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Abstract

Distinguishing between alcohol-associated hepatitis (AH) and alcohol-associated cirrhosis

(AC) remains a diagnostic challenge. In this study, we used machine learning with transcrip-

tomics and proteomics data from liver tissue and peripheral mononuclear blood cells

(PBMCs) to classify patients with alcohol-associated liver disease. The conditions in the

study were AH, AC, and healthy controls. We processed 98 PBMC RNAseq samples, 55

PBMC proteomic samples, 48 liver RNAseq samples, and 53 liver proteomic samples. First,

we built separate classification and feature selection pipelines for transcriptomics and prote-

omics data. The liver tissue models were validated in independent liver tissue datasets.

Next, we built integrated gene and protein expression models that allowed us to identify

combined gene-protein biomarker panels. For liver tissue, we attained 90% nested-cross

validation accuracy in our dataset and 82% accuracy in the independent validation dataset

using transcriptomic data. We attained 100% nested-cross validation accuracy in our data-

set and 61% accuracy in the independent validation dataset using proteomic data. For

PBMCs, we attained 83% and 89% accuracy with transcriptomic and proteomic data,

respectively. The integration of the two data types resulted in improved classification accu-

racy for PBMCs, but not liver tissue. We also identified the following gene-protein matches

within the gene-protein biomarker panels: CLEC4M-CLC4M, GSTA1-GSTA2 for liver tissue

and SELENBP1-SBP1 for PBMCs. In this study, machine learning models had high classifi-

cation accuracy for both transcriptomics and proteomics data, across liver tissue and

PBMCs. The integration of transcriptomics and proteomics into a multi-omics model yielded
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improvement in classification accuracy for the PBMC data. The set of integrated gene-pro-

tein biomarkers for PBMCs show promise toward developing a liquid biopsy for alcohol-

associated liver disease.

Author summary

Alcohol-associated cirrhosis and alcohol-associated hepatitis can be difficult to classify

clinically. Previously, we established that these two diseases can be differentiated using

RNA sequencing gene expression data collected from either liver tissue biopsies or from

peripheral blood mononuclear cells (PBMCs), which are extracted from blood samples. In

the current study, we investigated whether using protein expression data, in addition to

gene expression data, would improve our machine learning models’ ability to distinguish

between the two alcohol-associated liver diseases and enable identification of gene and

protein biomarkers. We found that our models accurately classified alcohol-associated

liver diseases with each data type. We were also able to identify promising tissue and

blood-based diagnostic gene and protein biomarkers. Additionally, we have demonstrated

that challenges present in analyzing small sample size, high dimensional genomic data can

be addressed through careful application of appropriate software, bioinformatics, and

machine learning methods. By applying these computational approaches to this liver dis-

ease genomics data set, we have identified blood-based diagnostic biomarkers of liver dis-

ease that will potentially contribute to the development of highly accurate blood tests that

will replace invasive liver biopsies.

Introduction

In this study, we focused on alcohol-associated hepatitis (AH) and alcohol-associated cirrhosis

(AC) because these are deadly liver conditions with similar clinical presentation. In 2019 there

were 23,780 deaths from alcohol-associated cirrhosis (AC) in United States [1]. This is more

than triple the number of deaths from alcohol-associated cirrhosis in 1999. The patients with

alcohol-associated liver disease (ALD) account for 18% of liver transplants [2]. However,

attaining a liver transplant as an ALD patient is difficult, since donor livers are scarce and

there are concerns about allocation to individuals with alcohol addiction [2]. Typically, a

6-month abstinence from alcohol is required to be a candidate for liver transplant [2]. Many of

ALD patients have alcohol-associated hepatitis (AH) a condition which carries mortality as high

as 50% at 3 months [3]. For the severe AH patients, the 6-month abstinence requirement can be

tantamount to a death sentence [2]. When carefully selected, ALD patients can benefit from

liver transplantation [4,5,6,7]. Currently, establishing AH diagnosis can require liver biopsy,

typically done using a transjugular route [3]. Liver biopsy has several limitations, such as proce-

dural risk of internal bleeding, high cost, and patient dissatisfaction. Thus, development of a

non-invasive test that can reliably distinguish between AH and AC would be beneficial. Cur-

rently, there are a large number of imaging and blood tests for diagnosis of liver cirrhosis [8].

However, liver biopsy remains the current standard for diagnosis [9]. Further improvement in

accuracy of non-invasive tests is necessary to reduce the need for liver biopsy [10].

In a previous study, we established that gene expression biomarkers from liver tissue and

peripheral mononuclear blood cells (PBMCs) can be used with a multiclass machine learning

approach to successfully distinguish between multiple liver diseases [11]. In the present study,

PLOS DIGITAL HEALTH Integrating liver disease protein and gene data using machine learning

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000447 February 9, 2024 2 / 16

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE142530). Proteomic data can be found in

the MassIVE repository under accession number

MSV000089168.

Funding: Funding for this study was provided to

the researchers in the Southern California Alcoholic

Hepatitis Consortium (SCAHC) by the National

Institute on Alcohol Abuse and Alcoholism (NIAAA,

https://www.niaaa.nih.gov/) award numbers:

U01AA021838 (TMNK), U01AA021886 (TRM),

U01AA021884 (TRM), U01AA021918 (JMJ), and

U01AA021857 (ZXL). The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pdig.0000447
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE142530
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE142530
https://www.niaaa.nih.gov/


in addition to transcriptomic data, we also obtained proteomic data for participants from the

same cohort [12]. Addition of proteomic data presented new opportunities, but it also further

increased the ratio of feature size to sample size. This made overfitting a greater challenge than

when we only used the gene expression data. First, we compared how well gene and protein

biomarkers could be used to classify these conditions separately. Then we examined whether

further improvement in classification accuracy could be obtained by combining transcrip-

tomic and proteomic data. As part of the classification process, we have identified the most

effective gene and protein biomarkers of alcohol-associated liver disease. We also examined

the degree of concordance between top differentially expressed proteins and genes for the

three conditions. The gene and protein biomarkers identified in this study, with further valida-

tion, could be used to develop new highly accurate blood tests to distinguish between various

types of ALD.

Materials and methods

Study population

This study was primarily conducted using biospecimens collected from participants enrolled

by the Southern California Alcoholic Hepatitis Consortium (SCAHC). The protocol was

approved by the IRB, and informed written consent was obtained from all participants. The

liver tissue from participants with AC and healthy controls were obtained from the liver tissue

cell distribution system (LTCDS) at University of Minnesota. The study population demo-

graphics for liver tissue and PBMC samples for transcriptomic and proteomic analyses can be

found in Tables 1 and 2.

The biospecimens consisted of 98 PBMC RNAseq samples, 55 PBMC proteomic samples,

48 liver tissue RNAseq samples, and 53 liver tissue proteomic samples. The liver diseases

Table 1. Study population demographics (liver) for proteomic and RNAseq analysis.

