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1 Introduction

The global food supply crisis is one of humanity’s most significant risks (World

Economic Forum, 2023). Climate change is causing the loss of natural resources, which is

closely related to this crisis (Mirzabaev et al., 2023). Therefore, it is crucial to implement

sustainable food systems that ensure food security for both present and future generations.

Thus, food should be available, accessible, and nutritious (Peng and Berry, 2018). Delaying

the implementation of these goals will contribute to food insecurity and lead to a more

polarized world.

Improving photosynthetic efficiency is critical to ensure food security because it

generates 90% of plant biomass (van Bel et al., 2003) and increases crop yield (Brestic

et al., 2021). However, photosynthesis is affected by high temperatures (Mathur et al.,

2014), irregular rains (León-Sánchez et al., 2016), and drought (Wang et al., 2018), among

others. The persistence and severity of these phenomena reduce the photosynthetic rate,

exerting selection pressure mainly in C3 plants (Sello et al., 2019), affecting their adaptation

biodiversity and could lead to an irreversible loss of genetic diversity (Demıŕ, 2021), which
is relevant to implement sustainable food production systems through genetic

improvement (Salgotra and Chauhan, 2023).

The Solanaceae family is a prime example of climate change vulnerability because their

centers of origin are in countries highly vulnerable to climate change (Samuels, 2015). In

this regard, Solanaceae is among the 12 most diverse plant families, and more than 1,500

native species can be found in South America alone, and Peru standing out for its diversity

(Palchetti et al., 2020). This richness translates into genetic and metabolic diversity that can

be useful to improve the crop photosynthetic rate. Therefore, it is essential to identify the

critical genes for light and dark phases.
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2 The underlying genetic architecture
related to photosynthetic efficiency:

Regarding the light phase (Figure 1), Leister (2023) proposes a

list of genes, including the D1 gene of the photosystem II reaction

center (PSII), that improve photosynthetic performance and plant

growth when overexpressed. Thus, Chen et al. (2020) showed that

Arabidopsis transgenic lines that overexpress D1 doubled their

biomass under thermal stress (42°C). The D1 biosynthesis is

mediated by genes that ensure psbA correct translation (Zhang

et al., 2000). Thus, LPE1 binds to the 5’ end of psbA to facilitate

association with HCF173 (Jin et al., 2018), which prevents

exonucleotide degradation of psbA mRNA, ensuring its binding

to the ribosome (Bollenbach, 2003). In addition, HCF244 is co-

expressed with HCF173, which encodes a gene necessary for the

translational initiation of psbA and stabilization of this messenger

RNA (Link et al., 2012). These genes are relevant for plant

development, in Arabidopsis lpe1-3 mutant showed a 70%

reduction in the rosette size, and a drastic reduction in the ratio

of variable fluorescence to maximum fluorescence (Fv/Fm) (Jin

et al., 2018). For hcf173, Link et al. (2012) also had a similar

reduction in rosette size in Arabidopsis than lpe1-3. RNA is

highly unstable in hcf173, leading to a drastically impaired

accumulation of PSII polypeptides (Schult et al., 2007). On the

other hand, the hcf244 mutant cannot grow under autotrophic

conditions due to a drastically impaired accumulation of PSII

proteins (CP47, CP43, D1, and D2); reaching only about 10% to

20% of wild-type levels (Link et al., 2012). Both, HCF173 and

HCF244 were identified by Bhattacharya et al. (2023) in tomato

stromal proteome as part of the 29 orthologous proteins involved in

the assembly, stability and repair of the PSII complex.
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Another critical component of the electron transport chain is

