
The role of long non-coding RNAs
and circular RNAs in cervical
cancer: modulating
miRNA function

Sama Heidari-Ezzati1†, Parisa Moeinian2†,
Bahar Ahmadian-Nejad3, Faezeh Maghbbouli4, Sheida Abbasi5,
Mahlagha Zahedi6, Hamed Afkhami7,8*, Alireza Shadab9,10* and
Nayereh Sajedi11*
1School of Nursing and Midwifery, Bonab University of Medical Sciences, Bonab, Iran, 2Department of
Medical Genetics andMolecular Biology, School ofMedicine, Iran University ofMedical Sciences, Tehran,
Iran, 3School of Nursing and Midwifery, Tehran Medical Branch, Islamic Azad University, Tehran, Iran,
4Tabriz Islamic Azad University of Medical Sciences, Tabriz, Iran, 5Department of obstetrics and
gynecology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran, 6Department of
Pathology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran, 7Nervous
System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran, 8Department
of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran, 9Department of
Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran, 10Iran University
of Medical Sciences, Deputy of Health, Tehran, Iran, 11Department of Anatomy, Faculty of Medicine, Qom
Medical Sciences, Islamic Azad University, Qom, Iran

Cervical cancer (CC) is a primary global health concern, ranking as the fourth leading
causeof cancer-related death inwomen.Despite advancements in prognosis, long-
term outcomes remained poor. Beyond HPV, cofactors like dietary deficiencies,
immunosuppression, hormonal contraceptives, co-infections, and genetic
variations are involved in CC progression. The pathogenesis of various diseases,
including cancer, has brought to light the critical regulatory roles of microRNAs
(miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). The
aberrant expression of these miRNAs, lncRNAs, and circRNAs plays a pivotal role in
the initiation and progression of CC. This review provides a comprehensive
summary of the recent literature regarding the involvement of lncRNAs and
circRNAs in modulating miRNA functions in cervical neoplasia and metastasis.
Studies have shown that lncRNAs and circRNAs hold great potential as
therapeutic agents and innovative biomarkers in CC. However, more clinical
research is needed to advance our understanding of the therapeutic benefits of
circRNAs and lncRNAs in CC.
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Introduction

Uterine cervix carcinoma ranks among the most frequently diagnosed gynecological
malignancies and is recognized as the fourth most fatal cancer in women on a global scale
(He et al., 2020). In 2020, the approximate incidence, prevalence, and fatality rate accounted for
604,127, 1.495.211, and 341,831, respectively (Bray et al., 2018; Singh et al., 2023). Cervical cancer
(CC) predominantly manifests in two primary histological forms: squamous cell carcinomas
(SCC) and adenocarcinoma (ADC). Adenosquamous carcinoma (ADSC) is the less common
type of CC (Nicolás-Párraga et al., 2017; Small et al., 2017). Notably, there has been an increased
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upsurge in ADC incidence, which is more prevalent among young adult
women (Fujiwara et al., 2014). The primary risk factor contributing to
CC is the presence of oncogenic human papillomavirus (HPV) (Savira
et al., 2022). Previous studies have revealed that HPV 16 and 18 types
account for approximately 70% of HPV infections (Aalijahan and
Ghorbian, 2019). HPV18 is particularly common in individuals with
ADC, while HPV16 is predominant in SCC cases (He et al., 2020).
Despite advancements in CC prognosis, long-term outcomes remain
poor due to resistance and recurrence (He et al., 2020). Addressing this
issue necessitates further research to identify new biomarkers for precise
CC progression monitoring and therapeutic targets to enhance
survival rates.

The progression from HPV infection to cancer necessitates the
involvement of other cofactors, including specific dietary deficiencies,
immunosuppression, prolonged use of hormonal contraceptives, co-
infection with Chlamydia trachomatis (CT), co-infection with herpes
simplex virus type 2 (HSV-2) and HIV, high parity, and tobacco
smoking, among other potential cofactors (Aalijahan and Ghorbian,
2019). Furthermore, individual genetic variations and distinct epigenetic
modifications are pivotal in carcinogenesis. DNA methylation, histone
modifications, and non-coding RNAs (ncRNAs) influence gene
expression without altering the DNA sequence. The ncRNAs are
prevalent throughout the entire genome and can be classified into
two subclasses: small ncRNAs with 20–200 nucleotides and long
ncRNAs (lncRNAs) with over 200 nucleotides (Hosseini et al., 2017).

