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Systems and computational
analysis of gene expression
datasets reveals GRB-2
suppression as an acute
immunomodulatory response
against enteric infections in
endemic settings
Akshayata Naidu and Sajitha Lulu S. *

Integrative Multi-omics Lab, Department of Biotechnology, Vellore Institute of Technology, Vellore,
Tamil Nadu, India
Introduction: Enteric infections are a major cause of under-5 (age) mortality in

low/middle-income countries. Although vaccines against these infections have

already been licensed, unwavering efforts are required to boost

suboptimalefficacy and effectiveness in regions that are highly endemic to

enteric pathogens. The role of baseline immunological profiles in influencing

vaccine-induced immune responses is increasingly becoming clearer for several

vaccines. Hence, for the development of advanced and region-specific enteric

vaccines, insights into differences in immune responses to perturbations in

endemic and non-endemic settings become crucial.

Materials and methods: For this reason, we employed a two-tiered system and

computational pipeline (i) to study the variations in differentially expressed genes

(DEGs) associated with immune responses to enteric infections in endemic and

non-endemic study groups, and (ii) to derive features (genes) of importance that

keenly distinguish between these two groups using unsupervised machine

learning algorithms on an aggregated gene expression dataset. The derived

genes were further curated using topological analysis of the constructed

STRING networks. The findings from these two tiers are validated using

multilayer perceptron classifier and were further explored using correlation

and regression analysis for the retrieval of associated gene regulatory modules.

Results: Our analysis reveals aggressive suppression of GRB-2, an adaptor

molecule integral for TCR signaling, as a primary immunomodulatory response

against S. typhi infection in endemic settings. Moreover, using retrieved

correlation modules and multivariant regression models, we found a positive

association between regulators of activated T cells and mediators of Hedgehog

signaling in the endemic population, which indicates the initiation of an effector

(involving differentiation and homing) rather than an inductive response upon

infection. On further exploration, we found STAT3 to be instrumental in

designating T-cell functions upon early responses to enteric infections in

endemic settings.
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Conclusion:Overall, through a systems and computational biology approach, we

characterized distinct molecular players involved in immune responses to enteric

infections in endemic settings in the process, contributing to the mounting

evidence of endemicity being a major determiner of pathogen/vaccine-induced

immune responses. The gained insights will have important implications in the

design and development of region/endemicity-specific vaccines.
KEYWORDS
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1 Introduction

Enteric infections pose major challenges to global health as

diarrheal diseases remain one of the major causes of under-5 (years)

mortality in Sub-Saharan Africa and South Asia (1–3). In areas of

high endemicity, the suboptimal vaccine efficacy/effectiveness of

oral vaccines against enteric pathogens has been quite puzzling and

concerning (4–6). Several second- and third-generation enteric

vaccines are under development and evaluation and can greatly

benefit from the establishment of reliable correlates of protection

(CoP) and/or correlates of risk (CoR) (7, 8) during the phase of

clinical testing. Since the advent of high-throughput technologies,

many studies have aimed at establishing gene/molecular-level

signatures to induced protective immune responses against

multiple vaccines (9–11) and infections instead of solely relying

on antibody titers as a protective biomarker. In the course of

advancements in the field quite recently, the focus has shifted

towards developing and assigning gene modules (functionally

associated group of genes) to vaccine-induced immunological

protection against several infections (12, 13).

Particularly for enteric infections, given that endemicity plays

an important role in defining vaccine-induced immune responses

(14), understanding the molecular mechanisms that are underplay

in endemic settings after perturbation becomes absolutely essential

(15). Hence, the objective of the study was to delineate these

molecular mechanisms to distinguish between immune responses

in endemic and non-endemic settings (against enteric pathogens).

For this purpose, we employed a robust computational and network

biology pipeline for the analysis of post-infection gene expression

datasets (of the host) singularly and comprehensively. Through the

analysis, we expect to exhibit meaningful insight and credible

molecular signatures/regulatory modules that can distinguish

immune responses in these two different settings with varied

pathogen prevalence. In the process, we also put forward the used

pipeline as an exploratory tool for future studies that involve meta-

analysis of gene expression datasets and that particularly focus on

studying immune responses to pathogens.
02
2 Materials and methods

2.1 Data collection and
conceptual framework

Microarray and RNASeq datasets linked to host responses to

prevalent enteric pathogens—S. typhi, ETEC, Vibrio cholera, and

rotavirus infections—were collected from NCBI (GEO) and EMBL-

EBI (ArrayExpress) databases using the following keywords:

[“Salmonella” AND “Homo Sapiens”], [“Typhoid” AND “Homo

Sapiens”], [“E. coli” AND “Homo Sapiens”], and [“Rotavirus” AND

“Homo Sapiens”]. A total of 125 gene expression studies were retrieved.

These studies were further filtered by excluding in vitro studies and

only clinical studies were included with infected/challenged and control

groups. Supplementary Figure S1 illustrates the detailed exclusion and

inclusion criterion used for data screening and identification for the

study for both endemic and non-endemic settings. The obtained gene

expression datasets were segregated based on the study location and

were labeled as “endemic” or “non-endemic” based on the pathogen

prevalence as described in the literature. The two-tiered computational

pipeline followed for the study is illustrated in Figure 1.
2.2 Data integration

For meta-dataset construction, gene expression datasets

corresponding to acute stages of infection were derived from each

of the studies and were integrated, and batch effect was corrected

using the “sva” package’s ComBat function in R (16).
2.3 Differential expression analysis

Differentially expressed genes (DEGs) for each of the dataset were

obtained using the “GEOquery” (17) and “limma” package (18).

Briefly, gene expression datasets were retrieved for each of the

studies using the “fData” function, and rows with missing values
frontiersin.org
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were omitted. Samples corresponding to acute responses to infections

and controls were only considered for further analysis (Supplementary

Figure 1). The four datasets were normalized using log2 transformation

prior to the calculation of DEGs, which were corrected for false

positives using the Benjamini & Hochberg method. The retrieved

DEGs for the four tables were further filtered using logFC value (>1 and

<−1) and p-values (0.05) and were visualized using volcano plots

developed using the “ggplot2” package (19), and common and distinct

DEGs were visualized using the “Venn diagram”. Missing gene

symbols from these datasets were obtained using the “biomaRt”

package for further analysis (20). Supplementary File 1 provides the

list of DEGs obtained for each of the cohorts in tabular format.

2.4 Functional enrichment analysis

The Gene Ontology database (Gene Ontology Resource) was used to

prepare amaster list of “biological processes” that are involved in immune

responses against pathogens (Supplementary File 2) using the QuickGO

interface (https://www.ebi.ac.uk/QuickGO/). A total of 248 biological

processes were identified and used as a reference list. DEGs derived

from the four datasets were individually fed to the DAVID database

(https://david.ncifcrf.gov/) to derive enriched biological processes. The

acquired lists (4) were manually curated to select "only" immune

response-associated gene ontology terms using the drafted master list

and were taken further for the analysis. Pathway enrichment analysis for

all the four sets of DEGs was performed using the KEGG [KEGG

PATHWAYDatabase (genome.jp)] (release 106.0) and Reactome (Home

- Reactome Pathway Database) database (V86). Individual gene functions

and associated pathways were derived from the GeneCards database

(GeneCards - Human Genes | Gene Database | Gene Search).
2.5 Network analysis

Protein–protein interaction (PPI) networks were constructed

using the STRING database [STRING: functional protein

association networks (string-db.org)] and visualized and analyzed
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using Cytoscape (Cytoscape: An Open Source Platform for

Complex Network Analysis and Visualization) plugins. The nodes

of the network represent proteins and the edges represent the

functional or physical associations the nodes have with each other

as determined through text mining or experimental evidence and

are represented and curated based on confidence scores. PPI

networks were extended for up to 30 interacting partners per

node (with 90% confidence score) to get a comprehensive

functional understanding of the DEGs.