Liver tissue samples (proteomics) Liver tissue samples (transcriptomics)

AH CT AC AH CT AC

n = 33 n = 10 n = 10 n = 32 n = 8 n = 8

Age: mean ± std 42.7 ± 11.4 56 ± 8.6 51.9 ± 13.1 43.3 ± 11.3 55.4 ± 4.3 54.2 ± 6.9*
MELD: mean ± std 25.2 ± 5.7 NA 32 ± 6.1* 25.1 ± 5.7 NA NA

Maddrey’s DF: mean 53.3 ± 22.2 NA NA 52.3 ± 22.1 NA NA

BMI: mean ± std 29 ± 5.3 NA 25.6 ± 8.4* 29.4 ± 5.9 NA NA

Gender: N (percent)

Female 3(9.1%) 0(0.0%) 0(0.0%) 3(9.4%) 0(0.0%) 0(0.0%)

Male 30(90.9%) 10(100%) 9(90%) 29(90.6%) 7(87.5%) 5(62.5%)

Ethnicity: N (percent)

Hispanic 25(75.8%) NA 0(0.0%) 25 (78.1%) NA 0 (0.0%)

NHW 5(15.1%) NA 5(50%) 5 (15.6%) NA 4 (50.0%)

Black 2(6.1%) NA 0(0.0%) 1 (3.1%) NA 0 (0.0%)

Other 1(3.0%) NA 0(0.0%) 1 (3.1%) NA 0 (0.0%)

Source SCAHC LTCDS LTCDS SCAHC LTCDS LTCDS

Abbreviations: AC, alcohol-associated cirrhosis; AH, alcohol-associated hepatitis; CT, healthy controls; MELD, model for end-stage liver disease; NHW, non-Hispanic

White; NA, not available; SCAHC, Southern California Alcoholic Hepatitis Consortium.

*Missing MELD scores for 7 proteomic AC samples, BMI for 8 proteomic AC samples, and age for 3 transcriptomic AC samples.

https://doi.org/10.1371/journal.pdig.0000447.t001
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represented were encoded with two letter symbols as follows: alcohol-associated hepatitis

(AH) and alcohol-associated cirrhosis (AC). Most of the AC participants within the SCAHC

study were expected to be in-patients with decompensated cirrhosis. Best efforts were made

during recruitment of the AH and AC groups within SCAHC study to match based on age,

gender, and ethnicity. Severity-based matching was not possible due to small sample size. One

of the main reasons for small sample size in our study and in publicly available data sets, is dif-

ficulty in recruiting patients with AH. AH has a low incidence rate of an estimated 4.5 hospital-

izations per 100,000 person per year [13]. Additional information about the inclusion and

exclusion criteria, sample collection, sample processing, and preliminary data processing can

be found in S1 Text.

Partitioning samples into datasets

Because some proteomic and transcriptomic samples came from the same participants, while

others did not, we implemented a strategy to partition and balance the samples in the datasets

into matched and unmatched sets. Table 3 summarizes the degree of matching between prote-

omic and transcriptomic samples in liver tissue and PBMC. For several algorithms in the pipe-

line, some of the unmatched subsets were too small. Therefore, we moved some matched

samples into unmatched sample categories, and we will refer to these new categories as “bal-

anced matched” and “balanced unmatched” subsets. We divided our data into the following

dataset categories described below.

Full datasets. These datasets are composed of all available samples for the given tissue and

genomic datatype: PBMC 3-Way Full proteomics, PBMC 3-Way Full RNAseq, Liver 3-Way

Full proteomics, and Liver 3-Way Full RNAseq.

Table 2. Study population demographics (PBMCs) for proteomic and RNAseq analysis.

PBMC samples (proteomics) PBMC samples (transcriptomics)

AH CT AC AH CT AC

n = 20 n = 22 n = 13 n = 38 n = 20 n = 40

Age: mean ± std 48.7 ± 11.6 34.8 ± 15.1 54.2 ± 11.2 47.3 ± 11.5 35.9 ± 15.6 54.5 ± 9.7

MELD: mean ± std 24.5 ± 3.6 7.5 ± 2.5 13.6 ± 6.7 25 ± 3.8 7.3 ± 2.6 13.4 ± 5.8

Maddrey’s DF: mean 49.3 ± 17.3 2.5 ± 7.8 22.1 ± 23.3 52.6 ± 20.7 2.4 ± 8.1 21.1 ± 19.1

BMI: mean ± std 29.6 ± 5.5 27.1 ± 4 30 ± 4.8 30 ± 6.2 27 ± 3.5 30.4 ± 5.1

Gender: N (percent)

Female 1(5%) 10(45.4%) 0(0.0%) 1 (2.6%) 8 (40.0%) 0 (0.0%)

Male 19(95%) 12(54.6%) 13(100%) 37 (97.4%) 12 (60.0%) 40(100.0%)

Ethnicity: N (percent)

Hispanic 12(60%) 12(54.5%) 10(76.9%) 25 (65.8%) 8 (40.0%) 25 (62.5%)

NHW 5(25%) 0(0.0%) 2(15.4%) 10 (26.3%) 0 (0.0%) 13 (32.5%)

Black 2(10%) 1(4.5%) 0(0.0%) 2 (5.3%) 2 (10.0%) 1 (2.5%)

Other 1(5%) 12(54.5%) 1(7.7%) 1 (2.6%) 10 (50.0%) 1 (2.5%)

Source SCAHC SCAHC SCAHC SCAHC SCAHC SCAHC

*The ethnicity and sex percentages may not add up to 100% due to missing data.

Abbreviations: AC, alcohol-associated cirrhosis; AH, alcohol-associated hepatitis; CT, healthy controls; LTCDS, Liver Tissue Cell Distribution System; MELD, model for

end-stage liver disease; NHW, non-Hispanic White; NA, not available; SCAHC, Southern California Alcoholic Hepatitis Consortium.

https://doi.org/10.1371/journal.pdig.0000447.t002
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Unmatched balanced datasets. These datasets consist of a mixture of matched and

unmatched samples: PBMC 3-Way Unmatched Balanced proteomics, PBMC 3-Way

Unmatched Balanced RNAseq, Liver 3-Way Unmatched Balanced proteomics, and Liver

3-Way Unmatched Balanced RNAseq.

Matched balanced datasets. These datasets consist of only matched samples, such that for

each RNAseq sample there is also a proteomic sample obtained from the same individual:

PBMC 3-Way Matched Balanced proteomics, PBMC 3-Way Matched Balanced RNAseq, Liver

3-Way Matched Balanced proteomics, and Liver 3-Way Matched Balanced RNAseq.

Matched balanced integrated datasets. These datasets were formed by merging the

proteomic and RNAseq data from Matched Balanced datasets: PBMC 3-Way Matched Bal-

anced Integrated and Liver 3-Way Matched Balanced Integrated.

Validation dataset

We validated our proteomic liver tissue machine learning (ML) models using data obtained

from MassIVE repository (accession number MSV000089168) [12]. This dataset contained

liver tissue proteomic data from participants with AH (n = 6) and healthy controls (n = 12).

Notably, the healthy controls came from two different sources, 7 from University of Louisville

and 5 from John Hopkins University. Publicly available proteomic data from PBMCs was not

available for the conditions in our study, and therefore, only the liver tissue datasets were vali-

dated using independent data. Information regarding the RNAseq liver tissue validation data-

set can be found in our previous publication [11].

RNAseq Classification and Feature Selection Pipeline

The detailed methods used to classify RNAseq counts and identify best genes are described in

[11]. Briefly, the classification was performed using nested cross-validation with feature selec-

tion. Features were selected using either differential expression software or information gain

algorithm. Additionally, outlier features were removed prior to feature selection. Domain

expertise was incorporated into the pipeline via enrichment analysis. For each dataset, multiple

pipeline configurations were executed, resulting in multiple, promising, candidate gene sets.

