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Abstract: An automatic recognizing system of white blood cells can assist hematologists in the
diagnosis of many diseases, where accuracy and efficiency are paramount for computer-based systems.
In this paper, we presented a new image processing system to recognize the five types of white blood cells
in peripheral blood with marked improvement in efficiency when juxtaposed against mainstream methods.
The prevailing deep learning segmentation solutions often utilize millions of parameters to extract
high-level image features and neglect the incorporation of prior domain knowledge, which consequently
consumes substantial computational resources and increases the risk of overfitting, especially when
limited medical image samples are available for training. To address these challenges, we proposed a
novel memory-efficient strategy that exploits graph structures derived from the images. Specifically,
we introduced a lightweight superpixel-based graph neural network (GNN) and broke new ground by
introducing superpixel metric learning to segment nucleus and cytoplasm. Remarkably, our proposed
segmentation model superpixel metric graph neural network (SMGNN) achieved state of the art
segmentation performance while utilizing at most 10000× less than the parameters compared to existing
approaches. The subsequent segmentation-based cell type classification processes showed satisfactory
results that such automatic recognizing algorithms are accurate and efficient to execeute in hematological
laboratories. Our code is publicly available at https://github.com/jyh6681/SPXL-GNN.
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1. Introduction

White blood cells (WBCs), also known as leukocytes, play a pivotal role in the immune system’s
defense against various infections. Accurate quantification and classification of WBCs can provide
valuable insights for diagnosing a wide range of diseases, including infections, leukemia [1], and
AIDS [2]. In the laboratory environment, the traditional examination of blood smears was a laborious
and time-consuming manual task. However, with the advent of computer-aided automatic cell analysis
systems, rapid and high-throughput image analysis tasks can now be accomplished [3]. Some automatic
recognizing system of white blood cells typically entails three major steps: Image acquisition, cell
segmentation and cell type classification. Among these steps, cell segmentation is widely recognized
as the most crucial and challenging one, as it significantly influences the accuracy and computational
complexity of subsequent processes [4]. Some segmentation-free methods take the whole image as
input to the classifier without extracting region of interest (ROI) [5–7].

Accurately segmenting WBCs in cell images, thereby distinguishing between lymphocytes,
monocytes, eosinophils, basophils, and neutrophils as shown in Figure 1, provides a wealth of crucial
information for hematological diagnostics [8, 9]. However, achieving high-quality images requires
careful consideration of various factors, including image resolution, exposure duration, illumination
levels, and the proper utilization of optical filters. If inappropriate factors are chosen in the imaging
process, it can adversely affect image quality, thereby posing challenges for analyzing WBC images.

(a) Basophils (b) Lymphocytes (c) Eosinophils (d) monocytes (e) Neutrophils

Figure 1. Sample images of five different types of WBCs. The colors of different images
exhibit significant variations, and the boundaries of the cytoplasm are often ambiguous, posing
a considerable challenge in accurately recognizing the shape of WBCs.

Deep learning, particularly convolutional neural networks (CNNs), has revolutionized medical image
segmentation [10]. The U-shaped network (U-Net) [11], a symmetrical encoder-decoder convolutional
network featuring skip connections, stands as a prime example. The U-Net has gained significant
popularity in medical image processing, especially for datasets with limited samples. Extensive research
has demonstrated the effectiveness of this architecture in extracting multi-scale image features [12].

Subsequent iterations, such as U-Net++ [13] and U-Net3+ [14], have been proposed to further
enhance performance. U-Net++ introduces nested and dense skip connections to address the semantic
gap and incorporates deep supervision learning techniques to improve segmentation performance [13].
Regularized U-Net (RU-Net) [15] proposed a new activation function with piecewise smooth effect
to solve the under-segmentation problem. There have been various advancements in CNN-based
architectures for image segmentation. One notable example is the multiscale information fusion
network (MIF-Net), which incorporates the boundary splitter and information fusion mechanisms using
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strided convolutions [16]. These techniques contribute to improved segmentation accuracy. In parallel,
Transformer-based approaches, such as Vision Transformer (ViT) [17] and Swin Transformer [18],
have emerged, leveraging self-attention mechanisms for better feature extraction. Specifically, the
ViT partitions images into nonoverlapping patches and treats the patches as sequence data, where
the self-attention mechanism is subsequently used to extract long-range information among patches.
Furthermore, the Swin Transformer applies a shifted window to make ViT more computationally efficient.
Though the original ViT model exhibits significantly better performance on large objects, it obtains
lower performance on small objects [19]. This limitation might arise from the fixed scale of patches
generated by transformer-based methods. A potential solution to enhance the small object detection
(SOD) capability is to explore more refined patch sizes, which might increase the computational cost.
Notably, U-Net architectures have also incorporated transformers, yielding U-Net Transformer [20],
Medical Transformer [21], and Swin-Unet [22]—all of which have set new performance benchmarks
in medical image segmentation. However, these architectures, rooted in pixel-based learning demand
substantial memory resources, leading to inefficiencies, especially when available training samples are
scanty [23]. Here, large models might face narrowing expressivity gaps against parameter-efficient
counterparts. To mitigate this, embedding prior knowledge can reduce the computational burden.