2.5.1 Topological network analysis
Hub nodes/genes in a network can be defined as the most

influential nodes in terms of connectivity and influence and were

calculated using the cytohubba plugin (21). For the four constructed

network, hub genes were identified using three different algorithms.

While the Maximum Clique Centrality (MCC) and Density of

Maximum Neighborhood Compartment (DMNC) algorithms

revealed nodes with maximum connectivity that were relevant in

understanding influential proteins for each of the networks, the

Bottleneck algorithm was especially important in extracting nodes

that connected different subnetworks. The employed algorithms are

detailed as follows:
• MCC is a local-based method for topological analysis where

the MCC score for a node or MCC(v) is defined as MCC(v)

=∑C∈S(v)(|C|−1)!, where S(v) is the collection of maximal

cliques that contain v, and (|C|−1)! is the product of all

positive integers less than |C|.

• DMNC is also a local-based method for topological analysis

where the DMNC score or DMNC(v) of a particular node is

defined as DMNC(v) = |E(MC(v))|/|V(MC(v))|e, where e =

1.7,MC(v) is a maximum connected component of the G[N

(v)], and G[N(v)] is the induced subgraph of G by N(v)

(total set of nodes). V is a collection of nodes and E is a

collection of edges.

• The Bottleneck algorithm, on the other hand, is a global-

based method for topological analysis where the Bottleneck
FIGURE 1

Study workflow of the analysis. The study was performed in two tiers. The first tier focused on the retrieval and topological network analysis of
differentially expressed genes (at the acute stage) while the second tier focused on integration of all the infected samples in the form of a meta-
dataset. The meta-dataset was used for feature selection using PCA and Random Forest Algorithm. The features/hub genes derived from the two
tiers were further analyzed using correlation and multivariant regression analysis, and molecular signatures designating immune responses in
endemic and non-endemic settings was derived using multilayer perceptron-based classification.
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Fron
score BN(v) is defined as BN(v)=∑s∈Vps(v), where ps (v) = 1

if more than |V(Ts)|/4 paths from node s to other nodes in

Ts meet at the vertex v; otherwise, ps(v) = 0.
The PPI network clusters were detected using the MCODE

algorithm available in the ClusterViz plugin in Cytoscape (22). The

algorithmmaps highly interconnected subnetworks of a network. In

this algorithm, seed vertices are expanded based on the local

neighborhood density and the density of the prospective cluster.
2.6 Feature selection through unsupervised
machine learning algorithm

Firstly, principal component analysis (PCA) was performed on

the constructed meta-dataset (section 2.2) to characterize the

variance of gene expression profile in endemic and non-endemic

settings. PCA is a dimension reduction technique used to derive key

insights into big datasets based on the covariance of the variables

involved based on the derived eigenvectors and values.

Mathematically, covariance between two variables is defined as:

Cor(x, y)  =  Sum ððxi – x*Þ ðyi – y*ÞÞ=N
where x and y represent two variables, x* and y* represent their

respective means, and N represents the total sample size of the

study. PCA is generally used as a preliminary step to observe the

underlining patterns of the large datasets and how these patterns are

correlated with the phenotype/outcomes under consideration. The

analysis was performed using the “prcomp” function in R.

Secondly, feature selection was performed using the Random

Forest algorithm-based wrapper method that distinguished between

gene expression profiles (with common 6,543 genes) from endemic

and non-endemic settings using the “Boruta” package (23).

Random Forest belongs to the family of decision trees where,

based on numerical estimates, independent decision trees are

constructed and evaluated for optimal classification performance.

The importance of a variable is calculated based on the loss in

accuracy in classification when the variable is dropped in a series of

random permutations. The importance of each variable is

determined using the Z score in the Boruta package.

Mathematically, the Z score in the Boruta package can be defined

as the average of the difference in real and predicted values of a

variable (or the loss of accuracy) divided by the standard deviation.

The higher the loss of accuracy computed for a variable, the poorer

it seemed to have performed, and vice versa. The parameters used in

the algorithms are optimized based on trial and error and are hence

auto-optimized or auto-tuned.

Thirdly, hybrid clustering (using components of both k-means

and hierarchical clustering algorithms) was performed on the logFC

values of common genes between the four cohorts using the

“FactoMineR” package (24). In hybrid clustering, small clusters

are initially formed using the k-means algorithm (centroid-based

clustering), which are later clustered on a larger scale based on the

maximal distance between the formed clusters and come under
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hierarchical or connectivity-based clustering. Mathematically, k-

means clustering relies on the calculation of Euclidean distance

between two variables in order to assign variables to specific

centroids. The Euclidean distance between two variables is

computed as:

d2 x, yÞ  =  ðx1 – y1ð Þ2+ ðx2 – y2Þ2 +  ðxn − ynÞ2

where x and y represent the two variables (their values) in a

plane and n represents the number of samples. On the other hand,

maximal distance between two clusters in hierarchical clustering is

computed as:

d(p, q)  = Tpq=Np + Nq

where p and q represent the two clusters, T represents the sum

of the pairwise distances between the two clusters, and N represents

the number of variables in the respective clusters.

The features/attributes/genes derived from the two algorithms

(clustering and Random Forest) were used for the construction of

the PPI network using the STRING database, and hub genes were

retrieved through topological network analysis performed using the

cytohubba plugin (Figure 1).
2.7 Machine learning based classification

Hub genes derived through the methods described in sections

2.5 and 2.6 specifically were used for the construction of

classification models using the meta-dataset to distinguish

between the endemic and non-endemic (infected) groups using

the multilayer perceptron (MLP) algorithm on the WEKA platform

with threefold cross-validation. Neural networks, specifically MLP,

are well documented in the literature as good classifiers when gene

expression datasets are used as input (25, 26). MLP is a deep

machine learning algorithm that consists of an input layer, an

output layer, and a hidden layer, and the neural network is trained

using a feed-forward pathway. The activation function used for

training was a sigmoid logistic function represented as:

F(x)  =  1=ð1  +  e− xÞ

which is a nonlinear function and represents an input variable

in the range of 0 to 1. Activation functions are used to gauge and

legitimize specific neurons or nodes of the neural network during

training based on the weight and bias they hold for the

classification. Thereafter, confusion matrices representing the

performance of the classification were computed and visualized.

The confusion matrix summarizes true positive (TP), false positive

(FP), false negative (FN), and true negative (TN) values predicted

by the model. The confusion matrix is used to compute Accuracy

and Recall of the built classifier, where

Accuracy  =  TP  +  TN=(TP  +  TN  +  FP  +  FN)

Recall  =  TP=TP  +  FN
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Accuracy represents the instances (out of total) where the

classification predictions were correct, while Recall represents

instances where the predictions were correct as compared to total

positives (TP + FN). Genes were ranked based on the accuracy score

of their respective models.
2.8 Correlation analysis

Correlation modules were retrieved using the “azolling/

EBmodules” package (https://github.com/azolling/EBmodules)

from the constructed meta-dataset, and modules with high-

performing genes from the section above were identified (27).

The algorithm behind the package combines gene–gene

correlation matrices derived from different sets of microarray

datasets with the sample-gene architecture using the Fischer

transformation. From this constructed common correlation

matrix, highly correlated genes or modules are derived using

hierarchical clustering algorithm. The optimal number of

modules to be derived from the correlation matrix is decided

using the Gap statistical method that is discussed in detail

elsewhere (https://joey711.github.io/phyloseq/gap-statistic.html),

and for each cluster, Gap(k) is computed using:

Gap(k)  = (1=B) sum(log(W*)  –  log ðWkÞ
2.9 Multiple regression analysis

Genes correlated to high-performing genes (based on MLP

classification) (or part of shared network clusters from section

2.5) and retrieved transcriptional factors for each of these genes

were used for the construction of multivariant regression (MVR)

models in R. MVR involves the prediction of a dependent variable

based on a set of independent variables (instead of a single variable

that is used in the single-variant regression analysis).