the cytochrome b6/f complex (Rochaix, 2011). Mutants in tomatoes

of the petM subunit of this complex showed lower electron

transport rate, CO2 assimilation, and carotenoid content than the

wild type. In addition, mutants of the petM-4 line showed late

autotrophic growth (Bulut et al., 2023). In tobacco, petA, B, and D

mutants showed a lower content of thylakoid membranes (Monde

et al., 2000). Considering that the cytochrome b6f complex regulates

the acclimation of photosynthetic organisms to changing light

conditions (Malone et al., 2021) and that algae have an

exceptional ability to adapt to such conditions (Sukenik et al.,

1987), Yadav et al. (2020) identified that tobacco specimens

transformed with cytochrome b6 gene from Kappaphycus

alvarezii have a net photosynthetic rate higher than the wild type

by approximately 60%. This improved performance was also

evident in the growth and starch accumulation of the transgenic

lines. Yadav et al. (2018) reported similar results with transforming

tobacco specimens with the UfCytb6 gene from Ulva fasciata. These

findings show that photosynthetic and growth enhancement of

tobacco specimens through manipulation of cytochrome b6f

subunits is a potential way to improve their performance in light-

changing environments.

In addition to the structural genes of PSII, the NADPH

dehydrogenase or NDH complex is also relevant for the light

phase since it participates in the cyclic transport of electrons to

maintain the balance of the redox system to mitigate oxidative stress

in the photosynthetic apparatus (Ma et al., 2021). The CRR23,

NDH48, and NDH45 subunits guarantee the accumulation and

stabilization of this complex in Arabidopsis. Thus, the crr23 mutant

showed a 12.5% reduction in the accumulation of the NDH

complex (Shimizu et al., 2008), while ndh48 and ndh45 revealed
FIGURE 1

Schematic representation of the photosynthetic electron transport chain and the Calvin Benson cycle. Key photosynthetic genes identified with red
stars. Light phase: Low photosynthetic effciency 1 (LPE1), High Chlorophyll fluorescence phenotype 173 (HCF173), High Chlorophyll fluorescence
phenotype 244 (HCF244), D1 reaction center (D1), Cytochrome b6f complex (Cyt b6f), NAD(P)H dehydrogenase-like (NDH) complex subunits (NdhC,
NdhI, NdhJ, NdhL or CRR23, Ndh48 and Ndh45), ATP sintase gamma subunit (g Subunit). Dark phase: Ribulose bisphosphate carboxylase oxygenase
(RuBisCO), Glyceraldehyde-3-phosphate dehydrogenase subunits (GAPA and GAPB) and Triosephosphate isomerase (TPI). Electron flow represented
with black lines.
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functional deficiencies of this complex (Sirpiö et al., 2009). On the

other hand, in tobacco, a 25% reduction in the photochemical

efficiency of PSII was identified in mutants for the C, J, and K

subunits due to the increase in ROS at -4°C and 42°C (Wang et al.,

2006). It is crucial to study subunits that cause a decrease in

photosynthetic efficiency because of temperature stress. Mutations

in these subunits can negatively impact the plant’s ability to

withstand frost. Therefore, it is essential to investigate these

subunits in potato wild relatives as a potential solution to this

problem (Nicolao et al., 2023).

On the other hand, ATPC1, the g subunit of ATP synthase,

induces conformational changes in the catalytic region of this

enzyme that are necessary for ATP synthesis (Cheuk and Meier,

2021). It possesses two cysteine residues that regulate ATP synthase

activity in response to fluctuating intracellular redox conditions due

to the unstable activity of the photosynthetic electron transfer chain

associated with changing light intensity (Akiyama et al., 2023). In

tobacco, Rott et al. (2011) identified that atpc1 mutants showed a

reduction of more than 50% in growth after 14 weeks and also a

reduction in the chlorophyll a/b ratio; this change suggests a

rearrangement of the photosynthetic apparatus. Furthermore

(Kohzuma et al., 2013), identified that the knockout of atpc1 in

Arabidopsis cannot perform autotrophic growth.