Graph structure data provides an elegant way off describing the geometry of data, which contains
abundant relational information. For example, diverse types of relational systems or structured entities
can be described by graphs to include the interior connections, where some typical examples include
particle system analysis [24, 25], social networks [26], and molecular properties prediction [27].
Correspondingly, graph neural networks (GNNs) are specifically designed to process graph
data [28–32], where researchers have developed graph convolutional networks (GCNs) and various
variants to update node features by aggregating information from neighboring nodes.

The transformation of image data, particularly those without an inherent geometric structure, into
graph data, represents a substantial challenge. This challenge is twofold: Encoding Euclidean space
data into graph representations and decoding them back to their original image domain. A prevalent
approach to address this involves the use of a patch graph method, where image patches are treated
as graph nodes. For example, the Graph-FCN [33] applies a fully convolutional network (FCN) to
extract image features, and the graph structure is constructed based on the k nearest neighbor (kNN)
methods where the weight adjacent matrix is generated with the Gaussian kernel function. In [34], the
dual graph convolution network (DGCNet) constructs the graph structure not only on the spatial domain
but also on the feature domain. In the semantic segmentation task, the bilinear interpolation upsampling
operation acted on the downsampled output of the DGCNet to recover the same image size as the label.
There has also been recent work aiming to combine the local feature extraction ability of CNNs with the
long-range interaction ability of GNNs. The vision graph U-Net (VGU-Net) model was proposed to
construct multi-scale graph structures, enhancing the model’s learning capacity [35].

However, while the patch-based method offers convenience in graph construction, it has its limitations.
The fixed structure of image patches can lead to the omission of critical boundary details. An alternative
lies in the superpixel approach. Superpixels, by design, can dramatically lower both computational and
memory costs for image processing. Since image superpixel can significantly reduce the computational
and memory overhead for image processing tasks, superpixel methods are commonly implemented as a
preprocessing step before the deep reasoning models [36–43]. Various superpixel methods over-segment
the image into multiple nonoverlapped regions based on the pixel features and homogeneous pixels are
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grouped inside single superpixel. Traditional superpixel generation method can be roughly divided into
graph-based [44–46] and clustering-based [47–50] methods. These methods are efficient and fast to
generate high-quality superpixels and require no human label and less memory in computing. Recently,
the deep learning-based approaches are employed in superpixel sampling [51–55]. These methods are
accurate but not efficient in memory saving since learning high-level image features requires a relatively
large amount of convolution kernel parameters. Based on the pre-computed superpixel graph and
GNN, [56] captures global feature interactions for brain tumor segmentation. In [57], superpixel-based
graph data and an edge-labeling graph neural network (EGNN) [58] are implemented for biological
image segmentation.

Medical image segmentation has long depended on the precision achieved by supervised learning
methods. Yet, the perennial issue remains; that is, the paucity of richly labeled datasets in clinical
contexts. This limitation has driven the pivot to metric learning, which disrupts the entrenched belief that
robust intelligence is the sole preserve of abundant labeled data [59–62]. Metric learning approaches,
such as contrastive methods, learn representations in a discriminative manner by contrasting positive
sample pairs against negative pairs. By tapping into vast reservoirs of unlabeled samples, they set the
stage for pretraining deep learning models. The subsequent phase involves meticulous fine-tuning,
utilizing just a fraction of labeled samples. Remarkably, the outcome is a model performance that stands
shoulder to shoulder with traditional supervised strategies.

Notably, there’s a burgeoning interest in supervised metric learning methods, specifically tailored to
unravel cross-image intricacies. These techniques use sample labels as the blueprint to categorize them
into positive and negative sets [63]. The confluence of metric learning methods offers deep learning
models a unique advantage. By bridging labeled and unlabeled data, they are empowered to deliver
stellar results, even when navigating the constraints of scantily labeled samples.

In this work, we propose a novel approach for WBCs segmentation, namely superpixel metric graph
neural network (SMGNN). The core strength of SMGNN lies in its dual promise: delivering unparalleled
accuracy while simultaneously optimizing memory efficiency. The foundation of our technique is a
superpixel graph constructed from image data. This restructuring drastically diminishes the problem’s
dimensionality and serves as a conduit for infusing abundant prior information into the graph data. In
addition to leveraging prior knowledge on a single training sample, our proposed approach introduces
superpixel metric learning to capture “global” context across the training samples. In clinical image
segmentation scenarios with limited training samples, we believe incorporating this “global” context
can enhance the expressivity of deep learning models. Our proposed metric learning operates on the
superpixel embeddings rather than the vast number of pixel embeddings, which offers the advantage of
memory saving.

The contributions of this paper can be summarized as follows.

• Our proposed lightweight SMGNN significantly reduces the learnable parameters by at most 10000
times compared with mainstream segmentation models.

• Our proposed superpixel-based model reduces the problem size and poses rich prior knowledge to
the rarely considered graph structure data, which helps SMGNN achieve state of the art (SOTA)
performance on WBC images.

