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ESTIMATE ON LOGARITHMIC COEFFICIENTS OF
KAMALI-TYPE STARLIKE FUNCTIONS
ASSOCIATED WITH FOUR-LEAF SHAPED
DOMAIN

T. Panigrahi, E. Pattnayak and R. M. El-Ashwah

Abstract. In the present paper, the authors introduce a new subclass namely; Ry (¢ar,v)
of Kamali-type starlike functions defined in the open unit disk ID connected with four-leaf shaped
domain. We investigate the bounds of some initial coefficients, Fekete-Szegé inequality and other
results of logarithmic coefficients for the function belonging to above class. Relevant connections of

the results derived in this paper with those of earlier works are indicated.

1 Introduction and Motivation

Let A represent the family of functions A which are holomorphic in the open unit
disk D = {z € C : |z| < 1} having normalized by h(0) = A/(0) — 1 = 0. Thus, each
function h € A has a Taylor-Maclaurin series expansion of the form:

h(z) =z + Zanz” (z € D). (1.1)
n=2

Let S be the subclass of all functions A € A that are univalent in ID. For any two
functions h, g € A, the function h is said to be subordinate to the function g or g is
superordinate to the function h, written as h < g if there exists an analytic function
w in D with w(0) =0 and |w(z)| < 1 (z € D) such that h(z) = g(w(z)).

While proving or disproving Bieberbach conjecture, a number of subfamilies of
the class S of normalized univalent functions connected to different image domain
arises. The familiar of subclasses were class of starlike, convex, close to-convex and
bounded turning functions. By the above notion of subordination, Ma and Minda
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[14] established subclasses of starlike and convex functions respectively as:

S*¢)={heA: Z;}Z(S) < é(2) (2 € D)} (1.2)
and Y
C@)={hed: 1+ L) (zepy (1.3)

h'(2)

where the function ¢ is analytic and normalized by ¢(0) = 1 and ¢'(0) > 0 with
R{¢p(2)} > 0 in D which maps the unit disk D onto a region starlike with respect to
1 and symmetric along the real axis.

For different choices of the function ¢, we obtain some subfamilies of the class S
which have significant geometrical interpretation.

e If we choose ¢(z) = 52 (-1 < L < K < 1), then S*[K, L] = S* (111[55)

is the family of Janowski starlike functions [9]. Further, by taking K = 1 —
26 (0 < B <1)and L = —1, we get the class S*(5) = S*(1 — 28, —1) of
starlike functions of order §. Clearly, S*(0) = S* represents well-known class
of starlike functions.

o §; =S8"(¢(2)) = S*(V1+ z) was investigated by Sokdl and Stankiewicz [31].
The function ¢(z) = 1/1 4+ z maps the region D onto the image domain which
is bounded by the right half of the Bernoulli lemniscate given by |w? — 1| < 1.

e If we choose ¢(z) = 1+ %z + 222, then the class S*(¢(z)) reduces the class
S}, studied by Sharma et al. [26] (also see [37]). It consists of functions

f € A in such a way that Z;Z(,S) lies in the region bounded by cardioid given

by (922 + 9y? — 18z + 5)% — 16(922 4+ 9y? — 62 + 1) = 0.

e By taking ¢(z) = 1 + sinz, the class S*(¢(z)) = S?

v, was introduced by Cho
et al. [5].

e Taking ¢(z) = €*, the class S*(e*) = S was studied in [15](also see [27]). This
function was recently generalized by Srivastava et al. [33].

e Choosing ¢(z) = 1 + tanhz, the class S*(¢(z)) = S, studied in [41].
By taking some more particular function ¢(z) in S*(¢(z)) we get several

subclasses of starlike functions [2, 12, 20].
For each function h(z) € S, we can define logarithmic function Hy(z) as:

Hy(z) = zoghf) =2) dp2" (z€D). (1.4)
n=1
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The numbers d,, are called logarithmic coefficients of h. The logarithmic coeflicients
are very essential in the problems of univalent functions coefficient. The importance
of the logarithmic coefficients of h can transfer to the Taylor-Maclaurin coefficient of
univalent function themselves or to their powers via the Lebedev-Milin inequalities.
Little exact information is known about the behavior of logarithmic coefficient of
h. For instance; the logarithmic coefficient for well-known Koebe function K(z) =
ﬁ are d, = % Because of the extreme properties of the Koebe function, we may

expect that |d,| < 1 for each h € S. However, this conjecture is false even in the
case of n = 2. For the class S, the sharp estimates of single logarithmic coefficients
are known only for |di] <1, |da] < % + e% = 0.6353... and for n > 3 is unknown.
Recently, the bounds of logarithmic coefficients of functions in some importance
subclasses of § have been studied by various authors. For recent expository works,
see [1, 4, 6, 8, 19, 25, 42].

For a given function h € A with the representation of the form (1.1), Pommerenke
[21, 22] defined the Hankel determinant H, ,(h) with ¢ as parameter and n € N :=
{1,2,3,...} as

an a’TL+1 .. a“nJrq*l
Gp41 Gp42 - An4q
Hyn(h) = : : : : (n,ge N=1,2,3...),
An+q—1 Gntq " QAni2(g-1)

where a; = 1. The problem of evaluating the upper bound of H,,(h) over various
subfamilies of A is an interesting area of research in the field of Geometric Function
Theory of Complex Analysis. For fixed values of ¢ and n, the growth rate of H ,,(h)
as n — oo was studied by Noonan and Thomas [17] and Noor [18] for different
subfamilies of the univalent function class S. The Hankel determinant Hy(h) =
ag—a% and Ha2(h) = a2a4—a§ are well-known as Fekete-Szego6 functional and second
Hankel determinant respectively. The functional Hs;(h) is further generalized as
ag — pa3 for some real or complex parameter y. Finding the upper bounds of
Hj 1 (h) for various subfamilies of class S were obtained by different researchers (see
[32, 34, 36]). Very recently, Srivastava et al. [39] obtained the bounds of second
Hankel determinant for ¢- starlike and g-convex functions. Further, the bounds of
some initial coeflicients, the Fekete-Szego inequality and the estimation of Hankel
determinant of different orders for various subclasses of univalent and bi-univalent
functions are obtained in [16, 28, 30, 35, 38, 40].

From the relation (1.4), the logarithmic coefficients d,, (n=1,2,3,4) for h € S
are given by,

1
d1 = 5@2 (1.5)
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d2 = 5(&3 - 5&2) (16)
1 1
ds = 5(@4 — ag20a3 + gag) (17)
and
1 2 Lo, 14y
dy = 5(@5 — agaq + azaz — 543 ~ ZCLQ). (1.8)

In recent years, Kowalczyk and Lecko [10, 11] studied the Hankel determinant
H,,,(Hp/2) whose elements are logarithmic coefficients of h as:

dy  dpr1 o dngget
dn 1 dn 2 dn
Hyn(Hp/2) = + + ) .+q (n,ge N=1,2,3...).
dn+q71 dn+q T dn+2(q—1)

It may be noted that;

Hy1(Hy/2) = dids — d3

corresponds to the well-known functional Hyj(h) = a3 — a3 over the class S or its

subclasses.

Using the three leaf function, Q31(z) =1+ 2z + £z*, Shi et al. [29] introduced the
class BT3y, and investigated the sharp upper bound of Hy1(Hp/2) and Hao(Hp/2)
for the above said classes. Further by virtue of the four leaf function Q4r(z) =
1+ %z + %z‘r’, Alshehry et al. [3] obtained the sharp coefficient type problems of
logarithmic function for the families Sj; and Cj; .