Biogenesis of lncRNAs, circRNAs,
and microRNAs

The biogenesis of lncRNAs can be divided into various
categories, including exonic, intronic, intergenic, and overlapping

(Hosseini et al., 2017). The lncRNAs, through both cis- and trans-
regulation, can alter the phenotypes of cancer cells by targeting theirfinal
genes (Guttman and Rinn, 2012). Given their capacity to induce
dysregulation in various human diseases and foster cancer
development, lncRNAs hold significant potential as active biomarkers
and, specifically, as therapeutic targets in cancer (He et al., 2020).

Small non-coding RNAs, particularly microRNAs (miRNAs),
have been identified as key players in various cellular processes such
as cell cycle regulation, inflammation, apoptosis, migration, and
differentiation. Additionally, they influence messenger RNA
(mRNA) translation and stability (Di Leva et al., 2014). Studies
have substantiated that miRNAs can function as oncogenes or
tumor suppressors in various cancer types (Romano et al., 2017;
Rupaimoole and Slack, 2017). Understanding the regulatory
mechanisms governing miRNA expression is closely intertwined
with cancer diagnosis, prognosis, treatment, and underlying
pathogenesis (Shen et al., 2020).

Circular RNAs (circRNAs) are a large family of non-coding
RNAs in the transcript of eukaryotes. They appear as covalently
closed loops formed by successive exons in the nucleus.
CircRNAs have polar 5′ and 3′ ends and polyadenylated tails.
There are many types of circRNAs in different cell lines and
species, involving diverse ranges of biological processes
between cells (Chen and Yang, 2015). After transferring to
the cytoplasm, circRNAs perform various biological actions
by binding to microRNAs and proteins (Ren et al., 2019).
They play a vital role in transcriptional regulation and are
potential biomarkers (Liang et al., 2021). Additionally,
circRNAs are secreted into body fluids both in free form and
encapsulation in multi-vesicular endosomes and exosomes
along with lipids, proteins, and nucleic acids, controlling
various biological functions in different areas of the body
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(Wang et al., 2019a), including fetal growth and brain synaptic
plasticity (Liang et al., 2021). Moreover, abnormal expression of
circRNAs is detected in the occurrence of diseases such as
human malignancies, Alzheimer’s, and Parkinson’s disease
(Nisar et al., 2021).

Biological functions of long non-
coding RNAs

Long non-coding RNAs exhibit a broad spectrum of biological
and regulatory functions, including proliferation, differentiation,
development, and DNA damage repair (Wang and Chang, 2011).
They interfere with transcription, translation, and post-transcriptional
and post-translation processes, enabling a direct interaction with
DNA, RNA, and proteins (He et al., 2020). Cis-acting lncRNAs
are closely associated with specific transcription sites, affecting
neighboring genes’ chromatin structure or expression state on the
same allele. In contrast, trans-acting lncRNAs act from a distance,
triggering the expression of genes, proteins, or RNAmolecules within
the cell (Guttman and Rinn, 2012; Kopp and Mendell, 2018).

LncRNAs are involved in epigenetic gene regulation through three
main mechanisms. First, they influence the transcription of target

genes by regulating histone modifications and the chromatin status.
Second, lncRNAs actively recruit repressors or cell transcription
factors to the promoters of their target genes. Third, they tightly
bind to proteins involved in transcription, preventing them from
attaching to their specific DNA targets (Long et al., 2017).

In addition, lncRNAs act as competing endogenous RNAs
(ceRNAs) by binding to miRNAs, thereby preventing miRNA-
mediated gene suppression (Gutschner and Diederichs, 2012).
Some lncRNAs serve as templates or precursors for various small
RNAs (Cheetham et al., 2013) and influence alternative mRNA
splicing (Romero-Barrios et al., 2018). At the post-translational
level, lncRNAs can bind to target proteins, affecting their
localization and transportation. Previous studies have reported
that lncRNAs function as scaffolds, facilitating protein–protein
interactions, and the formation of protein complexes (Yoon
et al., 2013) (Figure 1).

Relevant lncRNAs in cervical cancer

Long non-coding RNAs interact with proteins, mRNAs, and
miRNAs and play a critical role in cancer progression. Several
lncRNAs, including HOTAIR, CCAT2, H19, MALT1, SPRY4-

FIGURE 1
Functions of long non-coding RNAs (lncRNAs) in cervical cancer.
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IT1, PVT1, GAS5, MEG3, and C5orf66-AS1, have been identified as
critical players in the development, invasion, metastasis, and radio
resistance of CC (see Table 1) (Larrieta-Carrasco et al., 2018;
Tornesello et al., 2020).