• We innovatively propose superpixel metric learning according to the definition of superpixel metric
score, which is more efficient than pixel-level metric learning.
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• The whole deep learning-based nucleus and cytoplasm segmentation and cell type classification
system is accurate and efficient to execute in hematological laboratories.

The remaining sections of this article are structured as follows. Section 2 describes our methodology
in depth. Section 3 depicts the workflow and architecture of our proposed model. In Section 4, through
extended segmentation experiments, the SMGNN model achieves SOTA segmentation performance
in terms of both accuracy and memory efficiency. The cell type classification task is conducted with a
lightweight residual network (ResNet) based on the segmentation result. The whole procedure of the
proposed automatic recognition system is shown as Figure 3.

Figure 2. The main idea underlying our approach is to learn the distance between superpixel
embeddings using the superpixel metric score, which is the ratio of the majority class inside
the superpixel. Given the anchor embedding, similar embeddings with approximate metric
scores will be pulled close and dissimilar embeddings will be pushed away. With the help of
metric learning, the cross-image global context can be captured and a better embedding space
will be learned.

Figure 3. The overall work-flow of the proposed automatic WBC recognition system.

2. Methodolgy of superpixel metric

Deep learning methods for medical image processing have predominantly concentrated on discerning
the local context, which refers to inter-pixel dependencies within individual images [63]. However,
there’s a missed opportunity: Capturing the “global” context that exists between training samples. While
pixel-level contrast or metric learning provides a way to bridge this gap, the sheer computational and
memory overheads—due to contrast or metric computations spanning every pixel pair—render them
less feasible. We propose an innovative efficient superpixel-level metric learning on metric loss, which
not only captures the desired global context but does so while drastically cutting computational and
memory costs.
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2.1. Compression ratio on image data

The utility of superpixel methods in image data preprocessing is well acknowledged, particularly for
their ability to condense data and reduce computational demands. Consequently, this study capitalizes
on these advantages, transforming the image data into a more compact graph representation. Within this
framework, each superpixel evolves into a graph node. The interconnectedness of these nodes—whether
driven by spatial positioning or feature similarity—determines the graph’s topology. These node features
aren’t rigid; their definition can range from basic five-dimensional attributes encompassing color (three
dimensions) and location (two dimensions) to more intricate data points like histograms, positional
variance and variations in pixel values.

Given that the adjacency matrix exhibits sparse characteristics, it’s predominantly the node features
that dictate memory consumption. Opting for the more straightforward features facilitates significant
data compression. Specifically, for three-channel red-green-blue (RGB) images, we’ve discerned a
compression ratio roughly represented as c = graph data

image data ≈
5K
3n . Importantly, this efficient compression

does not compromise on quality. Our subsequent numerical experiments demonstrate that this ratio is
concomitant with optimal segmentation outcomes.

2.2. Quality of superpixel and reconstruction score

The segmentation task relies on the quality of the generated superpixels, and good superpixel results
coherent with the boundary of labeled images. Suppose X ∈ RH×W×3 is the input image. LetV be the
set of all superpixels, N = H ×W be the number of pixels, K = |V| be the number of superpixels, and
Q ∈ RN×K be the association matrix between pixels and superpixels, then we have

Qi, j =

{
1, if X̂i ∈ V j

0, otherwise
, X̂ = Flatten(X) ∈ RN×3,

where V j is the jth superpixel. Flatten operation converts a two-dimensional image matrix into a
one-dimensional vector. The role of the association matrix builds the bridge between image space and
graph space. For computation convenience, we define the column normalized association matrix as

Qi, j =

 1/[S j], if X̂i ∈ V j

0, otherwise
, [S j] =

∑
x∈V j

1.

Let Y ∈ RN be the label of the image pixels and Y ∈ RK be superpixel metric or metric score of the
graph data. Using the pixel label, we can formulate metric score as

Y j =

∑
x∈V j

Yx∑
x∈V j

1
, (2.1)

for the jth superpixel. Y can also be efficiently computed with column normalized association matrix,
i.e., Y = Q

T
Y. We can back-project the supepixel label to image space by association matrix, i.e.,

Y = QY. We define the intersection of union (IoU) reconstruction score to evaluate the quality, which
reads

IoUr =
1
c

c∑
i=0

{x|Yx = i} ∩ {x|Yx = i}

{x|Yx = i} ∪ {x|Yx = i}
, (2.2)

where {x|Yx = i} denotes the set of pixels whose class label equals i and c is the number of classes.
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2.3. Lightweight GNNs for superpixel embedding

GNNs have the advantage of being lightweight compared to other deep learning models that often
require deeper and larger networks to achieve higher performance. GNNs leverage relational information
and utilize shallow layers to achieve satisfactory results.