For each dataset, we then selected a single best gene set that maximized classification perfor-

mance and in-silico biological relevancy (attained via enrichment analysis), while minimizing

Table 3. The degree of matching between proteomic and transcriptomic samples for PBMC and liver tissue. The numbers in parenthesis denote the number of sam-

ples that were moved from matched category into matched balanced and unmatched balanced categories.

PBMC (proteomics) PBMC (transcriptomics)

AH CT AC AH CT AC

Full 20 22 13 38 20 40

Matched 18 19 13 18 19 13

Unmatched 2 3 0 20 1 27

Matched Balanced 9(-9) 12(-7) 6(-7) 9(-9) 12(-7) 6(-7)

Unmatched Balanced 11(+9) 10(+7) 7(+7) 29(+9) 8(+7) 34(+7)

Liver (proteomics) Liver (transcriptomics)

AH CT AC AH CT AC

Full 33 10 10 32 8 8

Matched 29 3 5 29 3 5

Unmatched 4 7 5 3 5 3

Matched Balanced 24(-5) 3 3(-2) 24(-5) 3 3(-2)

Unmatched Balanced 9(+5) 7 7(+2) 8(+5) 5 5(+2)

https://doi.org/10.1371/journal.pdig.0000447.t003
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the gene set size. The methods used throughout were focused on minimizing the possibility of

overfitting. Note that for any given pipeline configuration, there is a resultant set of genes (can-

didate gene set). Subsequently, when referring to candidate or best gene sets, we are also refer-

ring to the pipeline configurations that resulted in those gene sets.

Proteomic Classification and Feature Selection Pipeline

Methods used to classify proteomic counts and identify best proteins were similar to the meth-

ods used for analysis of RNAseq data with the following exceptions.

Feature sizes. The feature sizes for proteomic data were largely based on our findings

when dealing with RNAseq data. Due to smaller number of proteomic samples the maximum

number of features used was reduced from 500 to 200. The following feature sizes were

selected: 15, 25, 35, 50, 60, 70, 80, 90, 100, 150, and 200.

Imputation. Unlike the RNAseq data, the proteomic data contained missing values. We

used median and replacement with zero imputation strategies to address this. Median imputa-

tion replaces missing values using the median along each column (feature, in this case protein).

Zero imputation replaces all missing values with zeros.

Imputed values were used for proteins that were missing data for a small number of sam-

ples. The following imputation thresholds were used 0%, 5%, and 10%. That is, values for a

given protein were only imputed if less than the threshold % of total samples were missing

data. Threshold of 0% means no imputation took place and all proteins with missing values

were removed.

Differential expression feature selection. Cuffdiff [14] was used for the differential

expression analysis of the RNAseq data, while we used INFERNORDN to perform differential

expression analysis with proteomic counts [15]. Proteins were filtered by q-value� 0.05. After-

ward, any proteins that had too much missing data (above imputation threshold) were

removed.

In silico biological validation and best protein set selection. Enrichr [16], which was

used for RNAseq data analysis, was replaced with AGOTOOL [17] for enrichment analysis of

proteins. When selecting the best protein set, an identical algorithm was used for both tran-

scriptomic and proteomic data, with one exception. That is, for proteomic data, protein sets

produced by configurations with the least imputation were preferred for selection.

Analysis outline

The analysis pipeline was divided into the 3 stages, which are shown in Fig 1.

Stage 1 (No Integration). In the first stage, we used machine learning approaches with

nested cross-validation to separately classify the Full datasets (Liver 3-Way RNAseq Full, Liver

3-Way Proteomics Full, PBMC 3-Way RNAseq Full, and PBMC 3-Way Proteomics Full). This

enabled us to identify the best genes and proteins, independently of each other, for both sam-

ple types using our RNAseq and proteomic pipelines. Refer to Fig 2 for the classification per-

formance for Stage 1.

Stage 2 (Integration).

Part A:

We performed the same type of analyses as in Stage 1, i.e. nested cross-validation, to clas-

sify the Liver 3-Way Unmatched Balanced and PBMC 3-Way Unmatched Balanced gene

and protein datasets. Each pipeline configuration produced a unique candidate gene/pro-

tein set. We noted several best performing candidate gene and protein sets for later use in

parts B and C.
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Part B:

We trained classifiers, corresponding to the best performing RNAseq and proteomic ML

pipeline configurations from part A, on the entirety of unmatched balanced data. The resulting

ML models were then tested in matched balanced data. This would serve as a reference, to

which we could later compare the integrated model, as shown in Fig 3.

Part C:

Pairings of the best performing RNAseq and proteomic ML models for each sample type

from part B (using their corresponding gene/protein sets) were integrated and evaluated in

matched balanced data using cross-validation (Table AA in S1 Text for models tested for the

liver samples, and Table AD in S1 Text for the PBMC models tested). The integration was per-

formed by supplying the output prediction probabilities from each pair of RNAseq and proteo-

mic models as input into an integrated model. The pair of candidate gene and candidate

protein sets that attained the best classification accuracy was reported as the best combined

gene and protein panel. The performance of integrated model in matched balanced data was

compared to the performance of separate (RNAseq and proteomic) models in matched bal-

anced data (from part B) as shown in Fig 3.

Stage 3 (Intersection). In the third stage, we examined which genes and proteins matched

within the best gene and protein panel. That is, we can consider a protein and a gene that

codes for it, as a match.

Fig 1. Flowchart of the 3 stages of the analysis. Stage 1: Separate analyses of full RNAseq and proteomics datasets (Liver 3-Way RNAseq

Full, Liver 3-Way Proteomics Full, PBMC 3-Way RNAseq Full, and PBMC 3-Way Proteomics Full). To simplify the flowchart, we are only

showing one representative dataset, which we will refer to as “3-Way Full Datasets”. Stage 2: Training ML models in unmatched balanced data

with subsequent testing and integration in matched balanced data. Part A: Identification of top transcriptomic and proteomic pipeline

configurations along with their corresponding gene and protein sets for unmatched balanced datasets. Part B: Evaluation of top performing

models with their corresponding gene and protein sets from part A in matched balanced data. Part C: Integration of paired sets of the top

performing gene and proteomics models with their corresponding gene and protein sets, in matched balanced data. Stage 3: Intersection

analysis of the combined best gene-protein sets for liver samples and for PBMCs.

https://doi.org/10.1371/journal.pdig.0000447.g001

PLOS DIGITAL HEALTH Integrating liver disease protein and gene data using machine learning

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000447 February 9, 2024 7 / 16

https://doi.org/10.1371/journal.pdig.0000447.g001
https://doi.org/10.1371/journal.pdig.0000447


Validation in independent liver tissue data

All liver tissue ML models (RNAseq and proteomic) were validated in independent liver tissue

validation data. Briefly, the ML model that performed best during nested cross-validation was

trained on entirety of our liver tissue data. This trained classifier was then evaluated in inde-

pendent liver tissue validation data. The methods for independent validation were identical for

both RNAseq and proteomic datatypes. The further description of these methods can be found

in our previous publication [11] methods.

