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Abstract: The article investigates the issue of fixed-time control with adaptive output feedback for a
twin-roll inclined casting system (TRICS) with disturbance. First, by using the mean value theorem,
the nonaffine functions are decoupled to simplify the system. Second, radial basis function neural
networks (RBFNNs) are introduced to approximate an unknown term, and a nonlinear neural state ob-
server is created to handle the effects of unmeasured states. Then, the backstepping design framework
is combined with prescribed performance and command filtering techniques to demonstrate that the
scheme proposed in this article guarantees system performance within a fixed-time. The control design
parameters determine the upper bound of settling time, regardless of the initial state of the system.
Meanwhile, it ensures that all signals in the closed-loop system (CLS) remain bounded, and it can also
maintain the tracking error within a predefined range within a fixed time. Finally, simulation results
assert the effectiveness of the method.
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1. Introduction

The twin-roll inclined casting and rolling process has widespread use in modern industrial produc-
tion. Compared to traditional rolling processes, the elimination of initial rolling, heating, and other pro-
cesses significantly shortens the production process, improves speed, reduces equipment investment,
energy consumption, environmental pollution, and enhances the sheet’s properties. Therefore, it is
widely used in steel production with higher requirements for strength, toughness, and precision [1–4].
However, multiple coupled rolling parameters affect the rolling effect, making the precise control of
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twin-roll inclined casting and rolling more challenging. In addition, controlling the stability time of the
casting and rolling system and accelerating the convergence speed of errors are also key to optimizing
system performance. To solve these problems, further research and improvement of this process are
needed, and effective measures must be taken to ensure the controllability and stability of the rolling
process.

In recent years, numerous scholars have proposed adaptive control schemes for practical engineer-
ing applications [5–8]. As shown in [5], Zhang et al. used the implicit function theorem and the
mean value theorem to handle the nonaffine coupling term in the twin-roll inclined casting system
(TRICS), which ensured that multi-input and multi-output (MIMO) nonaffine nonlinear systems could
be converted into corresponding affine nonlinear systems. Furthermore, in order to avoid the impact
of parameter uncertainty on the control effect for a type of nonlinear system for which it is difficult to
measure its state, some neural networks (NNs) or fuzzy output feedback control strategies are proposed
in [9–13]. These studies have propelled the development of adaptive control theory.

Although the aforementioned studies have significant implications, the control schemes designed
were all discussed under infinite time intervals. However, in practical applications, the time required
for the stability of the engineering system is an important consideration. As we have already known,
Bhat and Bernstein proposed the finite-time control theory in [14], which brought the control of sys-
tem stability within a finite time for the first time, and improved system robustness, convergence speed,
and accuracy. Building on this pioneering work, numerous results have been developed using classi-
cal finite-time stability theory, which were later applied in a variety of control systems. For instance,
adaptive finite-time control methods for uncertain nonlinear systems were investigated in [15–17]. A
finite-time control scheme for stochastic nonlinear systems was proposed in [18]. The problem of adap-
tive and finite-time decentralized control for large-scale and nonlinear systems with input saturation
and time-varying output constraints is addressed by [19].

Notably, finite-time control method’s stabilization time is dependent on the initial state of the sys-
tem under consideration, which is often challenging to acquire directly in various engineering systems.
Consequently, designers face difficulties precisely predicting the time required for stabilization, limit-
ing the application of finite-time control. To compensate for this shortcoming, Polyakov first proposed
the fixed-time control theory in [20], whereby the stabilization time, solely based on the design param-
eters of the system, is independent of the system’s initial state. Based on [20], research on fixed-time
control has been continuously developed. Some such examples were discussed in [21, 22], which
described research on the fixed-time tracking control issues in uncertain nonlinear systems. Addition-
ally, [23] investigated the output feedback control design problem for nonlinear systems with full state
constraints, based on a fixed-time state observer.

However, most of the above-mentioned studies focus only on the steady-state performance, which
guarantees that the tracking error converges to a near-zero neighborhood, but transient performance
has rarely been considered. Referring to the predetermined performance control scheme proposed
in [24–26], it is known that the transient performance of the system is also extremely important in
practical applications. Thus, optimizing the transient performance of the twin-roll inclined caster is
critical for enhancing the overall performance of TRICS.