Given an undirected attributed graph G = (V,E,S), G consists of a nonempty finite set of K = |V|
nodesV and a set of edges E between node pairs. DenoteA ∈ RK×K the graph adjacency matrix and
S ∈ RK×d the node attributes. A graph convolution learns a matrix representationH that embeds the
structure A and feature matrix S =

{
S j

}N
j=1

with S j for node j. Most graph convolutions follow the
message passing [64] update scheme, which finds a central node’s smooth representation by aggregating
its 1-hop neighbor information. At layer ℓ, the propagation for the ith node reads

H ℓi = γ
(
H ℓ−1

i ,□ j∈N(i)ϕ
(
H ℓ−1

i ,H
ℓ−1
j ,Ai j

))
,H0 = S (2.3)

where □(·) is a differentiable and permutation invariant aggregation function, such as summation,
average, or maximization. The set N(i) includes Vi and its 1-hop neighbors. Both γ(·) and ϕ(·) are
differentiable aggregation functions, such as multilayer perceptrons (MLPs).

In our approach, we construct graph data using superpixels and their predefined relationships. GNNs
learn features from the graph space to enhance the segmentation capability. We employ the graph
isomorphism network (GIN) [32] as the backbone graph representation network. At each layer ℓ, the
GIN model updates the ith node representation as follows:

H
(ℓ)
i = MLP(ℓ)

(1 + w(ℓ)
)
· H

(ℓ−1)
i +

∑
j∈N(i)

H
(ℓ−1)
j

 , (2.4)

where w is a learnable weight.
GIN has been proven to possess expressive power equivalent to the 2-Weisfeiler-Lehman test [65].

By utilizing GIN, we can effectively extract informative features from the superpixel graph, enabling
accurate and efficient segmentation performance.

2.4. Memory efficient metric learning

Although pixel-wise contrast can learn the global context to form a good segmentation embedding
space [63], computing the contrastive loss requires using training image pixels, which leads to a
significant amount of computation and memory cost. In this study, we propose superpixel-based
methods that can significantly reduce the number of data samples from N to K, and we introduce a
memory-efficient distance-based metric loss function.

The fundamental concept of metric learning is to bring similar samples closer together in the
embedding space while pushing dissimilar samples further apart. However, pixel-wise contrast methods
that involve setting a large number of anchor pixels and using tensor multiplication to compute positive
similarity incurs high memory costs. To address this, we define the superpixel metric loss using the
mean square error (MSE) between the similarity and metric score of the embeddings, as follows:

LSM(A,R) = MS E(S IM(A,R),Metric(A,R)), (2.5)
S IMi, j(A,R) = a · cos(Ai,R j) + b, S IM ∈ Rn1×n2 , (2.6)
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Metrici, j(A,R) =
Y(Ai) +Y(R j)

2
,Metric ∈ Rn1×n2 , (2.7)

where n1 and n2 represent the number of anchor samplesA ∈ Rn1×d and reference samples R ∈ Rn2×d,
respectively. Here, d denotes the dimension of the embedding, and a and b are learnable parameters.
Additionally, Y(x) represents the superpixel label of node x, which is defined by Eq (2.1). It’s important
to note that the anchor/reference samples are not restricted to being from the same image A. The
objective of Eq (2.5) is to bring the embeddings of similar superpixel samples closer together and push
dissimilar ones apart.

3. The work-flow and architecture of SMGNN

We use the parameter-free methods to generate superpixels [47, 66], on which we construct graph
structure with two alternative strategies. Each superpixel is treated as a node and the mean RGB values
and mean postion value consist five dimension node features. Suppose the mean scale of superpixels
S = H×W

K . We can define the adjacency between nodes according to their positional relation as

Ei, j =

{
1, |xi − x j| + |yi − y j| < α

√
S

0, otherwise
,

where (xi, yi) and (x j, y j) are the positions of superpixel i and superpixel j respectively, and α ≥ 2 is a
hyperparameter to control the number of neighboring nodes. The above definition will pose strong local
connectivity to the graph data. For batched images, we can use parallel computing to accelerate the
graph generation process and multiple subgraphs to combine as a large graph, where only connected
nodes can perform message passing with the GNNs.

Regarding the model architecture, we utilize three layers of GIN to generate the embeddings of
superpixels, upon which metric learning is performed. In addition to the transformed graph data derived
from superpixels, we retain the original image data. We concatenate the features of superpixels and
pixels and pass them through a lightweight CNN to smooth out small pixel groups in the output of the
GNNs. This process helps enhance the segmentation accuracy by incorporating nondegraded image
information. The overall architecture of our proposed model, named SMGNN, is illustrated in Figure 5.

To tackle the clinical image segmentation, we employ the Dice loss [67], which is a structure-aware
and widely used loss function for medical image segmentation. This loss function is designed to measure
the similarity between predicted and ground truth segmentation masks. We also use the Dice coefficient
to evaluate the performance of different models [67], which a widely used metric on image segmentation.