Machine learning classifiers

The classifiers used in the individual analysis of the transcriptomic and proteomic data were: k

nearest neighbors (kNN), logistic regression (LR), and support vector machine (SVM). For the

integrated transcriptomic and proteomic analysis, we used only logistic regression and linear

kernel SVM classifiers, due to ease of interpretation. Within the integrated model, the models

that directly utilized the RNAseq and proteomic counts were either LR or linear kernel SVM.

The classifier that used the prediction probabilities supplied via the RNAseq and proteomic

models was LR with default hyperparameters. The LR model has been shown to be well suited

for small sample size proteomic data previously [18]. Both LR and SVM classifiers were

regularized.

Fig 2. Confusion matrices corresponding to the best gene and protein sets of the full datasets and the liver tissue validation datasets. The Liver 3-way Full

best gene and protein sets contained 33 genes and 27 proteins, respectively. The PBMC 3-Way Full best gene and protein sets contained 16 genes and 28

proteins, respectively. (A) Confusion matrix for classification of Liver 3-Way Full RNAseq dataset using best gene set identified by filter feature selection. The

diagonal contains the number and percentage of the correctly predicted samples. (B) Confusion matrix for classification of AH, AC, and healthy control (CT)

samples within independent validation RNAseq dataset. (C) Confusion matrix for classification of PBMC 3-Way Full RNAseq dataset using best gene set

identified by filter feature selection. (D) Confusion matrix for classification of Liver 3-Way Full proteomic dataset using best protein set identified by filter

feature selection. (E) Confusion matrix for classification of AH, AC, and CT samples within independent validation proteomic dataset. (F) Confusion matrix

for classification of PBMC 3-Way Full proteomic dataset using best protein set identified by filter feature selection.

https://doi.org/10.1371/journal.pdig.0000447.g002
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Feature importance

The combined gene-protein panels for integrated Liver 3-Way and integrated PBMC 3-Way

datasets were evaluated for feature importance. Feature importance was evaluated separately

for genes and proteins due to the nature of machine learning architecture. The feature impor-

tance was evaluated using trained model coefficients. Visualizations of feature importance for

integrated Liver 3-Way and integrated PBMC 3-Way datasets can be found in S1 Text.

Summary of computational methods

Table 4 contains a summary of the computational methods used in the final configurations of the

ML models for the RNAseq and Proteomics datasets. Further details can be found in S1 Text.

Results

Classification of Liver 3-Way Full (AH vs Healthy vs AC)

The gene and protein sets produced via various methods were compared according to classifi-

cation performance and biological validation scores in order to select the best gene and protein

Fig 3. Confusion matrices corresponding to the best gene and protein sets in the matched balanced data set tested separately, and tested

with the integrated gene/protein set. Confusion matrices corresponding to the best gene and protein sets (59 genes and 19 proteins,

respectively) evaluated within Liver 3-Way Matched Balanced data and within PBMC 3-Way Matched Balanced data (16 genes and 33 proteins,

respectively). (A) Confusion matrix for classification of Liver 3-Way Matched Balanced RNAseq dataset using best gene set identified by filter

feature selection. (B) Confusion matrix for classification of Liver 3-Way Matched Balanced proteomic dataset using best protein set identified by

filter feature selection. (C) Confusion matrix for classification of Liver 3-Way Matched Balanced dataset using a combination of best gene and

protein sets. (D) Confusion matrix for classification of PBMC 3-Way Matched Balanced RNAseq dataset using best gene set identified by filter

feature selection. (E) Confusion matrix for classification of PBMC 3-Way Matched Balanced proteomic dataset using best protein set identified

by filter feature selection. (F) Confusion matrix for classification of PBMC 3-Way Matched Balanced dataset using a combination of best gene

and protein sets.

https://doi.org/10.1371/journal.pdig.0000447.g003
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sets. The best gene set contained 33 genes, attained 90% accuracy in main data and 82% accu-

racy in validation data (Fig 2A and 2B). The best protein set contained 27 proteins, and

attained 100% accuracy in main data and 61% accuracy in validation data (Fig 2D and 2E).

RNAseq and proteomic data proved similarly effective at classifying our Liver 3-Way samples.

However, the best gene set derived from RNAseq data achieved better performance in RNAseq

validation data than the best protein set derived from proteomic data achieved in proteomic

validation data. The heatmaps of RNAseq and proteomic counts can be found in Figures A-H

in S1 Text. The enriched pathways, tissues, and diseases for best gene and protein sets can be

found in the Tables E and H in S1 Text. The best gene and protein sets for each dataset are

shown in Table 5.

Table 5. Best genes and proteins for each dataset. For the integrated datasets, the matching genes and proteins are

bolded.

Dataset Genes Proteins

Liver 3-Way

Full

AKR1B10, C15orf52, CFTR, CREB3L3,
CXCL6, CYP2A7, CYP2B6,DBNDD1,
EEF1A2, EPS8L1, FAM198A, FCGR3B,

FCN3, FITM1, GPC3,GPNMB,HAMP,

HAO2, IGSF9, KRT23, LCN2, LYZ,

MMP7,MT1G, PLA2G2A, PPP1R1A,

RGS1, S100A8, SCTR, STAG3, TMEM132A,

TREM2, VCAN.

ACBP, ADH1A, ADH1B, ADH4, ADH6, ALBU,

ARF3, CD34, CO1A2, CP1A2, CP3A4, CP3A7,

CRP, DDTL, ERI3, FABPL, GSTA1, GSTA2,

GSTM4, H2B1C, K2C79, K2C80, LDH6A,

MFAP4, PAL4C, SAA1, UDB17.

PBMC 3-Way

Full

ETS2, FLVCR2, FPR1, GRB10, IMPA2,

ITGAM, ITGB2, LILRA5,MYO7A,

PTGR1, RAB31, RNASE2, SERPINB1,

SLC36A1, ST14, TLR4.

APOA1, BLVRB, CATS, CSRP1, EST1, FIBA,

FIBB, FIBG, G6B, GP1BB, GPIX, HBD,

ILK, ITA2B, ITB3, LTBP1,MYL9, PMGE, RAP1A,

RSU1, SDPR, SEP11, SRC, TBA4A, TOR4A,

TSP1, URP2, VINC.

Liver 3-Way

Matched

Balanced

Integrated

ACKR1, AKR1B10, BBOX1, C15orf52,
CFTR, CLEC4M, CREB3L3, CSF3R, CXCL1,
CXCL6,DCDC2,DHODH,DHRS2, F3, FABP4,
FAM118A, FCGR3B, FCN3, GADD45B,

GADD45G, GPC3, GSTA2,HAMP,HAO2,
ID4, IGSF9, IL7R, KRT23, LBP, LCN2, LRG1,
MARCO,MMP7,MT1A,MT1G,MT1H,

MT1M,MT1X,MUC13,MUC6,NRTN,

PAPLN, PID1, PLA2G2A, PLCB1, PPP1R1A,

S100A12, S100A8, S100A9, SLC13A5,
SLC22A1, SOCS1, SPINK1, STAG3, STMN2,
TREM2, TRIB3, VSIG2, VTCN1.

ACBP, ADH1A, ADH1B, ADH4, ADH6, ALBU,

ASSY, CD34, CLC4M, CO1A2, CP1A2 CRP,

CYB5, ERI3, GSTA1, HBAZ, LDH6A, SAA1,

UDB17.