Mathematically, regression models can be defined as:

Y = b0 + b1xi + ϵi

where Y represents the dependent variable under investigation

and x represents independent variables, while b0 and b1
represent the intercept and parameter of the model,

respectively, and ϵ represents standard error. “i” indicates the

number of independent variables being tested for the prediction

of Y. For the highly influential genes derived from the steps

above, MVR models were retrieved using a combinatorial

approach where genes found to be correlated or associated with

these genes of interest (throughout the analysis) were treated as

independent variables to derive the best-performing model that

could predict the pattern of expression of these influential genes.

The aim of the analysis was to gain a deeper understanding of the

underlying molecular mechanisms for the construction of robust

gene regulatory modules associated with identified molecular

signatures. MVR has been recently suggested as a robust
Frontiers in Immunology 05
method for deriving gene regulatory networks from gene

expression datasets (28). The analysis was performed using the

“lm” function in R.
2.10 Regulatory network inference

MVR models constructed in the above step with R2 value > 0.50

were used for the inference of gene regulatory modules.
3 Results

Based on the criteria discussed in section 2.1, four gene

expression studies—GSE7000, GSE112959, GSE2729, and

GSE95104—were selected for the analysis. Here, GSE7000 study

datasets were retrieved from subjects in Vietnam (a country

endemic to S. typhi infection), whereas the latter three were from

non-endemic settings. GSE112958 study datasets were derived from

S. typhi-challenged adults in a controlled study conducted in Oxford

(UK). GSE2729 datasets were retrieved from rotavirus-infected

children from the USA and GSE95104 datasets were derived from

ETEC-infected subjects from the USA (Table 1). Datasets from the

earliest time points (post-symptom onset) for each of the four studies

were used for the retrieval of DEGs and for the construction of the

meta-dataset (Supplementary Figure 1). An integrated dataset (meta-

dataset) with 6,543 common genes was constructed, and the batch

effect was corrected for a total of 208 samples (all infected samples

from the four datasets) (Supplementary Files 5 and 6) for meta-

analysis of gene expression datasets. An online accessible processed

dataset with 20 samples from GSE69529 (RNASeq) was reserved for

validation (Supplementary File 7 and Supplementary Figure S1).
3.1 Retrieved differentially expressed genes,
enriched pathways, and modules

At the early stage of infection, in the S. typhi cohort, there were 887

upregulated genes while there were 1,249 downregulated genes. For the

S. typhi (Oxford) cohort, there were 258 upregulated genes and 34

downregulated genes. For the Rotavirus cohort, there were 139

upregulated genes and 207 downregulated genes. For the ETEC

cohort, there were 80 upregulated genes and no genes were

downregulated based on the set criterion (Supplementary Table S1).

The retrieved DEGs from the four cohorts were illustrated as Volcano

plots (Figure 2A). Briefly, for the S. typhi (Vietnam) cohort, there was

upregulation of markers of activated lymphocytes and mediators of the

NOTCH signaling pathways, and downregulation of mediators

involved in acute inflammatory responses. For the S. typhi (Oxford)

cohort, highly upregulated genes were inferred to an interferon-

mediated inflammatory response along with the mediation of T-cell

chemotaxis. For the Rotavirus cohort, we found upregulation of

inflammatory cytokines, and for the ETEC cohort, we found

upregulation of mediators involved in early stages of inflammation.
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In terms of numbers, we found the least number of DEGs in the ETEC

cohort and the highest number of DEGs in the S. typhi (Vietnam

cohort). While the S. typhi (Vietnam) cohort had 59 DEGs in common

with the Rotavirus cohort, there were only 34 DEGs common with the

S. typhi (Oxford) cohort (Figure 2B).

Functional enrichment analysis was performed to gain biological

insight into acute responses to pathogen in endemic and non-

endemic cohorts. Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway analysis on the DEGs acquired for the S. typhi

(Vietnam) cohort revealed significant enrichment of multiple

intracellular signaling pathways, top among which were the cGMP-

PKG signaling pathway and the Calcium signaling pathway

(Supplementary Table S2). Interestingly, pathway enriched analysis

of “both” up-and downregulated genes separately for this cohort

revealed enrichment of T-cell receptor signaling (at the acute state of

infection). While CD40L, PI3K, SOS, HRAS, and PLC genes were

upregulated, LCK and GRB2 were downregulated (Supplementary

Figure S2) along with the downregulation of major signaling

pathways conventionally associated with acute inflammatory

responses (toll-like receptor signaling and cytokine/chemokine

signaling pathway) (Supplementary Figure S3). For the S. typhi

(Oxford) cohort, sensory signaling pathways—NOD-like receptor

signaling pathways and the Cytosolic DNA-sensing signaling

pathway—along with intracellular pathways involved in antigen

processing and presentation were significantly enriched. On the

other hand, in the Rotavirus cohort, enrichment of major

inflammatory signaling pathways was observed upon KEGG

pathway enrichment analysis. Importantly, pathways associated

with PRR signaling and TCR/BCR signaling were also significantly

enriched for this cohort. For the ETEC cohort, given the low number

of DEGs derived for this cohort, no enriched KEGG signaling

pathways were detected (Supplementary Table S2).

Enrichment and curation of GO biological processes based on the

master list (section 2.4) yielded a total of 91 immune response-

associated modules for the S. typhi (Vietnam) cohort, 117 modules
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for the S. typhi (Oxford) cohort, 118 modules for the Rotavirus cohort,

and 6 modules for the ETEC cohort. The top curated enriched terms

for the S. typhi (Vietnam) cohort were “inflammatory response”,

“positive regulation of cell migration”, “cell surface receptor signaling

pathways”, “response to xenobiotic stimulus”, and “neutrophil

chemotaxis”. Curated terms for S. typhi (Oxford) were “defense

response to virus”, “innate immune response”, “response to virus”,

“negative regulation of viral genome replication”, and “positive

regulation of interferon beta production”. For the Rotavirus cohort,

the top enriched biological processes (after curation) were “chemokine-

mediated signaling pathway”, “cellular response to lipopolysaccharide”,

“negative regulation of MAPK cascade”, “cytokine mediated signaling

pathway”, and “negative regulation of type 2 immune response”. For

the ETEC cohort, the top enriched (curated) terms were “regulation of

phosphatidylinositol 3-kinase signaling”, “positive regulation of innate

immune response”, “immune response”, “acute-phase response”,

“regulation of immune system process”, and “T-cell activation”.

Genes associated with curated GO terms were taken ahead for PPI

network construction and analysis (Figure 3).

Overall, through the KEGG enrichment analysis, we found

peculiar dysregulation of the TCR receptor signaling pathway in

the endemic cohort as compared to the non-endemic cohort

(Supplementary Figures S2 and S3). Furthermore, although all the

four cohorts showed enrichment of biological processes involved in

host responses to the pathogen and acute inflammatory responses,

we observed specific enrichment of modules associated with cell

migration in the endemic cohort.
3.2 Hub genes and network clusters

The list of genes derived for each of the cohorts after module

screening and identification (Supplementary File 3) was used as

input for the construction of PPI networks (as described in section

3.1) to retrieve genes of high influence or connectivity (hub genes)
TABLE 1 GEO Accession ID with description of the four microarray datasets used in the study along with a rnaseq dataset used for validation.

GEO
Accession
ID

Microarray
platforms

Pathogen No.
of
samples

Study
population

Location Reference

GSE2729 Affymetrix Human
Genome U95
Version 2 Array

Rotavirus 23 Children, infected USA (29)

GSE95104 Affymetrix Human
Genome U133A
2.0 Array

ETEC 72 Adults, challenged
with unattenuated
ETEC strain

USA (30)

GSE7000 Stanford Human
cDNA Microarray

S. typhi 183 Adults, INFECTED Vietnam (31)

(GLP4858)

GSE112958 Illumina
HumanHT-12 V4.0
expression
bead chip

S. typhi 178 Adults, challenged
with S. typhi
Quailes strain

UK (Diagnostic Host Gene Signature for Distinguishing
Enteric Fever from Other Febrile Diseases—EMBO

Molecular Medicine, 2019)

GSE69529 Illumina HiSeq 2500 Multiple 204 Children, infected
with
multiple pathogens

Mexico (32)
*RNA was extracted from PBMC samples in the first three studies and from the whole blood samples in the fourth study.
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in immunologically relevant gene ontologies (for the four cohorts).