Motivated by the above researchers and making use of four-leaf shaped domain, we
introduce the subclass of the class A as follows:

Definition 1. A function h € A of the form (1.1) is said to be in the class Rr(dar, V)
if it satisfies the following subordination condition:

v23h" (2) + (14 2v) 220" (2) + 2k (2)
v22h'(z) + 21 (2)

< ¢q(z) (zeD, 0<v<1). (1.9)

Putting v = 0, the relation (1.9) reduces to the class Cy; as:

zh""(2)

1+ W (2)

< Qur(2)

studied by Alshehry et al. [3].
In the present paper, the authors investigate few coefficient bounds, Fekete-Szego
inequality and other result of logarithmic coefficients for the class Ry (¢4r, V).

kst sk ok sk ok sk s ok sk sk ok ok sk sk ok sk sk sk s ok sk sk sk s ok sk sk ok sk sk sk sk ok sk sk sk s sk sk sk ok sk sk sk sk ok sk sk sk s sk sk sk sk sk ok sk sk ok ok sk ok sk sk ok ok sk skok ok sk ok

Surveys in Mathematics and its Applications 19 (2024), 41 — 55
https://www.utgjiu.ro/math/sma


https://www.utgjiu.ro/math/sma/v19/v19.html
https://www.utgjiu.ro/math/sma

Estimate on logarithmic coefficients... 45

2 Preliminaries

Let P be the class of holomorphic functions ¢(z) with positive real part and such
functions expressed as series expansion as follows:

q(z) =1+ Z =" (z€D). (2.1)
n=1

Now the following lemmas are useful for further investigations:

Lemma 2. [7, 13] If ¢ € P and be of the form (2.1), then we have

lgn| <2 (n=1), (2.2)
and
2 0<p<l
— <2maxi{l,|2u — 1|} = - 2.3
|Gntk — Hangk| < {120 = 1]} {ﬂ2u—1\ ot hermise. (2.3)
Also, if B € [0,1] and B(2B — 1) < D < B, we obtain
las — 2Bqugz + Dgi| < 2. (2.4)

Lemma 3. (see [23]) Let g € P and “has the expan- sion of the form (2.1). Then
[Ja} — Kquaz + Las| < 2(|J| + |K = 2J| +|J — K + L) (2.5)
Lemma 4. [2/] Let v, 7, v and s satisfy that T, ¢ € (0,1) and
8(1 —¢)s[(T(s +7) — ) + (19 — 29)}] + 7(¢p — 267)*(1 — 7)
<4ri(1—-¢)(1—7)% (2.6)

If ¢ € P has the expansion of the form (2.1) then

3
|W]i1 + ng +27q193 — 5#@%% —qu <2 (2.7)

3 Main Results

In this section, we start with finding the bounds of the first few initial logarithmic
coefficients for the function of the class R (¢4, v).

Theorem 5. Let the function h € A of the form (1.1) be in the class Rp (¢, V) .

Then
5

dil < — 2
|”_2MV+U’

(3.1)
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)

dol < — 2 2
2] < 72020 + 1) (3.2)
|d3| < S R— (3.3)
= 14430 + 1) '
and 1
dyl < ————. 4
dal < 48(4v + 1) (3-4)

Proof. Let h € A given by (1.1) be in the function class Rp(¢4r,v). Then by
Definition 1, there exists an analytic function u(z) satisfying the condition of Schwarz
lemma such that
v23h" (2) + (14 2v) 220" (2) + 2k (2)
vz2h(z) 4+ zh/(2)

= ¢ur[u(z)] (2 €D). (3.5)

For ¢ € P and it may be expressed in terms of Schwarz function u(z) as

1+
q(z) = ﬂ =14+qz+ QQ2’2 + Q323 + ...
1 —u(z)
Equivalently,
q(z) -1
u(z) =——~——
q(z) +1
1 1 1, ., 14 1 1
=50z + (542 = 741)2" + (6 — gaaz + 5as)="+
11 1, 14, 3,5 4
Sgi— —qigs — -g2 — —gt+ 2 3.6
(2Q4 51193 — 7%~ g0 T 8Q1Q2)Z + (3.6)
By simple calculation of ¢47(2) in terms of u(z), the resulting series expansion is,
5 1
Ban(u(z)) =1+ Ju(z) + ¢ (u(z))?