PBMC 3-Way

Matched

Balanced

Integrated

AHSP, ALAS2, CA1, CD177, CDK10, EHMT1,

HBD, HBM, IFI27, IL1R2,MECP2,MMP8,

MMP9, SELENBP1, SLC4A1, TANGO2.

ACTN1, ALBU, CCL5, CXCL7, FHL1, FIBA, FIBB,

FIBG, FRIL, FSTL1, GP1BB, ILK, ITA2B, ITB1,

ITB3, LIMS1, LYSC,MYL9, PP14A, RAP1A,

RS4Y1, SBP1, SDPR, TBA4A, TBA8, TBB1,

TPM2, TRML1, TSN15, TSP1, URP2, VINC,

VTDB.

https://doi.org/10.1371/journal.pdig.0000447.t005

Table 4. Summary of methods used with transcriptomic and proteomic data types.

Data Type Feature

Selection

Feature Sizes Imputation ML

Classifiers

In-silico Biological

Validation

Transcriptomic Filter (DE, IG) 10, 25, 50, 100, 150, 200, 250, 300, 350,

400, 450, 500

None LR, kNN,

SVM

Enrichr

Proteomic Filter (DE) 15, 25, 35, 50, 60, 70, 80, 90, 100, 150, 200 Median and Zero (Thresholds: 0%, 5%,

and 10%)

LR, kNN,

SVM

AGOTOOL

https://doi.org/10.1371/journal.pdig.0000447.t004
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Classification of PBMC 3-Way Full (AH vs Healthy vs AC)

The best gene set contained 16 genes and attained 83% accuracy in main data (Fig 2C). The

best protein set contained 28 proteins and attained 89% accuracy in main data (Fig 2F). RNA-

seq and proteomic data proved equally effective at classifying our PBMC 3-Way samples. The

heatmaps of RNAseq and proteomic counts can be found in Figures I-L in S1 Text. The

enriched pathways, tissues, and diseases for best gene and protein sets can be found in the

Tables K and N in S1 Text. The best gene and protein sets for each dataset are shown in

Table 5.

Classification of Liver 3-Way Matched Balanced (AH vs Healthy vs AC)

Integration of genes and proteins. The best gene set and protein set derived from Liver

3-Way Unmatched Balanced datasets were evaluated in Liver 3-Way Matched Balanced data-

sets separately and in combination. Using the best gene set of 59 genes we attained 83% classi-

fication accuracy within matched balanced RNAseq data (Fig 3A). Using the best protein set of

19 proteins we attained 100% classification accuracy within matched balanced proteomic data

(Fig 3B). Using a combination of best gene and protein sets, we attained 96% accuracy in

matched balanced integrated data (Fig 3C). Additionally, we generated a one-vs-rest micro-

averaged receiver operating characteristic (ROC) curve for the integrated Liver 3-Way model,

which resulted in AUC of 1.0 (Figure AE in S1 Text). The constituent transcriptomic (59

genes) and proteomic (19 proteins) models resulted in AUCs of 0.94 and 1.0 respectively (Fig-

ures AF and AG in S1 Text).

Intersection. Additionally, we examined which biomarkers were shared between the best

gene and protein sets of the integrated model with liver tissue. The CLEC4M-CLC4M,

GSTA1-GSTA2 were found in common. The CLEC4M-CLC4M was a direct match, while the

GSTA1 (protein) was a familial match with GSTA2 (gene). If the genes and proteins had been

selected randomly from among significantly differentially expressed genes and proteins, an

expected 0.12 would be shared. Calculation of expected value can be found in S1 Text. There-

fore, we have identified more biomarkers in common than expected. Best gene and protein

sets were commonly enriched for several different inflammation pathways. The best protein

set was more strongly enriched for metabolism pathways than the best gene set (Tables Q and

T in S1 Text).

Classification of PBMC 3-Way Matched Balanced (AH vs Healthy vs AC)

Integration of genes and proteins. The best gene and protein sets derived from PBMC

3-Way Unmatched Balanced datasets were evaluated in PBMC 3-Way Matched Balanced data-

sets separately and in combination. Using the best gene set of 16 genes we attained 74% classi-

fication accuracy within matched balanced RNAseq data (Fig 3D). Using the best protein set

of 33 proteins we attained 77% classification accuracy within matched balanced proteomic

data (Fig 3E). Using a combination of best gene and protein sets, we attained 81% accuracy in

matched balanced integrated data (Fig 3F). We also generated a one-vs-rest micro-averaged

ROC curve for the integrated PBMC 3-Way model, which resulted in AUC of 0.96 (Figure AK

in S1 Text). The constituent transcriptomic (16 genes) and proteomic (33 proteins) models

resulted in identical AUCs of 0.89 (Figures AL and AM in S1 Text).

Intersection. With the integrated model for PBMCs, the SELENBP1-SBP1 gene-protein

was found in common between the best gene and protein sets. For a random selection from

the significantly differentially expressed genes and proteins, we calculated that an expected

0.05 would be shared. Thus, more biomarkers were found to be shared than expected. The best
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gene and protein sets for PBMCs were mainly enriched for several different inflammation and

cancer related pathways (Tables W and Z in S1 Text).

Discussion

In this study, we used machine learning approaches with transcriptomics and proteomics data

from liver tissue and PBMCs to effectively classify samples from participants with alcohol-

associated hepatitis (AH), alcohol-associated cirrhosis (AC), and healthy controls. Liver tissue

models outperformed PBMC models by a small margin in our data. Both transcriptomic and

proteomic liver tissue ML models generalized relatively well in the independent validation

data. Overall, the transcriptomic and proteomic models performed similarly well in each sam-

ple type.

The integration of proteomic and transcriptomic data did not increase classification accu-

racy with liver tissue, mainly because the classification accuracy was already high in both data

types separately. For PBMCs, on the other hand, the integration improved classification accu-

racy slightly. While the performance of PBMC biomarkers is less than that of liver tissue bio-

markers for classification of ALDs, the integration of multiple -omics data types could help

close the gap in the future. To our knowledge, this is the first study in which a combined

PBMC gene-protein expression biomarker panel has been identified for distinguishing AH,

AC, and healthy controls.

Of special interest are the gene-protein matches present in the combined gene-protein sets

identified for Liver 3-Way and PBMC 3-Way Matched Balanced Integrated datasets. All the

matched liver tissue genes have been established as relevant biomarkers of liver disease in

prior literature. CLEC4M has been identified as prognostic liver tissue biomarker of hepatocel-

lular carcinoma [19]. GSTA1 and GSTA2 have been previously identified as biomarkers of

liver injury (including ethanol injury) and hepatocellular carcinoma respectively [20,21]. Less

is known about the role of the matched PBMC genes in liver disease. Differential expression of

SELENBP1 in PBMCs of hepatocellular carcinoma patients has been established previously

[22]. The differential expressions of these biomarkers in both transcriptomic and proteomic

data increases our confidence in their significance.