Although PPI networks were constructed using a curated set of

genes with high immunological relevance, for the S. typhi (Vietnam)

cohort, topological analysis of the network did not derive any hub

genes conventionally associated with immune responses. In fact,

majority of the hub genes derived from the three topological

algorithms were associated with cell cycle signaling (SOS1, HRAS,

and KRAS), EGFR receptor-associated (EGFR and SRC), and

MAPK/Erk (MAPK6/14) signaling pathways (Supplementary

Table S3 and Figure 3A). For immune responses in the S. typhi

(Oxford) cohort, hub genes using the MCC and DMNC algorithm

were IRF1, IFIT1/3/4, and IFI35, and IRF1/4, IFIT5, and IFITM1/3,

respectively. Both of these sets of genes are essential components of

interferon-mediated signaling pathways (Supplementary Table S3

and Figure 3B). For the Rotavirus cohort, major inflammatory

mediators—RELA, JUN, STAT3, CREBBP, IL6R, CXCL3/8, TNF,

and STAT1—were revealed as hub genes of the constructed

network (Supplementary Table S3 and Figure 3C). In the ETEC

cohort, degree-based topological algorithms (MCC and DMNC)

revealed adaptors and receptors involved in TCR (CD28, CD2,

CD28, and CD247) and BCR (CD79A/B) signaling pathways as

essential hub genes in the elicited immune response

(Supplementary Table S3 and Figure 3D).
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Network clusters derived from the four pathogen-specific

PPI networks were filtered based on their clustering scores (>5

score); three clusters were retrieved from the S. typhi (Vietnam)

cohort and one cluster (with a score of 40.55) was retrieved from

the S. typhi (Oxford) cohort. From the Rotavirus cohort, three

clusters were retrieved and two clusters were retrieved from the

ETEC cohort. Fully annotated clusters are illustrated and

described in Supplementary Figure S2 and Supplementary

Table S4, respectively. Briefly, the highest-performing network

cluster from the Vietnam cohort was enriched with genes

belonging to the growth receptor signaling pathway (EGF,

EGFR, MAPK, RHOA, KRAS, HRAS, GRB2, SHC, and

PTPN11) and T-cell receptor signaling pathway (GRB2, LCK,

SRC, MAPK, and HRAS). The highest-performing cluster in the

S. typhi (Oxford) cohort was enriched with genes belonging to

interferon-induced mediators, that in the Rotavirus cohort was

enriched with cytokines and chemokines, and that with the

ETEC cohort was enriched in surface mediators of lymphocyte

signaling. Considering that the functional enrichment analysis

pointed towards a dysregulated TCR signaling specifically in the

S. typhi cohort, the highest performing cluster from the S. typhi

(Vietnam) cohort (which was enriched with genes from tcr and

growth factor receptor signalling) was considered as a
B

A

FIGURE 2

EXTRACTION OF DIFFERENTIALLY expressed genes (DEGs) (Tier 1). (A) Volcano plots depicting upregulated and downregulated genes derived from
GSE7000, GSE112958, GSE95104, and GSE2729 (clockwise). (B) Venn diagram representing common and specific genes between the cohorts.
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distinguishing and peculiar feature of acute immune responses in

the endemic cohort.
3.3 Features distinguishing immune
responses in endemic and non-
endemic settings

PCA of the integrated gene expression dataset (meta-dataset)

revealed a high degree of variance in PC1 and PC2 and was

performed to gauge covariances/eigenvectors corresponding to the

four cohorts. While variance in component 1 was attributable to

the differences in the gene expression profile between an adult

cohort and a child cohort, variance in component 2 can be

attributed to gene expression profiles triggered upon pathogen

exposure in endemic versus non-endemic settings (Figure 4).

Further analyses (by the employment of unsupervised ML

algorithms) were performed to delineate gene expression profiles

based on endemicity. For hybrid clustering (check method

section) based on logFC values, the optimal number of clusters

was pinned down to be six (based on the calculations of the “total

with sum of square” values) (Supplementary Figure S5). Among

the derived six clusters, cluster 2 was negatively associated with

the S. typhi (Vietnam) cohort while cluster 4 was positively

associated with this cohort. Figure 5A illustrates distinct gene

expression patterns as observed in clusters 2 and 4, which

distinguishes the S. typhi (Vietnam) cohort from the other three

cohorts. Network construction and topological analysis of cluster
Frontiers in Immunology 08
4 revealed ribosomal proteins (RPL22, RPS9, and RPS15) and

genes associated with Hedgehog (JAG1, WNT2B, and ADAM17)

signaling to be high-ranking hub genes as per the MCC and

DMNC algorithm (Figure 5B). For cluster 2 (downregulated in the

endemic cohort), the derived hub genes were mainly involved with

growth factor receptor signaling (PTPN1, PTPN11, ERBB2, GRB2,

FGF12, and PDGFRA), cell cycle signaling (WT1), and regulation

of interferon signaling (SOCS1 and SOCS3). The findings of

clustering analysis indicated upregulation of the Hedgehog

signaling pathway and downregulation of growth factor receptor

signaling to be specific attributes of the endemic cohort that

distinguishes it from the other cohorts.

For deriving more reliable features, Random Forest-based

feature selection was used on the meta-dataset to derive highly

influential determiners (features/genes) in characterizing host

responses to enteric pathogens in endemic and non-endemic

settings. Network construction and analysis of the derived

features revealed hub genes associated with growth factor receptor

and PI3K/Akt signaling (ERBB2, ERBB3, FGFR2, PIK3CB, PIK3R1,

PIK3CD, and PTPN11) and genes associated with the cell cycle

(CCND1 and RET) (Figure 6). All the three groups of features were

characterized via functional enrichment analysis using the reactome

database, and their key regulators were then retrieved from the

TRRUST database (Table 2). Interestingly, the Random Forest-

based feature selection again pointed out towards growth factor

receptor signaling as an integral distinguishing feature of the

endemic cohort compared to the non-endemic cohort, further

validating the findings of the clustering analysis.
B

C D

A

FIGURE 3

Protein–protein interaction (PPI) network with interacting partners (IPs) (Tier 1). (A) S. typhi (Vietnam) cohort—MCC hub genes and Bottleneck hub
genes. (B) S. typhi (Oxford) cohort—MCC hub genes, DMNC hub genes, and Bottleneck hub genes. (C) Rotavirus cohort—MCC hub genes, DMNC
hub genes, and Bottleneck hub genes. (D) ETEC cohort—MCC hub genes, DMNC hub genes, and Bottleneck hub genes (confidence score: 0.90).
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Based on the findings of the two unsupervised machine learning

algorithms, the negative regulation of components of the growth

factor receptor signaling pathways and the positive regulation of the

Hedgehog/WNT signaling pathway were determined to be associated

with immune responses in endemic settings. To investigate further if

these mediators can act as primary determiners of differences in

immune responses between endemic and non-endemic settings, we

used neural network-based classification (MLP classifier).
3.4 Identification of highly influential genes
using ML-based classification

Machine learning-based classification was performed on hub

genes derived in sections 3.2 and 3.3, which were categorized as

being “responsive” or “housekeeping” genes using the HRT Atlas

(https://housekeeping.unicamp.br/) (Table 3). The “responsive”

genes were then evaluated for their potential to act as a classifier

of immune responses for the endemic cohort compared to the non-

endemic cohort using multiple supervised machine learning

algorithms. Neural network-based classification algorithms were

used for the analysis because of their documented compatibility to

accommodate, analyze, and evaluate gene expression data (26).
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The performance of the classifiers was evaluated after the

derivation of confusion matrices (based on the performed threefold

classification). Based on accuracy and ROC, the genes were ranked

based on their significance in differentiating immune responses in

endemic and non-endemic settings grb2, an adaptor of tcr signalling

was found to have the best performing score in classifying infected

cohort from endemic and non-endemic setting (Table 4).