14 2t (2 S )2 (2 Dt s
=14+ —qz —q— —qi | 2 —q] — — —q3 | 2
120 1227 % g T T 1

5 5, 5 5 5 5\ 4
<12q4 gl T 1gUiee ~ N T 5% ) £ A e (3.7)

On simplification of left side of relation (3.5) we get
v (2) + (14 2v)22R" (2) + 2R/ (2)
vz2h'(z) + zh/(z)
[6(1 + 2v)az — 4(1 + v)%a3]2% +
[8(v +1)%a3 — 18(1 + v)(1 + 2v)agaz + 12(1 + 3v)aq)z® +
[—18(1 + 2v)2%a% — 16(1 4 v)*a3 + 48(1 + v)*(1 + 2v)a3az —
32(1 + v)(1 + 3v)agay + 20(1 + 4v)as)z* + ... (3.8)

=14+2(14+v)azz+
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Utilizing (3.7) and (3.8) in the relation (3.5) and equating coefficients of z, 22, 23

and 2%, we get

)
- 3.9
A TTORS (39)
5 1,
= (- — 3.10
a3 72(2V'+'1)(q2 12q1)7 ( )
5 7 4 3
_ . B 3.11
M TG 1) [oggt — g + 3], (3-11)
and
1 91 , 23 1 7, 1
= - 2 P — —qiqs — —q2 + —q]. (3.12
T U1 T+ ) [ oap I T (12p i@ T gy 1B T gy T ol (312)
By making use of (3.9)-(3.12) in (1.5)-(1.8), we get
d=—2> (3.13)
5 19 + 38y + 402
do = — 3.14
27 144020 + 1) [QZ 81 +v)2 O (3:14)
5 1 140* 4+ 790°% 4 28302 4 2100 + 42 1802 4+ 57w 4 19 1
%= 0 [2(12)2 < (v+ 1)3(2v + 1)(3v + 1) ) @t - 24(v + D20 + D(Bv + 1) +92 taT 1Q3] ’ (3.15)
and
s 1 13109 + 144199v + 59960012 + 117984813 + 11336320 + 5381121° + 17577605 4 2620807
4= 96(1 + 4v) [ 248832(1 + v)4(1 + 2v)2(1 + 3v) a
88 + 352v 4 25202 , 57 + 228v + 9612 2353 + 21177v 4 6676802 4 8762805 + 4512004 + 99361°
2161+ 2002 27 1oy (1 + 80y 1B T 5184(1 + v)2(1 + 2v)2(1 + 3v) ez = q4] ’
(3.16)
Using (2.2) of Lemma 2 in (3.13) we get,
di| < ————. 3.17
|1|—24(1+,,) (3.17)
Since 0 < % <1, by application of (2.3) of Lemma 2 in (3.14) gives
o] < —— > (3.18)
=0 rw) ‘
For ds, relation (3.15) can be written as
_ 5 18124-57v+19 140447913 4283024-210v+42 3
d3 = 288(1+30) |~ 248(11//+1)(5u+1)(Ilq2 + = 288V(z/+1)31(j21/+1)y ql} - (3.19)
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Comparing the bracket portion of (3.19) with (2.4), we have

182 +5Tv +19 14t + 7903 4 28302 + 2100 + 42
48w+ 1)(2v + 1)’ B 288(v + 1)3(2v + 1)

Clearly 0 < B <1 and B > D. Moreover,

5(18v2 + 57v + 19)(3v2 + 3v + 1) .

BB -1)=- 1152(1 + v)2(1 + 2v)2 =

All the conditions of Lemma 2 are satisfied. Application of (2.4) in (3.19) we get

|ds| < #
144(1 + 3v)

To obtain the bound of d4, comparing bracket portion of the relation (3.16) with
(2.6) we get

13109 + 144199v + 59960002 4 11798481% + 11336320* + 5381120° 4+ 17577615 + 2620817
7= 248832(1 + )4 (1 + 2v)2(1 + 3v) ’
884 3520 + 25202 57+ 2280 + 9612
S T R R VYT N e

and

2353 + 21177v + 6676802 + 8762813 + 451200* + 99361°

v= 7776(1 + v)2(1 + 20)2(1 + 3v)

Thus, all the conditions of Lemma 4 are satisfied. Application of (2.7) gives

1
ldy| < ———.
48(1 + 4v)

The proof of Theorem 5 is complete. 0

Remark 6. Puiting v = 0 in Theorem 5 we get the result due to Alshehry et al.
([3], Theorem 12).