To be more specific, given a set G, we define its characteristic/label function by ιG(i) =

1, i ∈ G

0, o.w.
. The

Dice coefficient of two sets G and Ĝ is defined as

Dice(G, Ĝ) =
2
∑

i∈Ω ιG(i) · ιĜ(i)∑
i∈Ω
(
ιG(i) + ιĜ(i)

) , (3.1)

where Ω indicates the domain containing the two sets. The Dice metric is also directly used as a loss
function to train a supervised segmentation task. The Dice loss function is formulated as

LDice(G, Ĝ) = −
2
∑

i∈Ω ιG(i) · ιĜ(i)∑
i∈Ω
(
ιG(i) + ιĜ(i)

) . (3.2)
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The joint loss function for both the superpixel metric learning and segmentation tasks is defined as
a combination of the Dice loss and the superpixel metric loss. This joint loss function enables us to
optimize the model parameters simultaneously for both tasks, effectively leveraging the benefits of both
superpixel-based metric learning and pixel-wise segmentation. The joint loss function is formulated as

LJoint = LDice + λLSM, (3.3)

where λ ≥ 0 is a hyperparameter to trade off the learning on image space and graph space. Empirically,
as shown on Figure 4, we set λ = 0.1 in the numerical experiments for better performance based on the
extended experiments on the searching space [0, 0.1, 0.5, 1, 10].

Figure 4. Comparison study of the parameter choice on λ = 0.1.

4. Numerical experiments

We employed a widely used WBCs dataset to evaluate the effectiveness of our proposed recognizing
system. We employed the widely-acclaimed Adam optimization technique [68] for model training
during the backpropagation phase. The implementations are programmed with PyTorch-Geometric
(version 2.2.0) and PyTorch (version 1.12.1) and executed on an NVIDIA Tesla A100 GPU with 6, 912
CUDA cores and 80GB HBM2 installed on an HPC cluster.
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Figure 5. The framework of our proposed SMGNN for medical image segmentation consists
of three main stages: 1) Create Superpixel Graph: The input images are initially over-
segmented, generating multiple superpixels. Subsequently, a superpixel graph is constructed
based on these segments. 2) Graph Representation Network: The superpixel embeddings
are learned using a combination of GNN and metric learning techniques. This stage focuses
on capturing the relationships and representations within the superpixel graph. 3) Convert
to Image Space Feature: To facilitate segmentation, the superpixel graph is projected back
to the image domain using the association matrix. The CNN layer is utilized to perform the
segmentation task in the image space. The training process is supervised by superpixel metric
loss function LSM in the graph space and Dice loss function LDice in the image space.

4.1. Dataset description

We verify the robustness of our methods on two WBC image datasets. The first dataset (dataset-1)
originates from Jiangxi Tecom Science corporation of China [69] , which contains 300 120 × 120 color
images (176 neutrophils, 22 eosinophils, 1 basophils, 48 monocytes and 53 lymphocytes). Dataset-2
contains 100 300 × 300 color images (30 neutrophils, 12 eosinophils, 3 basophils, 18 monocytes and 37
lymphocytes). The second dataset (dataset-2) is publicly available on CellaVision blog * and widely used
to conduct leukocyte research. These WBCs datasets leverage three-channel RGB images, which are
processed via neural networks in an end-to-end training regimen. Each WBC image is manually-labeled,
marking three primary regions: Nuclei (represented in white), cytoplasm (depicted in gray), and the
surrounding peripheral blood (captured in black). The number of training/validation/testing data is
80/10/10% of the total numbers and the Dice loss function is applied to train the segmentation model.
The dataset comprises five different cell types, staining effect, and illumination conditions which causes
large variations in the sample distribution.

4.2. Evaluation of superpixel scale

To efficiently over-segment our input images, we adopted the simple non-iterative clustering (SNIC)
superpixel generation methodology [66]. A distinctive feature of SNIC is its ability to visit each pixel
just once—with the sole exception being those situated on superpixel boundaries. The computational
traversal is characterized by the total number of pixels, N, augmented by a variable dictated by the
desired superpixel count, K. Such a design renders SNIC more computationally nimble compared to
alternatives like simple linear iterative clustering (SLIC) [47].

The superpixel quality, and its potential ramifications on segmentation, is an aspect we delve deeply
*http://blog.cellavision.com

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2163–2188.



2173

into. By modulating the number of superpixels, we could ascertain its influence. For instance, the
WBCs dataset results (illustrated by the red trajectory in Figure 6) signify that as the granularity of the
superpixel method amplifies, there’s a corresponding upswing in the mIoU (mean Intersection over
Union) score. Balancing optimal segmentation outcomes with computational practicality, we’ve pegged
the mean scale of superpixels (S ) at 16 for all ensuing experiments.

(a) IoU Reconstruction Score (b) Ground Truth Label

(c) Superpixels with Number 3000 (d) RLI with Number 3000

(e) Superpixels with Number 900 (f) RLI with Number 900

Figure 6. (a) The IoU reconstruction score versus the number of superpixels. (b) Ground
truth label image. (c)(d)(e)(f) Superpixel images and reconstructed label images (RLIs) of two
different superpixel numbers. With an increase in the number of superpixels, the RLI tends
to converge toward the ground truth label image. This trend indicates that the boundaries of
the superpixels become more consistent with the boundaries of the cells, leading to improved
quality of the superpixel segmentation.