3.4.1 Validation of GRB2 as a classifier
To validate GRB2 as a high-performing classifier, two other

machine learning algorithms were built to construct the classification

model, where, again, GRB2 was classified with high accuracy

(Supplementary Figure S7). To validate GRB2 suppression at the

acute stage upon vaccination, the ImmuneSpace database was

screened for trials that have reported GRB2 downregulation in the

first 7 days after immunization. The findings of the survey are tabulated

in Supplementary Table S7 where we found four clinical trials with

indications of GRB2 suppresion at the acute stage post immunisation.

3.5 Correlation between TCR and
Hedgehog/NOTCH signaling pathways

Based on the hypothesis generated in sections 3.2, 3.3 and 3.4, to

derive the relationship between the two signaling pathways (TCR
FIGURE 4

PCA plot illustrating variance in gene expression profiles (Tier 2) before and after batch correction. While PCA plots in the upper panel are labeled to
indicate samples from different experiments/cohorts/batches, PCA plots from the lower panel are labeled with different study groups (infected and
control). Here, Batch 1 = S. typhi (Viet) cohort (endemic); batch 2 = Rotavirus cohort; batch 3 = S. typhi (Oxf) cohort; batch 4 = ETEC cohort.
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and Hedgehog), correlation studies were performed. A total of 20

correlation modules (group of genes) were identified in the

integrated datasets. These modules were characterized using

functional enrichment analysis and were filtered using the master

list (Supplementary File 2) to derive immunologically relevant

submodules (Supplementary Table S7). We found the curated

submodule retrieved from module 3 to contain components of

both TCR signaling (NFATC4 and NFATC1) and Hedgehog

signaling (WNT2B, TLE4, MAFF, and ROR2) and to be highly

correlated. NFATC1/4 are transcription factors associated with

activated T cells, and their positive correlation with the

components of the Hedgehog signaling pathway indicates

activation of the latter in activated T cells. We also found CCL17,

a known chemotactic agent of T cells, to be correlated with

NFATC1/4 transcription factors (Figure 7).
3.6 Multivariant regression models to
determine predictors of highly
influential genes

For MVR analysis, housekeeping genes identified as highly

influential genes in sections 3.2, 3.3 and 3.5 were taken as

predictor variables and genes associated with effector functions
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(or are “responsive” to external stimuli) were taken ahead for the

analysis as the response variables—GRB2, LCK, GLI (TF for

WNT2B receptor) (Table 3). Potential predictor variables for

these four genes were also retrieved from correlation modules in

section 3.5. The MVR model for GRB2 yielded a high R2 value of

0.7616 and its components/predictors were retrieved from network

cluster 1 (Supplementary Figure S2). While other predictors showed

a positive association with the target gene GRB2, LCK, MYB (TF of

LCK), and HRAS showed a strong negative relation and were

upregulated in the endemic cohort while the GRB2 was

downregulated. The multiple regression model against GLI2 (a

transcription factor for WNT2B) involving TLE4, BCL10, FOS,

NRAS, PIK3R1, LCK, TNFRSF11A, ROR2, and CCL17 yielded an

R2 value of 0.708, and these predictors were retrieved from

correlation module 3 (Figure 8). To investigate if there are

common transcription factors that regulate both TCR signaling

and the Hedgehog signaling pathway, univariate regression studies

were performed for the mediators of the two signaling pathways.

Although we did not find any single transcription factor as a

common regulator of GRB2 and other mediators of Hedgehog

signaling, we did find STAT3 to be negatively associated with LCK

(another prominent adaptor in TCR signaling) and to be positively

associated with GLI2 expression. Based on these findings, we

inferred STAT3 to be a balancing transcription factor that, on
BA

FIGURE 5

(A) Heatmap illustrating Cluster 2 and Cluster 4 derived from hybrid clustering (Tier 1) where yellow depicts logFC >2 and violet depicts logFC< −4.
(B) STRING network and derived hub genes for Cluster 4. (C) STRING network and derived hub genes for Cluster 2 where light blue color nodes
depict members of Cluster 4 and Cluster 2, respectively. For both clusters, hub genes were identified using MCC (up) and DMNC (down) algorithms
where red-orange-yellow-colored nodes depict hub genes with high scores as calculated by respective algorithms with red- colored nodes
depicting the highest scoring genes.
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one hand, regulates TCR signaling while promoting the induction

of Hedgehog signaling on the other hand (Figure 8C).
3.7 Retrieved gene regulatory modules

Gene regulatory module 1 (GRM1) was inferred from the

GRB2 multivariant model wherein, based on literature, the central

role of GRB2 in TCR signaling was identified and key regulatory

elements found in this study were integrated (Supplementary

Figure S2). Several relevant findings from the obtained results

were considered for module construction: (i) Genes involved in

TCR signaling were both up- and downregulated upon KEGG

pathway enrichment analysis (GRB2 being downregulated)

(Supplementary Figures S3 and S4), (ii) downregulation of a

cluster of genes (with GRB2 being a hub gene) involved in

growth factor receptor signaling (Figure 5 and Table 2), (iii)

GRB2 being one of the hub genes in the network obtained

through Random Forest-based feature selection (Figure 6), and

(iv) GRB2 performing perfectly as a classifier of immune

responses in endemic and non-endemic settings (Table 4 and

Supplementary Figure S7). Based on these findings, we

hypothesize that GRB2 might play an integral role in

downregulating growth factor receptor signaling and in

negatively regulating downstream TCR signaling in the endemic

cohort. Moreover, the MVR model derived for GRB2 (through a

combinatorial approach) suggests that while PIK3R1, TP53, FYN,

and RELA (from the model in Figure 8), which act downstream of

TCR signaling (Supplementary Figures S3 and S4), would be
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affected by GRB2 suppression, other downstream mediators

might actually act as negative regulators (HRAS, MYB, and LCK).

The second gene regulatory module (GRM2) was inferred using

the MVR model for GLI2. Interactions of GLI2 with transcription

factors and other mediators of TCR signaling and extracellular

mediators involved in chemotaxis of lymphocytes were closely

studied (Table 3). Through GRM2, we propose Hedgehog signaling

pathways as primary differentiators of matured lymphocytes as

compared to lymphocytes being freshly induced. Based on the results

obtained from hybrid clustering (Figure 5), we propose them to be

closely involved in T-cell function in endemic settings upon infection.

The third gene regulatory module (GRM3) was specially retrieved

based on the regulatory dynamics observed for STAT3 in two different

regression models (Figure 8C). Based on our observations, we propose

STAT3 as a primary determinant responsible for state switching of T

cells upon infection by, on one hand, directly/indirectly negatively

regulating TCR induction and, on the other hand, nudging towards

Hedgehog signaling. Regulatory modules of GRB2 suppression and the

negative association between STAT3 and LCK as derived from the

meta-analysis were validated via the RNASeq dataset using a regression

model (with an R2 value of 0.5441) (Figure 9). The culmination of the

key findings (which distinguish acute immune responses in endemic

and non-endemic settings) from the study is illustrated in the form of a

model in Figure 9. For the development of this model, established

molecular interactions in TCR signaling were retrieved from

literature (33).