HOTAIR lncRNA

HOTAIR, “2.2 kb HOX transcript antisense intergenic RNA,” is
one of the extensively studied oncogenic lncRNAs. It is encoded by
the antisense strand of the HOXC gene and is located on
chromosome 12 at position q13.13 (Rüegg, 1985). Like other
lncRNAs, HOTAIR recruits chromatin-modifying proteins and

influences the epigenome of cancer (Ren et al., 2019). In CC, the
levels of HOTAIR are tightly controlled by the HPV E7 protein
(Sharma et al., 2015). Furthermore, HOTAIR functions as a sponge
for specific miRNAs, resulting in the dysregulation of their
respective target genes. For instance, HOTAIR has been reported
to alter the miR-143-3p/BCL2 axis, promoting CC cell growth (Liu
et al., 2018a). It also modulates the miR-23b/MAPK1 axis, which is
involved in cell proliferation and metastasis (Li et al., 2018).
Additionally, HOTAIR overexpression has regulatory effects on
various metabolic functions, such as the activation of the Notch-
Wnt signaling pathway in SiHa cells (Lee et al., 2016) and the mTOR
pathway in different CC cell lines, including C33A, HeLa, and CaSki
(Zhang et al., 2015). The expression of HOTAIR leads to the

TABLE 1 Related lncRNAs and functions in cervical cancer.

LncRNA Histologic
type

Function Sponged
miRNAs

Modulated pathways in
cervical cancer

References

HOTAIR SCC/ADC Oncogenic miR-22, miR-23b,
and miR-143-3p

BCL2, PRC2, LSD1, VEGF, mmP-9, mTOR,
Notch, Wnt, STAT3, wnt/β-catenin, PI3K/
AKT, and HPV E7 oncoprotein

Gutschner and Diederichs (2012), Guttman
and Rinn (2012), Jiang et al. (2014), Gao et al.
(2017), Hosseini et al. (2017), Hsiao et al.
(2017), Gao et al. (2019), He et al. (2020), Ji
et al. (2020), and Ho et al. (2021)

CCAT2 SCC/ADC Oncogenic miR-17-5p and
miR-20a

MYC and wnt in colon cancer Kallen et al. (2013) and Kim et al. (2015)

CCAT1 SCC/ADC Oncogenic _ MMP14 and Wnt/β-catenin pathway by
c-myc

Kopp and Mendell (2018) and Knupp et al.
(2021)

H19 – Oncogenic miR-138-5p IGF2, HPV E6 oncoprotein, and upregulate
SIRT1

Lee et al. (2016), Kopp and Mendell (2018),
Lecerf et al. (2019), and Li et al. (2020a)

MALAT1 – Oncogenic miR-124, miR-145,
and miR-206

RBG2, E-cadherin, β-catenin, vimentin, ZO-
1, caspase-3, caspase-8, Bax, Bcl-2, and BclxL

Li et al. (2017), Li et al. (2018), Li et al. (2019),
and Li et al. (2020b)

SPRY4-IT1 SCC/ADC Oncogenic miR-101-3p ZEB1, EMT, E-cadherin, and vimentin Liu et al. (2018b), Liang et al. (2021), and Liu
and Li (2023)

PVT1 – Oncogenic miR-200, miR-424,
and miR-195

EZH2, Myc, Nop2, p15, p16, H3K27me3, NF-
kB, and repression of miR-16 via the NF-κB
pathway

Lu et al. (2016), Liu et al. (2017), Long et al.
(2017), and Liu et al. (2018a)

GAS5 SCC/ADC Tumor-
suppressive

miR-106b, miR-
196a, and miR-205

IER3, FOXO1, and PTEN expression Nicolás-Párraga et al. (2017), Ma et al. (2018),
Meng et al. (2021), and Nisar et al. (2021)

MEG3 _ Tumor-
suppressive

miR-21-5p P-STAT3 Paci et al. (2014), Peng and Fan (2016),
Romano et al. (2017), Ou et al. (2018), Qi et al.
(2019), and Ren et al. (2019)

C5orf66-AS1 _ Oncogenic miR-637 RING1 Rüegg (1985) and Romero-Barrios et al.
(2018)

LINC00675 _ Oncogenic _ Wnt/β-catenin, Bax, and GSK-3β Bcl-2 Zhang et al. (2021a)

FAM83H-
AS1

_ Oncogenic _ HPV E6 and E6-p300 Barr et al. (2019)

RSU1P2 _ Oncogenic let-7a IGF1R and N-myc Liu et al. (2017)

NOC2L-4.1 _ Oncogenic miR-630 YAP1 Wang et al. (2019b)

PAX8 AS1 _ Tumor-
suppressive

_ PAX8 and NOTCH1 (pancreatic carcinoma) Qi et al. (2019)

EBIC _ Oncogenic _ EZH2, Wnt/β-catenin, and E-cadherin Sun et al. (2014) and Xu et al. (2018)

CCHE1 SCC Oncogenic _ PCNA and ERK/MAPK Yang et al. (2015) and Peng and Fan (2016)

LET _ Tumor-
suppressive

_ LIN28 Tornesello et al. (2020)

Squamous cell carcinoma, SCC; adenocarcinoma, ADC.