The gene-protein panels for Liver 3-Way and PBMC 3-Way integrated datasets were exam-

ined using enrichment analysis. The genes and proteins were examined separately. For Liver

3-Way the proteins were overwhelmingly enriched for metabolic pathways, including ethanol

metabolism (Table AB in S1 Text). Notably, many of the key liver proteins are alcohol dehy-

drogenases, some of which have been implicated in alcohol and liver disorders [23,24]. Other

notable proteins include CRP, SAA1, ALBU. All of these have been previously established as

diagnostic biomarkers of inflammatory liver diseases [25,26,27]. The genes were enriched for

homeostasis, metabolism, and inflammatory pathways (Table AC in S1 Text). For PBMC

3-Way both the genes and proteins were enriched for blood processes, immune system func-

tions, and cellular movement (Tables AE and AF in S1 Text). Some of the PBMC proteins have

been previously connected to liver disease including FSTL1, TSP1, CCL5, and TPM2
[28,29,30,31]. Overall, the identified genes and proteins are consistent with previous findings.

We have discussed the importance of using appropriate ML methods for analysis of small

sample size RNAseq data [11] previously. Our recommendations for analysis of small sample

size proteomic data are largely similar. In addition to the importance of filter feature selection

we would like to highlight the importance of nested cross-validation (NCV) and performing

feature selection within both inner and outer loops of NCV. The use of nested cross validation

is necessary to separate model selection and evaluation if hyperparameter tuning is being

done. Meanwhile, it is necessary to perform feature selection within nested cross validation to
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avoid data leakage and the resulting bias [32]. The use of in-silico biological relevancy (via

enrichment analysis) in our pipeline was also important as it decreased overfitting by favoring

feature sets that corresponded to existing literature.

The liver tissue proteomics model’s performance in independent validation data was lower

than expected. The healthy control samples in independent validation proteomic dataset were

collected from two different clinical sources. Most misclassified healthy controls were from

one of the two sources. The heterogeneity in healthy samples may explain their unexpectedly

poor classification performance. The PBMC models could not be independently validated due

to lack of relevant public data. However, the methods used to derive the best biomarkers were

identical in both tissues. The integrated models also could not be validated due to lack of

appropriate publicly available genomic data in which both RNAseq and proteomics were avail-

able for the same individuals. A larger sample size and an independent integrated validation

cohort are needed to further investigate these biomarkers.

Integrating two -omics datatypes further amplified the challenges we encountered in our

earlier work [11]. The number of genes and proteins for each sample is much larger than the

number of samples in our dataset. This makes data prone to overfitting, since a complex

model can perfectly separate a small number of samples. Some of the other challenges were

ensuring that the integrated model did not have a bias toward transcriptomic or proteomic

features, performing feature selection with integrated gene and protein expression data, and

addressing partial matching between our transcriptomic and proteomic samples (most were

obtained from the same individuals, but some were not).

Overall, the integration of proteomic and transcriptomic data from liver tissue and PBMCs

for ALD proved promising in two aspects. In the case of PBMCs in our study, combining tran-

scriptomic and proteomic biomarkers was more effective than using either type of biomarkers

alone for classification. Additionally, by examining both transcriptomic and proteomic data,

we were able to identify gene-protein pairs that were significantly differentially expressed in

both domains and were thus more likely to be relevant to the liver disease conditions in ques-

tion. The possibility of using PBMCs to distinguish among alcohol-associated liver diseases is

encouraging, and the relevant biomarkers warrant further examination.
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S1 Text. Supplemental methods and supplemental results for this study.

(PDF)

Acknowledgments

The authors would like to thank and acknowledge that the participant recruitment and sample

collection for the PBMCs and the AH liver tissue biopsies were performed by the SCAHC at

the following locations: Long Beach Veterans Healthcare System (VALB), Long Beach, CA

[Jessica Clare Gozum, Sheena Cruz, Hema Buddha, Yuxin Ouyang, Gregory Botwin, Lauren

MacHarg, Monique French]; Harbor-UCLA Medical Center, Torrance, CA [Lavanya Cheru-

kuri, Sajad Hamal, Wayne Fleischman, Divya Birudaraju]; University of Southern California

(USC), Los Angeles, CA [Christy Rico, Susan Milstein, Carol Jones, John Donovan, Neil

Kaplowitz]; VA Loma Linda, CA [Daniel Chen-Kang Chao]; and VA Albuquerque [Joseph

Alcorn]. The authors would also like to thank and acknowledge the members of the UC Irvine

Genomics High-Throughput Facility (GHTF) for their role in the RNA extraction and

sequencing of the samples. The liver tissue from participants with AC and healthy control

were obtained from the LTCDS at University of Minnesota. (https://med.umn.edu/pathology/

PLOS DIGITAL HEALTH Integrating liver disease protein and gene data using machine learning

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000447 February 9, 2024 13 / 16

http://journals.plos.org/digitalhealth/article/asset?unique&id=info:doi/10.1371/journal.pdig.0000447.s001
https://med.umn.edu/pathology/research/liver-tissue-system
https://doi.org/10.1371/journal.pdig.0000447


research/liver-tissue-system). Portions of this manuscript were submitted as a thesis in partial

fulfillment of the requirements for the degree of Doctor of Philosophy (S.L.).

Author Contributions

Conceptualization: Stanislav Listopad, Timothy R. Morgan, Trina M. Norden-Krichmar.

Data curation: Stanislav Listopad, Christophe Magnan, Le Z. Day, Aliya Asghar, Zhang-Xu

Liu, Jon M. Jacobs, Trina M. Norden-Krichmar.

Formal analysis: Stanislav Listopad, Christophe Magnan, Le Z. Day, Zhang-Xu Liu, Jon M.

Jacobs, Trina M. Norden-Krichmar.

Funding acquisition: Zhang-Xu Liu, Jon M. Jacobs, Timothy R. Morgan, Trina M. Norden-

Krichmar.

Investigation: Le Z. Day, Aliya Asghar, Andrew Stolz, John A. Tayek, Zhang-Xu Liu, Jon M.

Jacobs, Timothy R. Morgan.

Methodology: Stanislav Listopad.

Project administration: Zhang-Xu Liu, Jon M. Jacobs, Timothy R. Morgan, Trina M. Nor-

den-Krichmar.

Resources: Aliya Asghar, Andrew Stolz, John A. Tayek, Zhang-Xu Liu, Jon M. Jacobs, Timo-

thy R. Morgan, Trina M. Norden-Krichmar.

Software: Stanislav Listopad, Christophe Magnan.

Supervision: Zhang-Xu Liu, Jon M. Jacobs, Timothy R. Morgan, Trina M. Norden-Krichmar.

Validation: Stanislav Listopad, Trina M. Norden-Krichmar.

Visualization: Stanislav Listopad.

Writing – original draft: Stanislav Listopad.

Writing – review & editing: Stanislav Listopad, Christophe Magnan, Le Z. Day, Aliya Asghar,

Andrew Stolz, John A. Tayek, Zhang-Xu Liu, Jon M. Jacobs, Timothy R. Morgan, Trina M.

Norden-Krichmar.