Supplementary File 7 provides a more detailed rationale used for

the construction of gene regulatory modules while Supplementary

Figure S6 provides an illustrative summary of the entire study.
FIGURE 6

STRING network with derived hub genes of feature derived from the Random Forest algorithm distinguishing immune responses in endemic and
non-endemic settings derived using the Boruta package.
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4 Discussion

Enteric vaccines have been reported to show low efficacy in

regions that are highly endemic to pathogens (4–6). Apart from

enteric infections, vaccines against other infectious diseases have

also shown similar tendencies. For example, in a study, the YF-17D,

the yellow fever vaccine, showed low vaccine efficacy in an African

cohort, which the author attributed to an “activated”

microenvironment in the study population— including

“differentiated T and B cells and pro-inflammatory cytokine

secreting monocytes” (34). On similar lines, recently, it has been

observed that infection with SARS-CoV-2 with its different variants

generates cross-reactive T cells, which are not necessarily protective,

but had a direct impact on vaccine effectiveness (35, 36). These

findings imply that pre-existing immunity against specific

pathogens can have a direct impact on immune responses to

subsequent immunization attempts. With SARS-CoV-2 becoming

endemic worldwide, the design and development of the next

generation of COVID-19 vaccines and advanced vaccines against

other endemic infections would require keen consideration to pre-

existing protective/semi-protective/non-protective immunity

against these pathogens in the target population.

Hence, understanding the immunological dynamics of re-

infection in general and the possible impact of immunization in a

chronically exposed population becomes absolutely essential for the

development of future vaccines that are region- and population-

specific (15, 37). In this regard, several studies have investigated

immune responses against malaria and other helminth infection in

a previously exposed population. One of these studies reported

acute upregulation of co-stimulatory molecules (like CD40, CD80,

and CD86) upon stimulation of dendritic cells in experienced (38).
TABLE 2 Enriched reactome pathways derived using different
methodologies specific for endemic settings along with their key
regulators (FDR< 0.05, strength > 0.90, top 10).

Methodology
Enriched
reactome
pathways

Regulators

Network
Topological
Analysis of DEGs

•Signaling by FGFR3
fusions in cancer (HSA-
8853334)
•Signaling by PDGFRA
transmembrane, juxta-
membrane, and kinase
domain mutants (HSA-
9673767)
•Activated NTRK2
signals through RAS
(HSA-9026519) Signaling
by FGFR4 in disease
(HSA-5655291)
•Constitutive signaling by
overexpressed ERBB2
(HSA-9634285)
Constitutive signaling by
EGFRvIII (HSA-
5637810)
•MET activates PI3K/
AKT signaling
(HSA- 8851907)

MYB, SP1

Hybrid Clustering
based on LogFC
values (Cluster 2)

•Regulation of IFNG
signaling (HSA-877312)
•Signaling by CSF3 (G-
CSF) (HSA-9674555)
•Spry regulation of FGF
signaling (HSA-1295596)
•Regulation of KIT
signaling (HSA-1433559)
•Inactivation of CSF3 (G-
CSF) signaling (HSA-
9705462)
•Regulation of IFNA/
IFNB signaling (HSA-
912694)
•CTLA4 inhibitory
signaling (HSA-389513)
•Growth hormone
receptor signaling (HSA-
982772)
•Signaling by PTK6
(HSA-8848021)
•Signaling by SCF-KIT
(HSA-1433557)

MYB, SP1, SP3, SMARCA4,
HIF1A, ETS1, GLI1,
CTTNB1, PAX2, STAT5B,
ETS2, RELA, NFKB1,
NR2C1, SP4, STAT1, YY1,
AR, HOXA10, ATF3,
DDIT3, GLI2, EP300,
ELK1, KLF6, NR1H4, E2F4,
ATF1, HDAC3, PGR,
TCF4, HDAC1, TFAP2A,
CTCF, STAT3, JUND,
RUNX1, TP53, VDR, USF2,
CEBPA, IRF1, BRCA1,
GATA1, CEBPB, EGR1,
CREB1, MYC

Hybrid Clustering
based on LogFC
values (Cluster 4)

•Hedgehog ligand
biogenesis (HSA-
5358346)
•TP53 regulates
transcription of cell death
genes (HSA-5633008)
•Release of Hh-Np from
the secreting cell (HSA-
5362798)
•Activation,
translocation, and
oligomerization of BAX
(HSA-114294)
•Nonsense mediated
decay (NMD)
independent of the Exon

SP1, SMAD4, RELA, CTCF,
ABL1, SNAI1, JUND,
NR3C1, CREB5, E2F3,
STAT5A, ZEB1, HIF1A,
SNAI1, STAT1, FOSL2,

BCL6, FOXO3, FOS, WT1,
SOX9, SP3, FOXO1,

NFKB1, PARP1, LEF1,
CIITA, REST, ETS1, ATF,
STAT3, JUN, EZH2, VDR,
MYCN, BRCA1, SPI1,
PPARG, HDAC1, ESR1,
CREB1, AR, E2F1, TP53

(Continued)
TABLE 2 Continued

Methodology
Enriched
reactome
pathways

Regulators

Junction Complex (EJC)
(HSA-975956)

Features from
Wrapper
Algorithm with
Random Forest

•SHC1 events in ERBB2
signaling (HAS-1250196)
•PI3K events in ERBB2
signaling (HAS-1963642)
•ERBB2 activates PTK6
signaling (HAS-8847993)
•MET activates PI3K/
AKT signaling (HAS-
8851907)
•Activated NTRK2
signals through PI3K
(HAS- 9028335)
•GRB7 events in ERBB2
signaling (HSA-1306955)
•GRB2 events in ERBB2
signaling (HSA-1963640)
•ERBB2 regulates cell
motility (HSA-6785631)
•CD28-dependent Vav1
pathway (HSA-389359)

RELA, NFKB1, SP1,
FOXA1, STAT1, TFAP2A,
AR, NCOS, TRERF1,
CUX1, SP3, BTF2,
TFAP2C, IRF7, HIF1A,
CREB1, NR4A1, FOXA2,
NFKBIA, PML, ELK1,
CEBPB, ETV4, ATF1, SRF,
SAMD4, YBX1, SMAD3,
YY1, PPARA, TP53, USF2,
IRF1, EP300, SPI1, USF1,
PPARG1, STAT3, JUN.
ESR1, ETS1, E2F1
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TABLE 3 List of hub genes specific for the endemic cohort derived using different methodologies along with their corresponding functional roles and
regulators (as identified from TRRUST database).

Source Hub
genes*

Biological process Role Key regulators

Network
Topological Analysis
of DEGs

HRAS GO:0000165:
MAPK cascade

Housekeeping N/A

SOS1 GO:0002260:
Lymphocyte homeostasis

Housekeeping N/A

KRAS GO:0000165:
MAPK cascade

Housekeeping N/A

SRC GO:0002376:
Immune system processes

Responsive SP1, TAF1

EGFR GO:0038134:
ERBB2- EGFR signaling

Responsive AR, BCL3 BRAC1, CREBBP, EGR1, ESR1, HDAC1/3,
HOXB7, JUN, JUNB, KLF10, LRRFIP1, MTA1, NFKB1,
NR3C2, PGR, PML, PPARG, RELA, SP1

MAPK1 GO:0000165: MAPK cascade Housekeeping N/A

MAPK14 GO:0000165:
MAPK cascade

Housekeeping N/A

PTK2 GO:0001932:
Regulation of protein phosphorylation

Responsive N/A

UBB GO:0016567:
Protein ubiquitination

Housekeeping N/A

Hybrid Clustering based on
LogFC values (Cluster 2)

GRB2 GO:0007173: EGFR signaling Responsive N/A

ERBB2 GO:0004714:
Transmembrane receptor protein
tyrosine kinase activity

Responsive AR, ATF, CREB1, DENND4A, ELF1, EP300, ETV4, FOXP3,
GATA4, JUND, MYB, NCOA3, PAX2, PGR, PURA, SP1,
TFAP2A, VDR, XRCC5, YBX1, YY1

