity, and temperature probe.
Recently, RGB-thermal cameras were applied to monitor fruit

skin temperature in sweet cherries (Osroosh and Peters, 2019). On

the other hand, (Ranjan et al., 2022) implemented two cultivar-

specific wetness prediction models on sweet cherries cv Skeena and

Selah. In this work, the authors used a combination of microclimate

sensing for weather data, and RGB-thermal camera to obtain

thermal images and precise data on the fruit wetness. From a

machine learning point of view, there are multiple studies that deal

with analyzing biotic and abiotic stresses in crops, using the ICQP

(identification, classification, quantification, prediction) paradigm

well descripted by (Rico-Chávez et al., 2022). These works on

precision farming and machine learning open the possibility of

developing a tailored-made model for each species and integrating

the resulting models in decision support systems for agriculture.
5 Conclusions

In conclusion, fruit cracking is a complex physiological disorder

that affects the quality and marketability of various fruit crops and

vegetables, is influenced by a multitude of factors. We focused on

environmental and agronomic factors highlighting the significant

impact of environmental factors such as temperature, relative

humidity, and light exposure on fruit cracking. Agronomic

factors, particularly mineral nutrition, and plant growth

regulators (PGRs) and post-harvest management, also play a

crucial role in fruit cracking susceptibility. Calcium deficiency has

been identified as a leading cause of fruit cracking in various fruit

species. Proper nutrient management and the judicious use of plant

growth regulators can mitigate the risk of cracking in orchards.

In the last five years, machine learning, precision farming and

monitoring systems have emerged as valuable tools for managing

environmental factors and optimizing fruit production. By closely

monitoring parameters such as temperature, humidity, soil

moisture, and fruit skin temperature, growers can make better
tiers in Plant Science 04
decisions to prevent or reduce fruit cracking. Tailored models and

decision support systems offer promising avenues for improving

fruit quality while minimizing losses due to disorders like

fruit cracking.

As reported in Figure 1 fruit cracking prevention requires a

holistic approach that considers both environmental and agronomic

factors shaped by the choice of genotype and the scion-rootstock

interaction; with the growing challenges induced by climate change,

adopting precision farming practices and harnessing technology to

monitor and predict the predisposing conditions for fruit cracking

will be essential for ensuring high-quality fruit production, to develop

effective strategies to minimize economic losses.
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Schematic diagram of the agronomic approach to manage
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Monteiro, A., Santos, S., and Gonçalves, P. (2021). Precision agriculture for crop and
livestock farming-brief review. Anim. (Basel) 11 (8), 2345. doi: 10.3390/ani11082345

Osroosh, Y., and Peters, R. T. (2019). Detecting fruit surface wetness using a custom-
built low-resolution thermal-RGB imager. Comput. Electron. Agric. 157, 509–517.
doi: 10.1016/j.compag.2019.01.023

Ranjan, R., Sinha, R., Khot, L. R., and Whiting, M. (2022). Thermal-RGB imagery
and in-field weather sensing derived sweet cherry wetness prediction model. Sci. Hortic.
294, 110782. doi: 10.1016/j.scienta.2021.110782

Ranty, B., Aldon, D., Cotelle, V., Galaud, J.-P., Thuleau, P., and Mazars, C. (2016).
Calcium sensors as key hubs in plant responses to biotic and abiotic stresses. Front.
Plant Sci. 7. doi: 10.3389/fpls.2016.00327
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