References
1. Termeie O, Fiedler L, Martinez L, Foster J, Perumareddi P, Levine RS, et al. Alarming Trends: mortality

from alcoholic cirrhosis in the United States. The American Journal of Medicine. 2022 May 27; 135

(10):1263–1266. https://doi.org/10.1016/j.amjmed.2022.05.015 PMID: 35636480

2. Mellinger JL, Volk ML. Transplantation for alcohol-related liver disease: is it fair? Alcohol and Alcohol-

ism. 2017 Dec 11; 53(2):173–177. https://doi.org/10.1093/alcalc/agx105 PMID: 29236944

3. Thursz M, Morgan TR. Treatment of severe alcoholic hepatitis. Gastroenterology. 2016 Mar 4; 150

(8):1823–1834. https://doi.org/10.1053/j.gastro.2016.02.074 PMID: 26948886

4. Mathurin P, Moreno C, Samuel D, Dumortier J, Salleron J, Durand F, et al. Early liver transplantation for

severe alcoholic hepatitis. The New England Journal of Medicine. 2011 Nov 10; 365:1790–1800.

https://doi.org/10.1056/NEJMoa1105703 PMID: 22070476

5. Im GY, Kim-Schluger L, Shenoy A, Schubert E, Goel A, Friedman SL, et al. Early liver transplantation

for severe alcoholic hepatitis in the United States–a single-center experience. American Journal of

Transplantation. 2015 Dec 28; 16(3):841–849. https://doi.org/10.1111/ajt.13586 PMID: 26710309

6. Lee BP, Chen P, Haugen C, Hernaez R, Gurakar A, Philosophe B, et al. Three-year results of a pilot

program in early liver transplantation for severe alcoholic hepatitis. Annals of Surgery. 2017 Jan; 265

(1):20–29. https://doi.org/10.1097/SLA.0000000000001831 PMID: 27280501

PLOS DIGITAL HEALTH Integrating liver disease protein and gene data using machine learning

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000447 February 9, 2024 14 / 16

https://med.umn.edu/pathology/research/liver-tissue-system
https://doi.org/10.1016/j.amjmed.2022.05.015
http://www.ncbi.nlm.nih.gov/pubmed/35636480
https://doi.org/10.1093/alcalc/agx105
http://www.ncbi.nlm.nih.gov/pubmed/29236944
https://doi.org/10.1053/j.gastro.2016.02.074
http://www.ncbi.nlm.nih.gov/pubmed/26948886
https://doi.org/10.1056/NEJMoa1105703
http://www.ncbi.nlm.nih.gov/pubmed/22070476
https://doi.org/10.1111/ajt.13586
http://www.ncbi.nlm.nih.gov/pubmed/26710309
https://doi.org/10.1097/SLA.0000000000001831
http://www.ncbi.nlm.nih.gov/pubmed/27280501
https://doi.org/10.1371/journal.pdig.0000447


7. Singal AK, Bashar H, Anand BS, Jampana SC, Singal V, Kuo Y. Outcomes after liver transplantation for

alcoholic hepatitis are similar to alcoholic cirrhosis: exploratory analysis from the UNOS database.

Hepatology. 2012 Mar 18; 55(5):1398–1405. https://doi.org/10.1002/hep.25544 PMID: 22213344

8. Soresi M, Giannitrapani L, Cervello M, Licata A, Montalto G. Non invasive tools for the diagnosis of liver

cirrhosis. World Journal of Gastroenterology. 2014 Dec 28; 20(48):18131–18150. https://doi.org/10.

3748/wjg.v20.i48.18131 PMID: 25561782

9. Berger D, Desai V, Janardhan S. Con: liver biopsy remains the gold standard to evaluate fibrosis in

patients with nonalcoholic fatty liver disease. Clinical Liver Disease. 2019 Apr 30; 13(4):114–116.

https://doi.org/10.1002/cld.740 PMID: 31061705

10. Lambrecht J, Verhulst S, Mannaerts I, Reynaert H, Grunsven LA. Prospects in non-invasive assess-

ment of liver fibrosis: liquid biopsy as the future gold standard? Molecular Basis of Disease. 2018 Jan 9;

1864(4):1024–1036. https://doi.org/10.1016/j.bbadis.2018.01.009 PMID: 29329986

11. Listopad S, Magnan C, Asghar A, Stolz A, Tayek JA, Liu Z, et al. Differentiating between liver diseases

by applying multiclass machine learning approaches to transcriptomics of liver tissue or blood based

samples. JHEP Reports. 2022 Aug 18; 4(10). https://doi.org/10.1016/j.jhepr.2022.100560 PMID:

36119721

12. Hardesty J, Day L, Warner J, Warner D, Gritsenko M, Asghar A, et al. Hepatic protein and phosphopro-

tein signatures of alcohol-associated cirrhosis and hepatitis. The American Journal of Pathology. 2022

Apr 28; 192(7):1066–1082. https://doi.org/10.1016/j.ajpath.2022.04.004 PMID: 35490715

13. Mandrekar P, Bataller R, Tsukamoto H, Gao B. Alcoholic hepatitis: Translational approaches to develop

targeted therapies. Hepatology. 2016 Apr 15; 64(4):1343–1355. https://doi.org/10.1002/hep.28530

PMID: 26940353

14. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expres-

sion analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols. 2012 Mar 1; 7

(3):562–578. https://doi.org/10.1038/nprot.2012.016 PMID: 22383036

15. Polpitiya AD, Qian W, Jaitly N, Petyuk VA, Adkins JN, Camp DG, et al. DAnTE: a statistical tool for

quantitative analysis of -omics data. Bioinformatics. 2008 May 3; 24(13):1556–8. https://doi.org/10.

1093/bioinformatics/btn217 PMID: 18453552

16. Chen EY, Tan CM, Kou Y, Duan QN, Wang ZC, Meirelles GV, et al. Enrichr: interactive and collabora-

tive HTML5 gene list enrichment analysis tool. Bmc Bioinformatics 2013 Apr 15; 14. https://doi.org/10.

1186/1471-2105-14-128 PMID: 23586463

17. Schölz C, Lyon D, Refsgaard JC, Jensen LJ, Choudhary C, Weinert BT. Avoiding abundance bias in

the functional annotation of post-translationally modified proteins. Nat Methods. 2015 Nov; 12

(11):1003–4. https://doi.org/10.1038/nmeth.3621 PMID: 26513550

18. Niu L, Thiele M, Geyer PE, Rasmussen DN, Webel HE, Santos A, et al. Noninvasive proteomic bio-

markers for alcohol-related liver disease. Nature Medicine. 2022 Jun 2; 28(6):1277–1287. https://doi.

org/10.1038/s41591-022-01850-y PMID: 35654907

19. Luo L, Chen L, Ke K, Zhao B, Wang L, Zhang C, et al. High expression levels of CLEC4M indicate poor

prognosis in patients with hepatocellular carcinoma. Oncology Letters. 2020 Jan 13; 19(3):1711–1720.

https://doi.org/10.3892/ol.2020.11294 PMID: 32194663

20. Ma X, Liu F, Li M, Li Z, Lin Y, Li R, et al. Expression of gluthathione S-transferase A1, a phase II drug-

metabolizing enzyme in acute hepatic injury on mice. Experimental and Therapeutic Medicine. 2017

Aug 17; 14(4):3798–3804. https://doi.org/10.3892/etm.2017.4957 PMID: 29042982

21. Ng KT, Yeung OW, Lam YF, Liu J, Liu H, Pang L, et al. Gluthathione S-transferase A2 promotes hepa-

tocellular carcinoma recurrence after liver transplantation through modulating reactive oxygen species

metabolism. Cell Death Discovery. 2021 Jul 21; 7(1). https://doi.org/10.1038/s41420-021-00569-y

PMID: 34290233

22. Han Z, Feng W, Hu R, Ge Q, Ma W, Zhang W, et al. RNA-seq profiling reveals PBMC RNA as potential

biomarker for hepatocellular carcinoma. Scientific Reports. 2021 Sep 7; 11(1). https://doi.org/10.1038/

s41598-021-96952-x PMID: 34493740

23. Liu X, Li T, Kong D, You H, Kong F, Tang R. Prognostic implications of alcohol dehydrogenases in hepa-

tocellular carcinoma. BMC Cancer. 2020 Dec 7; 20(1). https://doi.org/10.1186/s12885-020-07689-1

PMID: 33287761

24. Ehlers CL, Liang T, Gizer IR. ADH and ALDH polymorphisms and alcohol dependence in Mexican and

Native American. The American Journal of Drug and Alcohol Abuse. 2012 Sep; 38(5):389–394. https://

doi.org/10.3109/00952990.2012.694526 PMID: 22931071

25. Vanbiervliet G, Breton FL, Rosenthal-Allieri M, Gelsi E, Marine-Barjoan E, Anty R, et al. Serum C-reac-

tive protein: A non-invasive marker of alcoholic hepatitis. Scandinavian Journal of Gastroenterology.