Theorem 7. Let h € Rp(¢4r,v) be the series of the form (1.1). Then for any
A € C, we have
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Proof. Making use of (3.13) and (3.14), one may get

5 5(4v% + 38v + 19) 25
dy — \d3| = - PN}
[d2 = Adi ‘ 1441+ 20) 2 7 @8)(14) (1 + )21 + 20) T~ " (48)2(1 + )2 1!
_ 5  5(412 +38v +19) + T5A(1 + 2v)
T 1441+ 2) P AS(14N)(1 + v)2(1 +20) &
_ 5 424380 +19 + 150 + 300w
T144(1 + 20) |2 18(1 + v)? %
—LI — pgi|
_144(1+2y) q2 Hqy |,
where
A+ (14 20)(19 + 15)
B 48(1 + v)? ’
An application of Lemma 2 gives
1+2v)(1 — 412
|dy — Ad3| < $max 1, Sl +2v)(1 = 33) +4v7] .
72(1 + 2v) 24(1 + v)2

The proof of Theorem 7 is complete. O
Taking ¥ = 0 in Theorem 7 we get the following result.

Corollary 8. Let h € Rp(¢4r,v) be the series of the form (1.1). Then for any
A € C, we have

5 5
|do — A\d3| < —max {1, 91 B~ 1|}

Remark 9. Corollary 8 is a correction of the obtained estimates stated in ([3],
Theorem 13).
Taking A = 1, we get the following result in form of corollary:

Corollary 10. If h € Rr(¢4r,v) then

5 5[4v? — dv — 2]
dy —d?| < ——— 1.2t
ld2 = di < 72(1+2y)m“x{ ’ 24(1 + v)?2 ‘}

Remark 11. Taking v = 0 in Corollary 10 we get |dy — d2] < % which coincide the
result of Alshehry et al.( [3], Corollary 14).

Theorem 12. If h € Rr(¢4r,v) and of the form (1.1), then

dads — d] < 5 [31120" 4+ 176800° + 247800% + 102050 + 2930
102 = @31 = T4 1152(1 4 v)3(1 + 2v)(1 4 3v)
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Proof. Using the values of di, dy and ds from (3.13)-(3.15) in the functional |dydy —
ds| and after computation we obtain

5 |56 + 37603 + 172202 + 13150 + 263 4 312+ 120+ 4
|didy — d3] = 288 1152 3 a1 — 142
(14+v)3(1+2v)(1+ 3v) 41+ v)(1+42v)(1+ 3v)
+ 11308

(3.20)

By application of Lemma 3 gives

dydy — ds| < 5 31120 4 176800 + 247800% + 102051 + 2930
2= 1152(1 + v)3(1 + 2v)(1 + 3v)
This proof the result of Theorem 12. O

Letting v = 0 in Theorem 12 we get the following corollary.

Corollary 13. Let h € A be of the form (1.1). If h € Cy then

7325
didey — d3| < ——.
didy = ds| < a1
Remark 14. Corollary 13 is a correction of the obtained estimates stated in ([3],

Theorem 15).

Concluding Remarks:

In the present article, the authors have introduced a subclass of Kamali type starlike
function in the open unit disk I subordinated to four-leaf shaped domain. For
function belongs to this class, we have investigated bounds of some of the initial
coeflicients and the estimate of Fekete-Szegd functional. Researchers can make use
of quantum or g-calculus to define the above class and results may derive accordingly.

Acknowledgments. The authors would like to express their sincere thanks to the
referees for their valuable comments, which helped improve the manuscript.
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