On the other hand, overexpression of enzymes in the dark phase

(Figure 1) does not necessarily result in improved photosynthetic

efficiency. According to Zhao et al. (2021), balancing the catalytic

activity of the different enzymes in the Calvin Benson Cycle (CBC)

is crucial. RuBisCO is one of the most essential enzymes studied for

enhancing photosynthetic efficiency, biomass accumulation, and

crop yield (Lin et al., 2021). An evaluated strategy to make the

catalytic activity of RuBisCO more efficient is to increase the

concentration of CO2 around this enzyme through synthetic

engineering, as this could increase the photosynthetic efficiency of

C3 plants by 25% (Zhu et al., 2010). In nature, a greater availability

of foliar CO2 was observed in Solanum pennellii, a wild relative of

tomato, where the distribution of its stomata limits the diffusion of

CO2 by photorespiration, facilitating its fixation and a consequent

higher photosynthetic rate (Muir et al., 2014). However, despite the

greater availability of CO2, a limiting factor is the catalytic

inefficiency of RuBisCO compared to CO2 and O2 as substrates.

The short subunit of RuBisCO controls the affinity regulation of

these molecules (Genkov et al., 2010). In tobacco, mutations in this

subunit have been found to reduce the total content of RuBisCO by

93% and biomass accumulation by 90% compared to the wild-type.

Despite the recent improvements, Lin et al. (2021) suggest that

the most effective way to enhance the RuBisCO efficiency is to

modify the long subunit; the active site of the enzyme is located

there, making it vulnerable to changes in temperature and

humidity. In this context, previous studies have identified that

high temperatures and dry environments can reduce RuBisCO

efficiency by up to 40% (Parto and Lartillot, 2018). This scenario

is common for many crops, which may experience a loss of

productivity ranging from 3 to 13% for each one-degree increase

in temperature (Zhao et al., 2017). Indeed, Lin et al. (2022)

conducted a study to address a problem related to RuBisCO

efficiency in hot and dry environments. They explored the
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potential of thermostable RuBisCO ancestors in Solanaceae and

found that they have superior catalytic efficiency, suggesting that by

utilizing the genetic diversity of their ancestors, it is possible to

improve the enzymatic efficiency of RuBisCO.

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a crucial

enzyme in the reduction stage of the CBC. According to Petersen et al.

(2003), GAPDH plays a significant role in this process. Rius et al.

(2006) has reported that if GAPDH is deficient, it can hinder glycolysis

and reduce CO2 fixation by approximately 25%. The GAPDH is used

to create photosynthates and regenerate Ribulose 1,5 bisphosphate.

GAPA and GAPB are the two subunits that make up the GAPDH

enzyme. Deleting either GAPA or GAPB can significantly reduce

carbon assimilation in Arabidopsis. Simkin et al. (2020) have

reported that carbon assimilation decreases by 73% by GAPA

deletion, while the deletion of GAPB leads to a 34% reduction. In

rice, GAPB overexpression increases CO2 assimilation and chlorophyll

content even under low light conditions (Liu et al., 2020). In contrast, in

Arabidopsis, carbon assimilation is higher for gapb than gapa.

Triose phosphate isomerase (TPI) is another essential enzyme

in the CBC, playing a pivotal role in the first reaction of the

regeneration stage (Johnson, 2016). TPI has a critical C-terminal

region, vital for its catalytic, regulatory, or folding function. This

region is essential for efficiently converting glyceraldehyde 3-

phosphate molecules into dihydroxyacetone phosphate and vice

versa (Castro-Torres et al., 2018). Mutations in TPI’s plastid form in

Arabidopsis result in chlorotic leaves and almost no growth after ten

weeks of evaluation because of the accumulation of methylglyoxal,

which is twice that of the wild type. As a result, the transition from

heterotrophic to autotrophic growth is delayed (Chen & Thelen,

2010). Moreover, TPI has cysteine residues similar to the GAPB

subunit of the GAPDH enzyme. In Arabidopsis and photosynthetic

microorganisms such as Synechocystis and Chlamydomonas, these

residues facilitate its stability and activity by being close to the

catalytic site (Dumont et al., 2016; Castro-Torres et al., 2018). In

tomato, the mutation of its TPI genes only showed visible

phenotype changes in double mutant lines tpi1tpi2. In these

individuals, Chen et al. (2023) found reduced TPI activity,

chlorotic variegation, and reduced carbon-assimilation efficiency

in contrast to the wild type. However, assessing the thermostability

of TPI1 and TPI2 proteins in tomatoes, the author found that TPI2

may be more stable than TPI1 under heat stress at 42°C.
3 The cosmetic and personal care
industry: the role of photosynthesis in
lycopene production