PTPN11 GO:0000077: DNA damage checkpoint
signaling

Housekeeping N/A

SOCS1 GO:001817: Regulation of
cytokine production

Responsive GL1/2, HIF1A,IRF1, SP1, STAT3/6

PIK3CD GO:0002250: Adaptive immune
response

Responsive
RUNX1

SOCS3 GO:001817:
Regulation of cytokine
production GO:0000082:

Responsive CEBPA, NFKB1, RELA, SP3, STAT1/3/4

CCND1 G1/S transition mitotic cell cycle Housekeeping N/A

PDGFRA GO:0001775:
Cell activation

Housekeeping N/A

CSF3R HSA:9674555: Signaling by CSF3 Responsive CEBPA, ETS1, MYB, SPI1

LCK HAS:389356: CD28 co-stimulation Responsive MYB

FGF13 GO:0000165:
MAPK cascade

Housekeeping N/A

WT1 HAS:9675108: Nervous system
development

Responsive CTCF, EP300, ETS1, GATA1/2,
HDAC4/5, HOXA10, IFI6, MYB, NFKB1, PAX2/8, RELA,
SP1, TFCP2

PHGDH GO0006541:
Glutamine metabolic
process GO:0033209:

Responsive HOXA10, SP1

KRT18 Tumor necrosis
Factor-mediated signaling pathway

Responsive BRCA1, CTBP1, SP1

PTPN1 HAS:163615:
PKA activation

Housekeeping N/A

(Continued)
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Another study indicated the important role of gd T cells in

secondary immune responses to malaria in endemic settings (39).

Moreover, an immunomodulatory effect of chronic exposure to

parasitic infections has also been reported against parasitic

infections (40). Such studies are still lagging behind for enteric

infections in endemic settings. Using an intensive systems and

computational pipeline, we have designated molecular signatures

and transcriptional regulatory networks that delineate acute

immune responses in endemic settings in comparison to those

induced in non-endemic settings, taking enteric infections as a case

study. Importantly, we show that (i) there is a negative feedback
Frontiers in Immunology 14
regulation of downstream signaling pathway associated with T-cell

activation through GRB2 downregulation (GRM1), (ii) WNT

receptor expression in activated T cells is under the influence of

CCL17 (GRM2), and (iii) STAT3 mediated the state change of

act ivated T cel ls through the upregulat ion of WNT

receptor (GRM3).

To elaborate on the first regulatory module (GRM1), GRB2 is

an adaptor molecule assembled and recruited near the intracellular

chains of growth factor receptors involved in the activation of RAS,

which unleashes the downstream signaling pathways. GRB2 also

plays an essential role in TCR signaling by propagating activation/
TABLE 3 Continued

Source Hub
genes*

Biological process Role Key regulators

Hybrid Clustering
based on LogFC values
(Cluster 4)

RPS16 GO:0006364:
rRNA processing

Housekeeping N/A

RPL6 Same as above Housekeeping N/A

RPS9 Same as above Housekeeping N/A

RPL22 Same as above Housekeeping N/A

RPS15 Same as above Housekeeping N/A

ETF1 GO:0006415:
Translational Termination

Housekeeping N/A

SOX2 HAS-452271: Signaling by WNT Responsive ID4, KDM2A, POU5F1

FN1 GO:0006953:
Acute-phase response

Responsive AR, ATF2, CEBPA, EGR1, KLF8, NFKB1, PARP1,
RELA, SNAI1, SOX17, TWIST1/2

HSP90AA1 GO:0002218:
Activation of innate immune response

Housekeeping N/A

EEF1D GO:0009299: Translational elongation Housekeeping N/A

WNT2B HAS:3238698: WNT ligand biogenesis
and trafficking

Responsive GLI2

JAG1 HAS:2979096:NOTCH2 activation and
transcriptional signal to the Nucleus

Responsive KDM4C, PPARG, RUNX3, SNAI2

TLR6 Responsive HIF1A

Features from Wrapper
Algorithm with
Random Forest

GRB2 GO:0007173: EGFR signaling Responsive

ERBB2 See above Responsive See above

ERBB4 GO: 0006916: Apoptotic process Responsive WWP1

ERBB3 GO:0007162: Negative regulation of
cell adhesion

Responsive AR, TWIST1/2, YBX1

PIK3R1 GO:0002687: Positive regulation of
leukocyte migration

Responsive N/A

RET GO:0000165: MAPK cascade Responsive ESR1, FOXA1, SOX10, NKX2-1, TFAP2C

TXK GO0001819:
Positive regulation of
cytokine production

Housekeeping N/A

MST1R GO:0002376: Immune
system processes

Responsive N/A
Functional roles identified from: https://housekeeping.unicamp.br/.
N/A, Not Available.
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proliferation signals intracellularly after synapse formation of the

TCR complex with the peptide–MHC complex through the

activation of MAPK signaling pathway. Upon TCR/co-receptor

stimulation of LCK, an SRC family tyrosine kinase,* gets activated

and, through a short series of phosphorylation, recruits ZAP-70,

which, in turn, facilitates the assembly of downstream scaffolds that

includes the Linker Activator of T-cells (LAT). LAT provides a

platform for GRB2 (and for other adaptor molecules) assembly

where GRB2 relays the received signals through RAS activation

(41). Because of its early involvement in signaling events, GRB2 has

been designated as a rate-limiting and essential component of the

TCR-induced MAPK/ERK signaling pathway, which is essential for

lymphocyte selection, proliferation, and differentiation (42–44).

Owing to the constitutive and ubiquitous nature of the MAPK

pathway and risk associated with its overexpression, several negative

regulatory circuits have evolved throughout the signaling pathway

downstream of TCR activation (45). Broadly, there are two channels

of negative regulation that involve the phosphorylation-based

functional inactivation of upstream mediators by activated ERK

and, secondly, the transcriptional regulation of upstream mediators.

In terms of GRB2 suppression, phosphorylation of LAT, which leads

to its disassociation with GRB2, has been previously reported, which
Frontiers in Immunology 15
is an example of the former, and induction of SPRY protein (through

ERK pathway activation) that binds and disables GRB2 action can be

considered as an example of the latter (41, 46). Although post-

translational regulation of GRB2 is well documented (46, 47),

transcriptional regulation of GRB2 expression remains quite elusive

in the literature.

Our study, particularly MVR analysis focusing on GRB2

expression using the gene expression dataset, indicates that high

expression levels of HRAS, MYB (downstream mediators of growth

factor receptor signaling), and LCK (adaptor for the TCR receptor)

negatively affect GRB2 expression upon perturbation (antigenic

exposure), which might negatively impact T-cell activation and

proliferation. This observation is further validated by the fact that

GRB2 was peculiarly downregulated at the acute stage of infection

in an endemic setting and the fact that the TCR signaling pathway

was also seen to be downregulated in this endemic cohort

(Supplementary Figure 8). The molecular and transcriptional

mechanism for suppression of GRB2 expression needs further

investigation. Although MIR200a and microRNA have been

reported to suppress the expression of GRB2, consequently

negatively regulating the MAPK signaling pathway (48), its

relevance in this particular setting is not known.
TABLE 4 MLP classification evaluation of the identified hub genes based on threefold classification.

Gene_LIST Accuracy Precision Recall F-measure ROC area

GRB2 100% 1 1 1 1

PIK3R1 98.86% 1 0.952 0.976 0.973

ERBB3 97.72% 0.952 0.952 0.952 0.971

ERBB4 97.72% 0.952 0.952 0.952 0.999

RET 95.45% 0.947 0.857 0.9 0.925

ERBB2 94.31% 0.86 0.905 0.884 0.99

TLR6 92.04% 0.889 0.763 0.821 0.902

SOX2 90.90% 0.741 0.952 0.833 0.942

EGFR 89.77% 0.8 0.762 0.78 0.979

PTK2 88.63% 1 0.524 0.688 0.728

SOCS1 88.63% 0.824 0.667 0.737 0.841

PIK3CD 87.50% 0.917 0.524 0.667 0.781

PHGDH 85.22% 0.682 0.714 0.698 0.84

CSF3R 78.40% 0.583 0.333 0.424 0.768

KRT18 77.27% 0.667 0.095 0.167 0.569

FN1 77.27% 0.52 0.619 0.565 0.741

WNT2B 76.13% NA NA NA 0.599

JAG1 76.13% NA NA NA 0.482

SOCS3 76.13% 0.5 0.238 0.323 0.841

LCK 75% 0 0 0 0.385

WT1 72.72% 0.385 0.238 0.294 0.731
Model construction and evaluation were performed using the WEKA software.
N/A, Not Available.
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To further explore if the described phenomenon occurs upon

vaccination as well, investigation of GRB2 expression levels in other

vaccine clinical trials in the ImmuneSpace database was conducted.