2006 Dec; 41(12):1473–1479. https://doi.org/10.1080/00365520600842195 PMID: 17101579

PLOS DIGITAL HEALTH Integrating liver disease protein and gene data using machine learning

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000447 February 9, 2024 15 / 16

https://doi.org/10.1002/hep.25544
http://www.ncbi.nlm.nih.gov/pubmed/22213344
https://doi.org/10.3748/wjg.v20.i48.18131
https://doi.org/10.3748/wjg.v20.i48.18131
http://www.ncbi.nlm.nih.gov/pubmed/25561782
https://doi.org/10.1002/cld.740
http://www.ncbi.nlm.nih.gov/pubmed/31061705
https://doi.org/10.1016/j.bbadis.2018.01.009
http://www.ncbi.nlm.nih.gov/pubmed/29329986
https://doi.org/10.1016/j.jhepr.2022.100560
http://www.ncbi.nlm.nih.gov/pubmed/36119721
https://doi.org/10.1016/j.ajpath.2022.04.004
http://www.ncbi.nlm.nih.gov/pubmed/35490715
https://doi.org/10.1002/hep.28530
http://www.ncbi.nlm.nih.gov/pubmed/26940353
https://doi.org/10.1038/nprot.2012.016
http://www.ncbi.nlm.nih.gov/pubmed/22383036
https://doi.org/10.1093/bioinformatics/btn217
https://doi.org/10.1093/bioinformatics/btn217
http://www.ncbi.nlm.nih.gov/pubmed/18453552
https://doi.org/10.1186/1471-2105-14-128
https://doi.org/10.1186/1471-2105-14-128
http://www.ncbi.nlm.nih.gov/pubmed/23586463
https://doi.org/10.1038/nmeth.3621
http://www.ncbi.nlm.nih.gov/pubmed/26513550
https://doi.org/10.1038/s41591-022-01850-y
https://doi.org/10.1038/s41591-022-01850-y
http://www.ncbi.nlm.nih.gov/pubmed/35654907
https://doi.org/10.3892/ol.2020.11294
http://www.ncbi.nlm.nih.gov/pubmed/32194663
https://doi.org/10.3892/etm.2017.4957
http://www.ncbi.nlm.nih.gov/pubmed/29042982
https://doi.org/10.1038/s41420-021-00569-y
http://www.ncbi.nlm.nih.gov/pubmed/34290233
https://doi.org/10.1038/s41598-021-96952-x
https://doi.org/10.1038/s41598-021-96952-x
http://www.ncbi.nlm.nih.gov/pubmed/34493740
https://doi.org/10.1186/s12885-020-07689-1
http://www.ncbi.nlm.nih.gov/pubmed/33287761
https://doi.org/10.3109/00952990.2012.694526
https://doi.org/10.3109/00952990.2012.694526
http://www.ncbi.nlm.nih.gov/pubmed/22931071
https://doi.org/10.1080/00365520600842195
http://www.ncbi.nlm.nih.gov/pubmed/17101579
https://doi.org/10.1371/journal.pdig.0000447


26. Li D, Xie P, Zhao S, Zhao J, Yao Y, Zhao Y, et al. Hepatocytes derived increased SAA1 promotes intra-

hepatic platelet aggregation and aggravates liver inflammation in NAFLD. Biochemical and Biophysical

Research Communications. 2021 Apr 1; 555:54–60. https://doi.org/10.1016/j.bbrc.2021.02.124 PMID:

33813276

27. Pares A, Deulofeu R, Cisneros L, Escorsell A, Salmeron JM, Caballeria J, et al. Albumin dialysis

improves hepatic encephalopathy and decreases circulating phenolic aromatic amino acids in patients

with alcoholic hepatis and severe liver failure. Critical Care. 2009 Jan 28; 13(1). https://doi.org/10.1186/

cc7697 PMID: 19175915

28. Gu G, Xue H, Yang X, Nie Y, Qian X. Role of follistatin-like protein 1 in liver diseases. Experimental Biol-

ogy and Medicine. 2022 Dec 19; 248(3):193–200. https://doi.org/10.1177/15353702221142604 PMID:

36533576

29. Li Y, Turpin CP, Wang S. Role of thrombospondin 1 in liver diseases. Hepatology Research. 2016 Aug

30; 47(2);186–193. https://doi.org/10.1111/hepr.12787 PMID: 27492250

30. Ambade A, Lowe P, Kodys K, Catalano D, Gyongyosi B, Cho Y, et al. Pharmacological inihibition of

CCR2/5 signaling prevents and reverses alcohol-induced liver damage, steatosis, and inflammation in

mice. Hepatology. 2019 Feb 12; 69(3);1105–1121. https://doi.org/10.1002/hep.30249 PMID: 30179264

31. Safaei A, Tavirani MR, Oskouei AA, Azodi MZ, Mohebbi SR, Nikzamir AR. Protein-protein interaction

network analysis of cirrhosis liver disease. Gastroenterology and Hepatology From Bed to Bench.

2016; 9(2);114–23. PMID: 27099671

32. Demircioğlu A. Measuring the bias of incorrect application of feature selection when using cross-valida-

tion in radiomics. Insights into Imaging. 2021 Nov 24; 12. https://doi.org/10.1186/s13244-021-01115-1

PMID: 34817740

PLOS DIGITAL HEALTH Integrating liver disease protein and gene data using machine learning

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000447 February 9, 2024 16 / 16

https://doi.org/10.1016/j.bbrc.2021.02.124
http://www.ncbi.nlm.nih.gov/pubmed/33813276
https://doi.org/10.1186/cc7697
https://doi.org/10.1186/cc7697
http://www.ncbi.nlm.nih.gov/pubmed/19175915
https://doi.org/10.1177/15353702221142604
http://www.ncbi.nlm.nih.gov/pubmed/36533576
https://doi.org/10.1111/hepr.12787
http://www.ncbi.nlm.nih.gov/pubmed/27492250
https://doi.org/10.1002/hep.30249
http://www.ncbi.nlm.nih.gov/pubmed/30179264
http://www.ncbi.nlm.nih.gov/pubmed/27099671
https://doi.org/10.1186/s13244-021-01115-1
http://www.ncbi.nlm.nih.gov/pubmed/34817740
https://doi.org/10.1371/journal.pdig.0000447