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2163–2188.



2174

(a) Input (b) GT (c) UNet (d) Att U-Net (e) Runet (f) Swin-Unet (g) MIF-Net (h) VGU-Net (i) SMGNN

Figure 7. The segmentation results on dataset-1. Some CNN-based models result in over-
segmentation issue. The proposed SMGNN model exhibits good segmentation performance.

4.3. Comparison with mainstream deep learning segmentation methods

A particularly intricate aspect of the WBCs dataset segmentation is the differentiation between the
cytoplasm and the nuclei. Several images from dataset-2 present nuclei that are suboptimally stained,
leading to a coloration reminiscent of the cytoplasm. Ideally, accurate segmentation demands that the
representation of the nucleus be a cohesive, uninterrupted region. This color overlap often ensnares
traditional CNN-based segmentation models, like U-Net, Attention U-Net and MIF-Net, resulting in
predicted segmentations marred by interruptions or holes. The RU-Net demonstrates the ability to
preserve piecewise constant nuclei regions; however, it tends to over-segment the cytoplasm region,
which hinders overall segmentation performance. On the other hand, the Swin U-Net leverages the self-
attention mechanism of the Transformer model and shows promising segmentation results. Nevertheless,
the Swin U-Net’s large number of parameters hampers training efficiency and requires significant
computational resources. In comparison, the VGU-Net achieves a balance between efficiency and
effectiveness, although it still utilizes a considerable number of parameters compared to the SMGNN.
The proposed SMGNN model only utilizes about 7,000 parameters and takes an innovative approach by
bolstering the connectivity of adjacent superpixels. Therefore, it is efficient in learnable parameters and
proficient in preserving the integrity of the nucleus region, where the capability is vividly showcased in
Figure 8. Compared to those end-to-end segmentation models, the SMGNN model takes a preprocessing
step to cluster homogeneous pixels into superpixels and constructs graph structured data. We take the
SNIC algorithm, which is non-iterative, requires less memory, is faster, and yet is a simpler superpixel
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segmentation algorithm. This step might cost some computational time, but the SMGNN segmentation
model is very efficient. We compare the computational time of different methods in Table 3.

(a) Input (b) GT (c) UNet (d) Att U-Net (e) Runet (f) Swin-Unet (g) MIF-Net (h) VGU-Net (i) SMGNN

Figure 8. The segmentation results on dataset-2. The ground truth annotation image contains a
connected nuclei region without holes inside. Most CNN-based methods tend to over-segment
the nuclei region induced by the model bias. The SMGNN model can well preserve local
connectivity and achieve comparable performance.

Table 1. WBC segmentation results on dataset-1. SMGNN has the least number of trainable
parameters (million) and achieves good performance in terms of the following metrics. Higher
value means a better performance for metric with ↑ and vice versa.

Model Parameters↓ Dice↑ Hausdorff ↓ PPV↑ Accuracy↑ Sensitivity↑
Unet 5.43M 0.9405 4.214 0.9468 0.9913 0.9325
RUnet 31.03M 0.9452 4.137 0.9528 0.9915 0.9377
Att-Unet 34.88M 0.9410 4.287 0.9413 0.9908 0.9301
Swin-Unet 73.46M 0.9501 4.056 0.9578 0.9918 0.9385
MIF-Net 2.67M 0.9523 4.035 0.9556 0.9911 0.9373
VGU-Net 4.99M 0.9604 3.987 0.9643 0.9923 0.9414
SMGNN (ours) 7e−3M 0.9572 4.017 0.9545 0.9914 0.9401

In Figure 9, we show the Dice performance and number of learnable parameters of different deep
learning models. Our SMGNN model can reach the SOTA performance while using far fewer parameters.
In Tables 1 and 2, we show the quantitative comparison of these mainstream baseline segmentation
models using the Dice coefficient, Hausdroff distance, positive predicted value (PPV), accuracy and
sensitivity as the metric. The proposed SMGNN model can achieve SOTA segmentation performance
while using remarkablely less parameters.
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Figure 9. The comparison of model performance and network parameter size across different
models on the WBCs dataset. The center of the circle indicates the Dice score of the model.
The radius of the circle indicates the number of learnable parameters. The SMGNN model,
utilizing approximately 7,000 parameters, achieves comparable performance to models with
millions of parameters.

Table 2. WBC segmentation results on dataset-2. SMGNN has the least number of trainable
parameters (million) and achieves good performance in terms of the following metrics. Higher
value means a better performance for metric with ↑ and vice versa.

Model Parameters↓ Dice↑ Hausdorff ↓ PPV↑ Accuracy↑ Sensitivity↑
Unet 5.43M 0.9420 4.5018 0.9419 0.9910 0.9204
RUnet 31.03M 0.9462 4.8409 0.9303 0.9876 0.9116
Att-Unet 34.88M 0.9482 4.7425 0.9333 0.9914 0.9307
Swin-Unet 73.46M 0.9503 4.7886 0.9438 0.9919 0.9232
MIF-Net 2.67M 0.9517 4.224 0.9428 0.9909 0.9311
VGU-Net 4.99M 0.9520 4.209 0.9493 0.9913 0.9378
SMGNN (ours) 7e−3M 0.9495 4.4531 0.9431 0.9903 0.9373
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Table 3. Comparison of the time cost. We sample eight WBC images from dataset-2 and
count the inference time of different segmentation models.