We found that clinical trials with ImmunPort accession IDs SDY299,

SDY1328, SDY1276, and SDY180 (out of 47 studies reporting GRB2

expression levels) also report GRB2 downregulation at early time

points of vaccination (Supplementary Table S7), validating GRB2

suppression as an acute immunomodulatory response in certain

conditions. Gene expression datasets (post vaccination) from

endemic settings were not available in the ImmuneSpace database

(Supplementary Figure S8).

The outcomes of our analysis specifically might have profound

implications in the vaccine design and development of endemicity/

region-specific vaccines as it would provide explanation to

previously ambiguous vaccine trial outcomes where unexpectedly

suboptimal T-cell responses were observed (as discussed above).

Importantly, as baseline-heightened immunological profile in the

endemic cohorts is very well documented, we hypothesize that

further perturbation/exposure/attack of pathogen might push TCR

signaling into an auto-regulatory loop. This would imply that

suboptimal vaccine efficacy observed in these regions would be

the inherent characteristic of the vaccinees, and hence, increasing
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the dosage of a vaccine or using high adjuvanticity might not have

the expected result and might actually disrupt the biological “sea-

saw” or balance put in place to check for immune hyperactivity or

even autoimmunity. This is worth considering particularly because

several autoinflammatory and autoimmune diseases have been

attributed to GRB2-linked molecular assemblies (41, 49). In the

same line, in mice, it has been demonstrated that GRB2-induced

MAPK/Erk signaling pathway might switch to hyperactivity if

not negatively regulated by LCK (50) (negative association of

LCK and GRB2 was demonstrated through our analysis) (Figures

8 and 9).

While GRB2 suppression solely would have indicated a

regulatory immune response to infection in these settings, the

observed GRM2 indicates a more multidimensional effector

function of T cells. Overall, these findings suggest a biphasic

transformative nature of T cells, which is dependent on the

pathogenic load of the environment. In this regard, we propose

STAT3 to be a key determiner of biphasic T-cell function in

endemic settings based on its negative association with LCK

expression and positive association with GLI2 (transcription

factor for WNT2B receptor expression). Our findings are

validated by the fact that STAT3 has been reported to dampen
FIGURE 7

Curated submodule derived from module 3 correlation module derived from the EBModules package that shows the positive associations of positive
regulators of T-cell activation with mediators of the Hedgehog signaling pathways. Here, red bricks indicate a high correlation coefficient of 1, blue
bricks indicate a correlation coefficient of 0, and yellow bricks indicate intermediate correlation coefficient.
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immune responses, which, in this case, can be a result of frequent

exposure to enteric pathogens in pathogen-prevalent regions.

STAT3 has also been reported to promote the activation of

regulatory T-cell responses (51). Besides this, a strong indication

of theWNT signaling pathway being involved in immune responses

in endemic settings is an intriguing finding. Recently, WNT

signaling has been reported to be activated in the local mucosa in

subjects affected by environmental enteropathy, which is prominent

in regions with endemicity of enteric infections (52). WNT

signaling pathways have been reported to play an integral role in

the differentiation and functioning of mature T cells particularly in

the context of cell-to-cell communication and in cell migration/

homing (53, 54). Given this, activation of these signaling pathways

could mediate the induction of regulatory T cells (differentiation) as

an immunomodulatory response to re-infection. These signaling

pathways, especially the WNT signaling pathway, can also be

involved in T-cell trafficking towards infected mucosa under the

influence of activated leukocytes and, resultantly, cytokine

secretion. Through our work, we also established positive

associations between the induction of these pathways and the

chemokine ligand CCL17, which is an established lymphocyte

chemoattractant (GRM2) (55, 56).

Although the robust computational pipeline provides novel

insights into the key molecular mechanisms that might be

peculiar to endemic settings, the study is restricted by the sample
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size secured for the endemic population due to the unavailability/

inaccessibility of immune response-linked gene expression datasets

from these settings even after the systemic screening of public

repositories. Another major limitation of the study is the loss of

genes to a mere 6,543 genes in the meta-dataset, which could be

considered as a “cost-of-merger” of heterogeneous gene expression

datasets. We suspect that, like GRB2, we might come across other

key molecular mediators that play an essential role in distinguishing

immune responses in endemic and non-endemic populations that

can only be uncovered by multicohort studies (from endemic and

non-endemic settings) where pre- and post-infection/vaccination

RNASeq data are retrieved for all the study groups.

Despite the mentioned limitations, in conclusion, through a

novel methodical analytical pipeline, we demonstrate that gene

expression datasets provide an unprecedented opportunity to

understand variations in gene regulatory modules involved in

immune responses to pathogens in different environmental

settings (with a different pathogenic load). We used an

amalgamation of systems (in the form of STRING networks) and

advanced computational approaches (hybrid clustering, wrapper

method for feature selection, MLP classification, correlation, and

MVR analysis) to delineate immune responses specific to the

endemic cohort of the study. Based on the findings of the study,

we propose that perhaps the basal immune system and subsequent

post-infection/vaccination immune responses diverge upon varying
BA

C

FIGURE 8

(A) Multivariant regression model for GRB2 (R2 = 0.76). While the rest of the predictors showed a positive association with GRB2, HRAS, MYB (TF for
LCK), and LCK demonstrated a negative association. (B) Multivariant regression model for GLI2 (TF for WNT2B) (R2 = 0.70). The model demonstrated
positive associations of GL2 with key mediators of TCR signaling: BCL10, PIK3R1, LCK, and TNFRSF11A. (C) Regression model predicting the
association of LCK and GLI2 with STAT3.
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levels of previous exposures. Consequently, detailed insight into the

reasons and principles behind these divergences should form the

basis for the design and development of the “next-gen” precise

vaccines. We put forward acute GRB2 suppression as a divergent

(immunomodulatory) path the immune system evolves to take in

endemic settings as one of the divergent paths the immune system

evolves to take. While these observations are specific for S. typhi

(intracellular bacterial) infection that attacks the enteric mucosa,

further studies that look into the induction of the discussed

regulatory molecules in other mucosal infections (possibly other

enteric infections) can be an exciting start towards the development

of endemicity-specific vaccines. From a global health standpoint,

these studies should also include infections induced in the lung

mucosa because of seasonal or perennial prevalence by pathogens

like the influenza virus and quite recently by SARS CoV-2.
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FIGURE 9

(A) Multivariant regression model for GRB2 suppression with R2 = 0.54 derived from RNASeq data (validation). (B) Scatter plot depicting a negative
association between LCK and STAT3 derived using RNASeq data (validation). (C) Proposed model of TCR signaling upon acute infection in endemic
settings. The known/established regulatory associations in TCR signaling are depicted with black arrows. The negative regulation of GRB2 (depicted
with red inhibitory arrows) is inferred from gene regulatory module 1. The induction of GLI2 by the transcription factors associated with activated T
cells and through CCL17-based signaling (blue arrow) is inferred from gene regulatory module 2. STAT3-mediated inhibition of MYB (transcription
factor for LCK) (red arrow) and the positive regulation of GLI2 (blue arrow) are inferred from the findings of gene regulatory module 3. The three
gene regulatory modules are described in detail in the Supplementary File 8.
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