Frontiers in Cell and Developmental Biology frontiersin.org04

Heidari-Ezzati et al. 10.3389/fcell.2024.1308730

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1308730


upregulation of matrix metalloproteinase-9 (MMP-9), vascular
endothelial growth factor (VEGF), and genes associated with the
epithelial–mesenchymal transition (EMT), thereby promoting
tumor aggressiveness in CC (Kim et al., 2015). It is worth noting
that the HOTAIR enhancer contains a single nucleotide
polymorphism, rs920778T, which is associated with HOTAIR
overexpression and increased susceptibility to cancer (Xiao et al.,
2011). In cases of HPV-positive CC, the rs920778 C HOTAIR allele
is more prevalent, but its expression level may be reduced due to the
binding of miR22 to the rs920778C sequence, leading to the
suppression of the HOTAIR expression (Sh et al., 2016).

CCAT2 lncRNA

Substantial upregulation of the long non-coding RNA, known as
colon cancer-related transcript 2 (CCAT2), has been observed in CC
cells, including HeLa, SiHa, and CaSki, as well as in CC tissues (Lee
et al., 2016).

CCAT1 lncRNA

The lncRNA CCAT1 is located within the c-Myc gene region,
belonging to the Myc proto-oncogene family, which is known for its
critical role in tumorigenesis. CCAT1, acting as a sponge formiR-181a-5p,
promotes the proliferation and invasion of CC cells. This function is
accomplished through the upregulation of heparin-binding EGF-like
growth factor (HB-EGF) and matrix metalloproteinase-14 (MMP14)
(Shen et al., 2019). Furthermore, upon binding to c-Myc,
CCAT1 activates the Wnt/β-catenin signaling pathway, leading to
increased cell progression (Zhang and Gao, 2017).

H19 lncRNA

The lncRNA H19 is encoded by the H19 gene and is situated
in chromosome 11 at 11p15.5. It is expressed exclusively from the
maternally inherited chromosome and is recognized as the first
riboregulator lncRNA. H19 is expressed in various tissues,
including fetal tissues, adult muscles, and cancers (Kallen
et al., 2013). The HPV16 E6 oncoprotein modulates lncRNA
H19, which acts as a molecular sponge for miR-138-5p in
epithelial cells (Ou et al., 2018; Barr et al., 2019). However,
H19 promotes cell proliferation and inhibits apoptosis by
silencing miR-143-3p and upregulating sirtuin-1 (SIRT1) (Ou
et al., 2018).

Metastasis-associated lung
adenocarcinoma transcript 1 lncRNA

The metastasis-associated lung adenocarcinoma transcript 1
(MALAT1) consists of 8,000 nucleotides and is located in
chromosome 11q13.1. It was first recognized in non-small cell
lung cancer (Sun and Ma, 2019). Overexpression of MALAT1 has
been observed in CC cell lines and cancer tissues infected with high-
risk HPV (Jiang et al., 2014). MALAT1 is a sponge for several

miRNAs, including miR-124, miR-145, and miR-20 (Lu et al.,
2016). Consequently, downregulation of MALAT1 in both CC
tissues and CC cell lines leads to a significant reduction in
invasion and metastasis, achieved through the modulation of
the MALAT1-miR-124-RBG2 axis and the inhibition of the
epithelial–mesenchymal transition (Lee et al., 2016).
Additionally, MALAT1 plays a role in the mechanisms of radio
resistance by acting as a sponge for miR-145 during CC
radiotherapy (Lu et al., 2016).

SPRY4-IT1 lncRNA

Intron two of the SPRY4 gene generates SPRY4 intronic
transcript 1 (SPRY4-IT1), a molecule that assumes the role of
either a tumor suppressor or an oncogenic factor in various
cancer types (Xie et al., 2015). However, in CC, SPRY4-IT1
expression levels surpass those of normal tissues and are closely
associated with advanced clinical stages, ultimately diminishing the
survival rates of CC patients (Cao et al., 2016). Recent research has
unveiled the pivotal role of SPRY4-IT1 silencing in CC cell lines,
particularly in inhibiting migration and invasion via the SPYR4-IT1/
miR-101-3p/ZEB1 axis. This function is directly linked to the active
suppression of epithelial–mesenchymal transition (EMT)
alterations, leading to increased E-cadherin levels and reduced
expression levels of both N-cadherin and vimentin (Fan et al., 2019).