Model Time Cost

Unet 0.1094
RUnet 0.1145
Att-Unet 0.2681
Swin U-Net 0.7794
MIF-Net 0.0986
VGU-Net 0.1756
SMGNN (ours) 0.8173

4.4. Ablation study

To optimize node embeddings within our methodology, we selected the GIN model for the GNN
module due to its superior discriminative capacity. Comparative tests with popular GNN models
like GCN and graph attention network (GAT) revealed that a configuration using three layers of GIN
demonstrated an enhanced performance, significantly improving node classification accuracy.

Beyond the conventional setup detailed in Figure 5, which incorporates pixel-level embedding, we
ventured into an approach that solely leverages a GNN, transitioning from image-level segmentation
components to a strictly node-based classification method, as illustrated in Figure 10. The training for
this node classification is driven by a cross-entropy loss function, delineated as follows:

LCE(S, Ŝ) = −
1
K

K∑
i=1

C∑
c=1

Sic log(Ŝic), (4.1)

where we use the majority voting rule to define the supepixel label as

S = ⌊Y + 0.5⌋, (4.2)

guiding the supervised learning in graph space. In Eq (4.2), ⌊·⌋ is the round down function, Ŝ is the
predicted probability of superpixel, and C is the number of semantic classes. Though such a rule may
group mistaken pixels whose pixel label is not the majority, the pure GNN methods may achieve good
performance when the scale of the superpixel is small.

Our ablation studies, as depicted in Figure 11, offer keen insights into the performance nuances of
pure GNN-based segmentation models. These models manifest commendable segmentation outcomes
when oriented to small-scale superpixel environments. However, as we scale the superpixels, the model’s
performance is inversely impacted by its heightened sensitivity to superpixel quality, leading to notable
performance drops. Introducing convolutional filters via CNN feature embedding for image-level
segmentation does augment the model with additional parameters. Nevertheless, the significance of
these filters is evident in the stability they confer upon the model, especially when navigating varying
superpixel scales.

This investigation underpins a critical takeaway: The scale of superpixels and a model’s sensitivity
to their quality must be harmoniously calibrated. Relying exclusively on GNN-driven segmentation
models may prove suboptimal when maneuvering larger superpixel frameworks.
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Figure 10. Pure GNN method converts segmentation task as the superpixel classification task,
without involving learning in image space. The classification task is trained with cross entropy
loss function LCE. The classified superpixels are projected back to the image domain through
an association matrix.

Figure 11. This ablation study delves into the impact of metric learning and convolutional
filtering within the image domain. Segmentation trials were undertaken on WBCs datasets.

4.5. Effectiveness of metric learning on embedding space

To understand the impact of metric learning on the embedding space, we visually represent the
spatial relationships of superpixels. We assign different colors to these superpixels based on their labels,
as determined by Eq (4.2). Figure 12, created using uniform manifold approximation and projection
(UMAP) [70], demonstrates the distances among embeddings derived from the GNN. A notable
observation from this visualization is the pronounced separation between superpixels with distinct
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labels—a testament to the efficacy of incorporating metric learning. Furthermore, there’s a heightened
cosine similarity between samples that are alike, while distinct samples exhibit reduced similarity.
This distinction underscores the model’s ability to effectively differentiate and group superpixels in the
embedding space.

4.6. WBCs type classification results

Though the segmentation of cell salient regions, such as the nucleus and cytoplasm, is fundamental
and challenging, there are various off-the-shelf methods available for subsequent cell type classification
[71–73]. Segmentation may provide a direct means to obtain distinguishing characteristics for cell type
classification, as cell morphology is closely related to cell type.

Algorithm 1 Training SMGNN Segmentation Model and ResNet Classification Model
Input: White blood cell image dataset D = {Xi,Yi,Ci}

n
i=1

Ensure: Optimal θGNN , θCNN and θResNet

//X,Y,C denotes the image, segmentation label and cell type label respectively;
1). Preprocessing:

X,Y,C← random mini-batch from D

//Using SNIC algorithm [66] to generate superrpixels S and association matrix Q;

S,Q = S NIC(X)

//Using Eq (1) of the manuscript as the generation of superpixel metric labels (GSML);

Y = GS ML(Y,Q)

//Construction of Superpixel Graph (CSG) to get the adjacency matrix of graph data with position
relationship;

A = CS G(S)

2). Training SMGNN Segmentation Model:

θGNN , θCNN ← initialize network parameters

Repeat :

H = GNN(S,A)

//Convert embedding of graph space to image space with association matrix Q;

h = QH
hout = CNN(h, X)
hlabel = S o f tmax(hout)

//Compute the loss function according to Equation (10);