Based on the literature survey above, this paper proposes a fixed-time adaptive output feedback
control strategy for TRICS with disturbance. The NNs state observer is designed to handle the influence
of parameter uncertainties and unmeasurable states on stability. To solve the differential explosion and
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singularity problem caused by the virtual control function in the backstepping design, a command filter
is introduced. In addition, combined with the predetermined performance theory, it can simultaneously
ensure the steady-state and transient performance of the system. The constructed fixed-time controller
can guarantee that all signals in the CLS are bounded, and the tracking error of the output signal can
converge to a predefined set within a fixed time.

The following are the primary contributions of this research:
1) In [5–7], the state variables regarding the control strategy of TRICS are assumed to be measur-

able. However, in reality, the rate of change of the TRICS molten pool level is often unmeasurable.
Therefore, the control scheme proposed in [5–7] cannot be effectively implemented in practice. In this
paper, we construct the NNs state observer to compensate for parameter uncertainty and the effect of
unmeasured states on TRICS.

2) For the control results in [5–7], only the stability of TRICS under infinite time conditions is
considered. However, in practice, setting a stable convergence time for the system is also crucial for
improving its robustness. In this paper, combining fixed-time theory criteria, the control strategy of
TRICS is extended to fixed-time stability, and the convergence time of the system is not affected by the
initial state values.

3) The control schemes proposed in [5–7], [17], and [22] only focus on discussing the steady-state
performance of the system, while ignoring its transient performance. This paper combines the key
techniques of prescribed performance and command filtering in a backstepping framework to address
the issues of differential complexity and singularity, ensuring both steady-state and transient perfor-
mance of TRICS. This approach optimizes the control performance and system robustness of TRICS,
and has significant practical implications.

The rest of this article is organized as follows: Section 2 provides some initial problem descriptions
and main theorems. Section 3 presents a design proposal for the NNs observer. Section 4 introduces
an adaptive fixed-time control scheme and provides the corresponding stability analysis. Simulation
results and the conclusion can be found in Sections 5 and 6, respectively.

2. System model descriptions and preliminaries

2.1. Twin-roll inclined casting model description

In this subsection, a diagram is presented depicting the twin-roll inclined casting process, as illus-
trated in Figure 1. Subsequently, a mathematical model of the level of molten steel in the process of
twin-roll inclined continuous casting and rolling can be proposed based on [5], as follows:

dy
dt
=

Qin − Qout − LΦ(y, xg, β)
LF(y, xg, β)

(2.1)

where y is the height of molten metal, L is the surface width of the casting mill roll, xg is the roll gap,
and β is the inclination angle. The metal inflow quantity Qin is a nonlinear function of the ladle stopper
rod height hs, that is, Qin = ahs(b − chs), where a = 0.2466π, b = 0.01585, and c = 0.2165. The metal
outflow quantity Qout = LxgωR, where ω represents the angular velocity of the roll’s rotation and R is
the radius of roll.
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Figure 1. Schematic view of the twin-roll inclined casting.

Meanwhile, F(y, xg, β) and Φ(y, xg, β) are defined as the following two nonlinear functions:

F(y, xg, β) =(2R + xg) cos β −
√

R2 − y2

−

√
R2 −

(
y − (2R + xg) sin β

)2 (2.2)

Φ(y, xg, β) =
(
y cos β + sin β

√
R2 − (R +

xg

2
)2 sin β2

− (2R + xg) cos β sin β
)dxg

dt

(2.3)

Overall, Equation (2.1) can be rewritten as

dy
dt
=

ahs(b − chs) − LxgωR − LΦ(y, xg, β)
LF(y, xg, β)

(2.4)

To develop the control scheme for the subsequent phase, we need to incorporate the coordinate
transformations x1 = y, x2 =

dy
dt , and u = hs, which allow us to convert the dynamic equation (2.4) of

the molten steel level into a nonaffine nonlinear system in the following format:
ẋ1 = x2

ẋ2 = f (x, u) + d(t)
y = x1

(2.5)

where x = [x1, x2]T is the state vector of the system, symbols u and y represent the control input
and output of the system, respectively. f (x, u) is an unknown nonaffine nonlinear function, and d(t)
represents external disturbance.