PVT1 lncRNA

Plasmacytoma variant translocation 1 (PVT1) is an exceptionally
conserved long non-coding RNA (lncRNA) located downstream of
the MYC gene. It is frequently co-amplified with MYC in various
types of cancer (Li et al., 2019). PVT1 downregulates the expression
levels of miR-195 and miR-200b in CC through direct binding or the
enhancement of histone H3K27me3 in the promoter regions of miR-
195 and miR-200b (Zhang et al., 2016; Shen et al., 2017). MiR-195 is
associated with chemoresistance and the epithelial–mesenchymal
transition, while miR-200b plays a role in cellular proliferation,
invasion, and migration of CC cells. A positive correlation between
serum PVT1 levels and the expression of PVT1 in cancer tissues has
been reported, suggesting PVT1 as a potential diagnostic biomarker
for CC (Yang et al., 2016).

GAS5 lncRNA

Growth arrest-specific transcript 5 (GAS5) exhibits tumor
suppressor activity in various cancer types (Schneider et al., 1988;
Pickard andWilliams, 2016). Therefore, in CC, lower GAS5 expression
levels are linked to tumor progression and poorer clinical outcomes for
individuals with CC (Cao et al., 2014). The inhibition of GAS5 in CC
cells has been observed to enhance proliferation, migration, and
invasion, further underscoring its potential as a tumor suppressor in
the development of CC (Cao et al., 2014). Notably, GAS5 functions as a
sponge for miR-106b, resulting in the increased expression of IER3
(immediate early response 3) and enhanced radio sensitivity of CC cells
(Gao et al., 2019).
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Maternally expressed gene 3 lncRNA

Maternally expressed gene 3 (MEG3), a long non-coding RNA
derived from the DLK1-MEG3 locus at the chromosomal location
14q32.3, is well-established as a cancer-suppressive factor (Zink et al.,
2018), which was initially recognized as the ortholog of gene trap locus
2 (Gtl2) in mice. MEG3 overexpression demonstrates preventive
effects on cell proliferation and enhances apoptosis in cancer cells,
both in a p53-dependent and independent manner (Paci et al., 2014).
A notable reduction in theMEG3 expression level was observed in CC
tissues and cell lines. Enhancing MEG3 in CC cell lines prevented
proliferation and induced cell cycle arrest and apoptosis. It was
achieved by direct binding to P-STAT3, leading to subsequent
ubiquitination and degradation of P-STAT3 (Zhang and Gao,
2019). Additionally, MEG3 exerts its cancer-suppressive effect by
downregulating the levels of miR-21-5p in CC cell lines (Avila et al.,
2023). Knockdown of MEG3 in HeLa and CaSki cells resulted in a
significant upregulation of miR21-5p expression (Yadav et al., 2023).

C5orf66-AS1 lncRNA

C5orf66-AS1 lncRNAprimarily resides in the cytoplasm, suggesting
its modulation of CC cell functions through the competing endogenous
RNA (ceRNA) mechanism (Begliarzade et al., 2023). Previous research

has identified interactions between C5orf66-AS1 and various miRNAs,
including miR-621, miR-637, miR-663b, miR-3184, miR-3187, miR-
4449, miR-4706, and miR-5001, depicting its role as a sponge for these
miRNAs. Alterations in the expression levels of C5orf66-AS1 in CC cells
(C-4 I and SiHa)were observed to correlate with changes in themiR-637
expression. Specifically, the upregulation of C5orf66-AS1 led to a
significant decrease in miR-637 expression levels and vice versa (Rui
et al., 2018).

Novel lncRNAs in cervical tumorigenesis

In addition to the mentioned lncRNAs, several novel sequences
of lncRNAs, such as LINC00675, FAM83H-AS1, RSU1P2, NOC2L-
4.1, EBIC, PAX8 AS1, CCHE1, and LET, have been identified in
cervical tumorigenesis (refer to Table 1) (Figure 2).