In addition to ensuring food production, photosynthesis

supports plant secondary metabolism since its products are

precursors (Qaderi et al., 2023) of over 50 thousand secondary

metabolites (Teoh, 2016). Because of their properties, there is

growing interest in identifying new secondary metabolites as

industry inputs to enhance agricultural sustainability and improve

their production (Ozyigit et al., 2023). Thus, plant and food waste

are processed as a promise source to obtain secondary metabolite

for the cosmetic industry (Faria-Silva et al., 2020).
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The cosmetic and personal care industry uses plant-derived

secondary metabolites to formulate products (Ribeiro et al., 2015).

This market has seen significant growth from 2016 to 2022

(Liyanaarachchi et al., 2018) as consumers prefer natural products

(Nadeeshani Dilhara Gamage et al., 2022). Products containing

lycopene for skin care are trendy (Choi et al., 2022) due to their

antioxidant capacity, improving skin elasticity and hydration

(Franco et al., 2021). Thus, lycopene price is over $6000 per kg

(Zia-Ul-Haq et al., 2021). Unfortunately, competition with the food

industry affects lycopene supplies (Khan et al., 2021). Although

lycopene chemical synthesis can be an alternative, the chemical

residues in this process affect its overall quality (Li et al., 2022).

Therefore, it is relevant to increase its concentration (Costa et al.,

2021) to generate a circular production system.

The biosynthesis of lycopene and other carotenoids begins with the

2-C-methyl-D erythritol 4-phosphate pathway that uses glyceraldehyde

3-phosphate (GAP) and pyruvate (Sathasivam et al., 2021) to form 1-

deoxy-D-xylulose 5-phosphate (DXP) via 1-deoxy-D-xylulose-5-

phosphate synthase (DXS) (Simpson et al., 2016). The manipulation

of DXS increases lycopene production (Kang et al., 2005), and its

overexpression results in a twofold increase in the carotenoid content

(Morris, 2006). The activity of DXS depends on the availability of GAP,

GAPDH being the photosynthetic enzyme that generates this molecule

(Petersen et al., 2003). GAPDH has predominant activity in

photosynthetically active tissues (Kelly and Gibbs, 1973), favoring the

biosynthesis of carotenoids such as lutein, beta-carotene, violaxanthin,

and neoxanthin (Sun et al., 2018) that protect the photosynthetic

apparatus from oxidative photodamage (Kim et al., 2018). In green

tissues of plants, the regulation of carotenoid biosynthesis must occur

in a coordinated manner with the assembly of the photosynthesis

apparatus (Lu and Li, 2008). On the other hand, phytoene synthase

(PSY) knock-out, a critical enzyme for carotenoid biosynthesis,

completely suppresses photosynthesis (Sun et al., 2018).
4 Conclusion

The cosmetic and personal care industry uses plant-derived

secondary metabolites, like lycopene, to avert skin photodamage
Frontiers in Plant Science 04
and aging. Therefore, it is necessary to link diversity in plant

secondary metabolism with the underlying genetic architecture

related to photosynthetic gene diversity (LPE1, HCF173, HCF244,

D1, Cytochrome b6f complex and NDH complex subunits, APTase

g subunit, RuBisCO, GAPA, GAPB and TPI) to add value to the

Solanaceae biodiversity to develop new crops and thus prevent

competition with the food industry.
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