Remark 1: By taking the derivative of Eq (2.4) of the molten pool level with respect to time t, we
can obtain a strongly coupled unknown smooth nonaffine nonlinear function f (x, u) and an external
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disturbance d(t). The function f (x, u) includes several important time-varying parameters, such as the
height of the molten pool level y and the roll gap opening xg, as well as several adjustable parameters,
such as the rod height hs, roll angular velocity ω, and inclination angle β. Meanwhile, the external dis-
turbance d(t) represents the interference of parameters, such as the angular velocity ω and inclination
angle β of the casting and rolling rolls, on the casting and rolling effect during the casting and rolling
process. This interference is objectively present in practical operations.

Inspired by the decoupling method proposed by Wu in [27] for a class of nonaffine nonlinear system,
in order to simplify the difficulty of designing subsequent controllers, the decoupling of the nonaffine
nonlinear function f (x, u) in (2.5) can be obtained using the mean value theorem for derivatives.

f (x, u) = f (x, 0) +
∂ f (X, u)
∂u

|u=uϱ · u

= τu + H(x, u)
(2.6)

where 0 < ϱ < 1, and H(x, u) = (∂ f (X,u)
∂u |u=uϱ ·u−τ)u+ f (x, 0) where τ > 0 represents a design parameter.

By using (2.6), (2.5) can be rewritten in the following form:


ẋ1 = x2

ẋ2 = τu + H(x, u) + d(t)
y = x1

(2.7)

Control Objective: The main work of this paper is to design an adaptive NN observer for TRICS
with disturbance. By combining prescribed performance and command filtering theory, an adaptive
fixed-time controller is developed, such that:

1) The constructed observer and controller not only ensure the boundedness of all signals, but also
guarantee the fixed-time stability of the CLS.

2) The tracking error can be constrained within a predetermined range, thereby ensuring the tran-
sient and steady-state performance of the control system.

In order to achieve the desired tracking control objectives, we adopt the following assumptions
Assumption 1: The reference signal yr and its first-order derivative ẏr satisfy |yr| ≤ r and |ẏr| ≤ ṙ

where r and ṙ are unknown positive constants.
Assumption 2: For the nonaffine nonlinear term in (2.6), there exist unknown positive constants f

and f such that

0 < f ≤
∂ f (x, u)
∂u

≤ f (2.8)

Assumption 3: There exists a positive constant d such that the external disturbance |d(t)| < d.
Remark 2: Assumption 1 indicates that the reference signal yr and its first-order derivative ẏr are

bounded, which is essential to demonstrate the boundedness of the virtual control signal and command
filter for subsequent designs. Assumption 2 can be used to decouple the nonlinear term in system (2.7),
which means that the rate of change of the controlled input gain is bounded. Assumption 3 means that
the external disturbance d(t) is bounded.
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2.2. Necessary Lemmas preparation

Definition 1 [28]: Consider a nonlinear system as follows:

ẋ(t) = g(x, t), x(0) = x0 (2.9)

where x represents the state variable of the system, and g(·) is a continuous function with g(0, 0) = 0.
The system (2.9) is practically finite-time stable if there exists a constant γ > 0 and a settling time
T (γ, x0) such that ∥x(t)∥ < γ for all t ≥ T (γ, x0).

Based on the theory of finite-time stability, if there exists an upper bound Tmax > 0 in the conver-
gence time such that T ≤ Tmax and it is not related to the state variables, then the system (2.9) is said
to be fixed-time stable.