LJoint = LDice(hlabel,Y) + λLSM(H,Y)
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// Update parameters according to gradients;

θGNN
+
← −∇θGNNLJoint;

θCNN
+
← −∇θCNNLJoint;

Until deadline
3). Training Lightweight ResNet:

θResNet ← initialize network parameters

Repeat :
// Get the segmentation result with trained SMGNN model;

hlabel = S MGNN(X)

Ŷ = argmaxhlabel

// Training the ResNet Model;

Ĉ = ResNet(Ŷ,X)

Compute cross-entropy loss;

Lcross-entropy = Lcross-entropy(Ĉ,C)

θResNet
+
← −∇θResNetLcross-entropy;

Until deadline

In this part, we employ a lightweight ResNet neural network [74, 75] to train a classifier based on
the outputs of segmentation networks, as shown in Figure 13. The overall recognition algorithm is
shown in Algorithm 1. We sample about 1/3 training images of dataset-2 from each class and leave the
remaining for testing. We train the segmentation and classification model separately. The classification
result is shown in Table 4, and our classification method can achieve about 96.72% overall accuracy.
In addition to our proposed segmentation-based cell type recognition system, we also implemented a
baseline method to predict cell types without utilizing segmented cell regions. The corresponding results
are presented in Table 5, and such methods without extraction on salient cell regions can barely achieve
72.13% overall accuracy. There are also traditional methods that employ handcrafted features extracted
from segmented regions, combined with machine learning classifiers like support vector machine
(SVM) [71], and such methods can get overall accuracy ranging from 89.69 to 96%. Our proposed
deep learning-based automatic recognition system demonstrates high efficiency, and its accuracy can be
further improved with an increase in the number of available training samples. To compare the overall
accuracy of cell type classification task, we take the segmented regions of different models as input
and compare the classification accuracy as shown in Table 6. Our proposed method achieves SOTA
performance in the WBC recognition workflow.
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(a) w/o ML (b) w/ML

Figure 12. (a) Without superpixel metric learning, the embeddings are hardly able to separate.
(b) With superpixel metric learning, the well-learned embeddings will form into three groups
corresponding to nuclei, cytoplasm and background.

Table 4. Confusion matrix, accuracy, and overall accuracy with ResNet classification network
using segmenteation results of SMGNN.

Recognized
Basophil

Recognized
Eosinophil

Recognized
Lymphocyte

Recognized
Monocyte

Recognized
Neutrophil

Accuracy

Basophil 2 0 0 0 0 100%
Eosinophil 0 8 0 0 0 100%
Lymphocyte 0 0 23 1 0 92.00%
Monocyte 0 0 0 10 0 100%
Neutrophil 1 0 0 0 16 94.12%
Overall Accuracy - - - - - 96.72%

Table 5. Confusion matrix, acuracy, and overall accur acy with ResNet classification network
without segmenteation methods.

Recognized
Basophil

Recognized
Eosinophil

Recognized
Lymphocyte

Recognized
Monocyte

Recognized
Neutrophil

Accuracy

Basophil 1 1 0 0 0 50%
Eosinophil 2 5 0 0 1 62.50%
Lymphocyte 0 1 20 2 1 83.33%
Monocyte 0 0 3 6 1 60%
Neutrophil 2 1 2 0 12 70.58%
Overall Accuracy - - - - - 72.13%
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Table 6. Segmentaion-based cell type classification experiments on dataset-2.
Model Parameters↓ Dice↑ CA↑
Unet 5.43M 0.9420 0.9344
RUnet 31.03M 0.9462 0.9672
Att-Unet 34.88M 0.9482 0.9508
Swin-Unet 73.46M 0.9503 0.9508
MIF-Net 2.67M 0.9517 0.9508
VGU-Net 4.99M 0.9520 0.9672
SMGNN(ours) 7e−3M 0.9495 0.9672

Figure 13. The segmentation-based cell type classification workflow. The segmented salient
region implicitly provides important cell features, such as shape, perimeter, mean and variance
of the nucleus boundaries. The lightweight ResNet extracts region-level embeddings to
classify five cell types.

5. Conclusions

In this research paper, we proposed a deep learning based automatic recognizing system for the
challenging WBC image recognizing task. In the first part, we proposed the SMGNN segmentation
model, which combines superpixel methods and a lightweight GIN to significantly reduce memory
usage while preserving segmentation capabilities. We innovatively proposed superpixel metric learning
to capture cross-image global context information, making it highly suitable for medical images with
limited training samples. Comparing our model to other mainstream deep learning models, we achieved
comparable segmentation performance with a remarkable reduction of at most 10000 times fewer
parameters. Through extended numerical experiments, we further investigated the effectiveness of
metric learning and the quality of superpixels In the second part, the segmentation-based cell type
classification processes exhibited satisfactory results, indicating that the overall automatic recognition
algorithms are accurate and efficient for execution in hematological laboratories. We have made our
code publicly available at https://github.com/jyh6681/SPXL-GNN, and we encourage its widespread
implementation in portable devices of hematologists and remote rural areas.
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