Biological functions of circular RNAs

Circular RNAs (circRNAs) represent a recently discovered class of
widespread endogenous non-coding RNA molecules characterized by
their covalent circular structures, which serve as transcription factors,
miRNA sponges, and RNA-binding proteins (RBPs) (Hsiao et al.,
2017). CircRNAs have been observed to exhibit abnormal expression

FIGURE 2
LncRNA effects in metabolic pathways in cervical cancer.
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patterns in cancer cells and play diverse roles in the development and
progression of cancer. Due to their unique stable loop-like structure,
circRNAs have shown promise as potential biomarkers and therapeutic
targets for various types of cancer (Zhu et al., 2021). CircRNAs have
various biological functions such as regulation of gene expression
(Hansen et al., 2013). They act as microRNA sponges, sequestering
and inhibiting the activity of microRNAs, thus modulating the
expression of target genes (Hansen et al., 2013). CircRNAs can
interact with proteins (Du et al., 2016) and regulate alternative
splicing of mRNA by interacting with splicing factors, thereby
regulating the diversity of the transcriptome (Ashwal-Fluss et al.,
2014). They also play roles in cellular proliferation, apoptosis, and
cellular senescence (Abdelmohs et al., 2015; Li et al., 2015). CircRNAs
are also associated with various aspects of cancer, including
tumorigenesis, metastasis, and resistance to therapy (Guarnerio
et al., 2016). Additionally, they have been implicated in neurological
disorders, synaptic function, neuronal development, and
neurodegenerative diseases (Rybak-Wolf et al., 2015) (Figure 3).

Regulation of circRNA biogenesis

CircRNA biogenesis is intricately controlled by repetitive intronic
elements, particularly sequences derived from transposons (Wilusz,
2015). The production of circRNA involves alternative splicing of one
or several exons of a gene in the presence of an RNA-mediated
silencing complex (Liang et al., 2021). Splice sites bring exons closer
together and facilitate the formation of closed loops (Wilusz, 2015).
Backsplicing, mediated by inversion repeats flanking cyclic exons,
further aids circRNA production. When producing circRNAs,

different versions of the closed loop are created depending on
repeated base pairs. Therefore, the specific arrangement of intronic
repeats regulates the potential function of protein-coding genes
(Wilusz, 2015).

Protein factors in circRNA biogenesis

Numerous protein factors play pivotal roles in circRNA
biogenesis. NF90/NF110 is a crucial regulator that assembles
exons to form circRNAs in the nucleus and interacts with
mature circRNAs in the cytoplasm (Li et al., 2017). NOVA2, an
enriched RNA-binding protein, plays a crucial role in the circRNA
expression by binding to specific sites inside the introns flanking
circRNA exons (Knupp et al., 2021). Heterogeneous nuclear
ribonucleoprotein M (HNRNPM) is another factor involved in
controlling circRNA biogenesis by preventing misplaced exon
splicing and backsplicing after binding to homeostatic gene
transcripts (Ho et al., 2021). The RNA-binding protein SFPQ
regulates circRNA biogenesis by overseeing long-intron splicing,
ensuring precise splicing, and preserving the intron integrity
(Stagsted et al., 2021).

Circular RNA and modulation microRNAs in
cervical cancer

circRNAs have emerged as a novel therapeutic target in CC
(Chaichian et al., 2020). A recent study highlighted the role of
circRNA-VPRBP in blocking galectin-1-mediated CC metastasis by

FIGURE 3
Functions of circular RNAs (circRNAs) in cervical cancer.
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binding to RACK1 O-GlcNAcylation (Zhang et al., 2023).
Aberrant expression of circRNAs has been linked to the
initiation of pathological processes in cervical tissue, influencing
cell proliferation, migration, and apoptosis. CircRNAs are
considered a potential clinical biomarker for early detection of
CC, offering a prognosis for early treatment (Chen et al., 2021).
Understanding the circRNA–miRNA–mRNA network’s role in
CC pathogenesis opens avenues for designing chemotherapy
drugs targeting this network, providing new possibilities for CC
treatment (Yi et al., 2019).

Several circRNAs act as competing endogenous RNAs ormicroRNA
sponges, regulating mRNA expression (Arnaiz et al., 2019). For instance,
circRNA hsa_circ_0000515 acts as a sponge for miR-326, mediating CC
progression. Silencing hsa_circ_0000515 reduces proliferation and
invasion while promoting apoptosis and autophagy in CC cells.
Another study revealed that hsa_circ_0000263 knockdown suppresses
cell migration and proliferation by controlling the target gene of miR-
150-5p (Cai et al., 2019). Hsa-circSLC26A4 accelerates CC progression
via the QKI/circSLC26A4/miR-1287-5p/HOXA7 axis (Ji et al., 2020).
Overexpression of circRNAhsa-Circ-ITCH inhibitsmalignant behaviors
in CC by regulating microRNA-93-5p and forkhead box K2 (FOXK2)
expression (Li et al., 2020a).

Hsa_circ_0141539, acting as a sponge formiR-518d-5p/519-5p, leads
to increased CBX8 expression, promoting malignant transformation and
proliferation of cervical cells (Liu et al., 2018b). Additionally, this circRNA
has been shown to spongemiR-506, resulting in the upregulation of Snail-
2 expression, a direct target of miR-506 (Ma et al., 2018). Gao et al.
demonstrated that Hsa_circ_0018289 binds to miR-497, enhancing
invasion, cell proliferation, and migration of CC cells (Gao et al.,
2017). Hsa_circ_0023404 acts as a miR-136 sequester, promoting the
upregulation of TFCP2 expression, activating the YAP signaling pathway,
and contributing to CC progression (Zhang et al., 2018). Hsa_circ_
0011385 increased expression in CC influences SOX4 expression by
targeting miR-149-5p, affecting the malignant biological behaviors of CC

cells (Xu et al., 2021). Hsa_Circ_0000388 accelerates CC
progression by modulating miR-337-3p and TCF12 expression
(Meng et al., 2021). Circ_0043280 regulates CC through the miR-
203a-3p/PAQR3 axis, competitively binding miR-203a-3p and
restoring PAQR3 expression, thereby preventing tumor growth
and metastasis (Zhang et al., 2021b).

Circular RNA (hsa_circ_0001772) is implicated in cancer
tumorigenesis, and its knockdown reduces tumor growth,
migration, invasion, and glycolysis and promotes CC cell apoptosis
(Ding et al., 2021). Hsa_circ_0001772 functions as a sponge for miR-
758-3p, modulating PUM2 expression, which reverses the suppressive
influence of upregulated miR-758-3p on CC cell malignant behaviors.
Hsa_circ_0001772 fosters CC advancement by absorbingmiR-758-3p
and enhancing PUM2 expression.

In another study, circRNA-0000078 was found to suppress CC
cell survival and proliferation by regulating the miRNA-205-5p/
EREG pathway, preventing tumorigenesis development in this
cancer type (Liu and Li, 2023). Hsa_circRNA_101996 promotes
the proliferation and invasion of cancer by increasing TPX2 factor
expression, inhibiting miR-8075, and is directly correlated with the
tumor size and lymph node metastasis (Stagsted et al., 2021).
CircRNA-SLC26A4 plays a crucial role in promoting CC
proliferation and invasion by targeting the QKI/circSLC26A4/
miR-1287-5p/HOXA7 axis. CircRNA_0018289 contributes to
cervix tumorigenesis by targeting miRNA-497 (Gao et al.,
2017). CircRNA-NRIP1 (Hsa-circ-0004771) enhances CC
oncogenic effects and lymph node invasion by impacting
miRNA-629-3p and subsequently on the PTP4A1/ERK1/
2 signaling pathway (Li et al., 2020b). CircRNA-00284 arrests
the cell cycle at the G0/G1 phase, increasing CC invasion through
miRNA-506 sponging and Snail-2 upregulation (Ma et al., 2018).
Hsa-circRNA-0000118 is implicated in cervical cancer malignancy
by targeting miR-211-5p and miR-377-3p, preserving AKT2 levels
(Wu et al., 2023) (Table 2).

TABLE 2 Related circRNAs and functions in cervical cancer.

CircRNA Function Sponged miRNA Modulated pathways in cervical cancer References

Hsa-circ-0000515 Oncogenic miR-326 ELK1, Caspase3, Caspase9, MMP-9, TIMP-1, Beclin1,
P62, LC3-I, and LC3-II

Tang et al. (2019)

Hsa-circ-0000263 Oncogenic miR-150-5p MDM4 and p53 expression Cai et al. (2019)

Hsa-circ-SLC26A4 Oncogenic miR-1287-5p HOXA7 Ji et al. (2020)

Hsa-circ-ITCH Tumor-suppressive microRNA-93-5p Forkhead box K2 (FOXK2) Li et al. (2020a)

Hsa-circ-0141539 Oncogenic miR-518d-5p/519-5p CBX8 protein Liu et al. (2018b)

Hsa-circ-0018289 Oncogenic miR-497 - Gao et al. (2017)

Hsa-circ-0023404 Oncogenic miR-136 TFCP2 and YAP expression Zhang et al. (2018)

Hsa-circ-0011385 Oncogenic miR-149-5p SOX4 expression Xu et al. (2021)

Hsa-circ-0000388 Oncogenic miR-337-3p TCF12 Meng et al. (2021)

Hsa-circ-RBM33 Oncogenic miR-758-3p Pumilio RNA-binding family member 2 (PUM2) Ding et al. (2021)

Hsa-circRNA-0000078 Oncogenic miR-205-5p - Liu and Li (2023)

Hsa-circRNA_101996 Oncogenic miR-8075 TPX2 expression Song et al. (2019)

circRNA-NRIP1 (Hsa-circ-0004771) Oncogenic miR-629-3p PTP4A1/ERK1/2 pathway Li et al. (2020b)

Hsa-circRNA-0000118 Oncogenic miR-211-5p/miR-377-3p AKT2 expression Wu et al. (2023)
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Conclusion and future directions

Due to various limitations and shortcomings, such as
challenges in early detection, a lack of targeted therapies,
limited HPV vaccination coverage, treatment side effects, and
resistance to therapy, CC stands as one of the leading causes of
death among women worldwide. LncRNAs and circRNAs serve
pivotal roles in modulating miRNA activity, thereby influencing
the initiation and progression of cervical carcinogenesis. These
non-coding RNAs engage in intricate regulatory networks, directly
interacting with miRNAs to impact downstream target mRNA
expression. Examples of such interactions include lncRNA
HOTAIR, which acts as a sponge for miR-23b-3p, relieving the
suppression of its target gene ZEB1. This leads to enhanced EMT
and increased metastatic potential in CC cells. Similarly, circRNA
CDR1as sequesters miR-7, leading to increased expression of its
target gene EGFR, promoting cell proliferation and migration in
CC. The dysregulation of these non-coding RNA-mediated
interactions contributes significantly to key aspects of cervical
carcinogenesis, including uncontrolled proliferation, evasion of
apoptosis, and increased metastatic potential. Furthermore, the
intricate interplay between lncRNAs, circRNAs, and miRNAs
contributes to the establishment of a conducive tumorigenic
microenvironment. Numerous studies have explored the
diagnostic and therapeutic potential of miRNAs in various
cancers. This review focuses on summarizing the role of
lncRNAs and circRNAs in the context of CC. Understanding
these regulatory mechanisms at the molecular level provides
valuable insights into the complexity of CC pathogenesis.
Targeting the dysregulated interactions between lncRNAs,
circRNAs, and miRNAs holds promise for developing
innovative diagnostic and therapeutic strategies against cervical
carcinogenesis. Thus, elucidating these molecular networks
enhances our comprehension of CC biology and informs
potential avenues for precision medicine in its management.
Additionally, the review emphasizes the potential of lncRNAs as
biomarkers and therapeutic targets in CC. It provides a detailed
examination of specific lncRNAs implicated in CC development,
such as HOTAIR, CCAT2, H19, MALAT1, SPRY4-IT1, PVT1,
GAS5, MEG3, and C5orf66-AS1. We present a comprehensive list
of circRNAs and their functions in CC, detailing how they act as
miRNA sponges, influencing mRNA expression, and contributing
to the pathogenesis of CC.

This article is a valuable resource for researchers, highlighting the
potential of lncRNAs and circRNAs as promising targets for
diagnostic and therapeutic interventions in CC. Efforts to identify
early detection biomarkers in CC focus on specific
lncRNA–miRNA–target mRNA networks associated with initial
stages of the disease. The dysregulation of a lncRNA, which
modulates miRNA activity and influences the expression of
oncogenic mRNAs, holds potential as an early diagnostic
biomarker, enabling timely intervention and improving prognosis.
Investigating diverse interactions within lncRNA–miRNA–target
mRNA networks in CC subtypes can lead to the development of
molecular signatures for precise subtyping. These specific networks
may indicate distinct subtypes, aiding in the formulation of

tailored treatment strategies and enhancing therapeutic
outcomes. Additionally, exploring liquid biopsy approaches to
detect lncRNAs, miRNAs, and target mRNAs in bodily fluids
offers non-invasive diagnostic possibilities. Circulating nucleic
acids associated with regulatory networks can serve as liquid
biopsy markers, providing a convenient method for monitoring
disease progression and treatment response. Integrating diverse
lncRNA–miRNA–target mRNA networks with established
molecular markers contributes to comprehensive molecular
profiling, enhancing CC diagnosis accuracy by considering
multiple layers of molecular information. This understanding
guides clinicians in developing personalized treatment plans.
Furthermore, identifying specific lncRNA–miRNA–target
mRNA networks linked to treatment response or resistance
serves as therapeutic monitoring markers. Monitoring
dynamic changes in these networks provides real-time
insights, allowing for timely adjustments in treatment
strategies. In conclusion, recognizing the potential of lncRNAs
and circRNAs as diagnostic markers in CC prompts specific
exploration of molecular networks for practical clinical
applications. Spanning from early detection to subtype-
specific diagnostics and non-invasive monitoring, these
applications offer actionable directions for translating
molecular discoveries into tangible benefits for CC patients.
However, the utilization of these emerging lncRNAs and
circRNAs as biomarkers for both the prognosis and diagnosis
of CC requires further exploration through extensive clinical
research in this field.
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