Lemma 1 [29]: For the system (2.9), if there exists a positive definite and radial unbounded function
V(x(t)) satisfying δ1∥x(t)∥ ≤ V(x(t)) ≤ δ2∥x(t)∥, such that

V̇(x(t)) ≤ −β1V p(x(t)) − β2Vq(x(t)) + ∆, t ≥ 0 (2.10)

where δ1 and δ2 are k∞ functions, β1 > 0, β2 > 0, 0 < p < 1, q > 1, and ∆ > 0 are parameters and
satisfy ∆ < min{(1− ς)β1, (1− ς)β2}(0 < ς < 1), then the non-linear system (2.9) is actually fixed-time
stable, and the boundary of its convergence time T can be expressed as

T ≤ Tmax =
1

β1(1 − p)ς
+

1
β2(q − 1)ς

(2.11)

Lemma 2 [30]: For any given positive constants m, n and k, and real variables x and y, it holds that

|x|m|y|n ≤
m

m + n
k|x|m+n +

n
m + n

k−
m
n |y|m+n (2.12)

Lemma 3 [31]: For ∀ϖ ≥ υ ≥ 0, and q > 1, the following inequality is satisfied:

υ(ϖ − υ) ≤
q

q + 1
(ϖq+1 − υq+1) (2.13)

Lemma 4 [32]: Consider the differential equation in the following form:

ϑ̇(t) = −c1ϑ(t) − c2ϑ
s(t) + c3ϕ(t) (2.14)

where c1 > 0, c2 > 0, c3 > 0 and s = 2m+n
2m+1 > 1 (m ∈ N and n ∈ N∗) are design constants, and ϕ(t) is a

positive function. If the initial condition ϑ(t0) ≥ 0 holds, then ϑ(t) ≥ 0 for all ∀t ≥ t0.

3. Neural network observer design

In consideration of the limitations in using system state variables for controller design, this sec-
tion establishes an NN state observer. Subsequently, theory with an adaptive mechanism is designed
utilizing the Lyapunov stability analysis method.

Rewrite (2.7) in the form shown below:ẋ =Ax + Ky + B[τu + H(x, u) + d(t)]
y =Cx

(3.1)
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Selecting an appropriate K ensures that the matrix A is a strictly Hurwitz matrix.

Where A =
[
−k1 1
−k2 0

]
, K =

[
k1

k2

]
, B =

[
0
1

]
, C = [1, 0].

The nonlinear function in the expression above can be approximated using radial basis function
NNs (RBFNNs), as follows:

H(x, u|Ŵ) = ŴTφ(x, u)
H(x, u|W) = WTφ(x, u)

(3.2)

Define Ŵ = [Ŵ1, Ŵ2, · · · , Ŵl]T and (x, u) as the weight vector and input vector, respectively. φ(·) =
[φ1, φ2, · · · , φl]T is the Gaussian function, with l (l > 1) representing the number of nodes in the NNs.

Define the optimal vector W as

W = arg min
Ŵ∈Ωw

[
sup

(x,u)∈Ωx

|H(x, u) − H(x, u|Ŵ)|
]

(3.3)

where Ωw and Ωx are the compact sets for Ŵ and (x, u), respectively. Define ϵ = H(x, u) − H(x, u|W),
satisfying |ϵ | ≤ ϵ, with ϵ being an unknown positive constant. Then, design the NN state observer as
follows:  ˙̂x =Ax̂ + Ky + B[τu + H(x̂, u|Ŵ) + d(t)]

y =Cx̂
(3.4)

where x̂ is the estimate of state vector x, and the observer error is defined as e = x − x̂ = [e1, e2]T.
Therefore, there exist positive definite matrices P and Q, such that ATP + PTA = −2Q.
From (3.1) and (3.4), we can obtain

ė =Ae + B[W̃Tφ(x̂, u) + ϵ] (3.5)

where W̃ = W − Ŵ. To ensure the boundedness of the state observer (3.4), we choose the Lyapunov
function as follow:

V0 = eTPe (3.6)

Then, from (3.6), we have

V̇0 =eT(ATP + PAT)e + 2eTPB[W̃Tφ(x̂, u) + ϵ] (3.7)

By using Young’s inequality, we can calculate

2eTPBW̃Tφ(x̂, u) ≤ ∥P∥2∥e∥2 + lW̃TW̃ (3.8)

2eTPBϵ ≤ ∥P∥2∥e∥2 + ϵ2 (3.9)

where φ(·) satisfies φT(·)φ(·) ≤ l. Substituting (3.8) and (3.9) into (3.7) yields:

V̇0 ≤ − a∥e∥2 + lW̃TW̃ + ϵ2 (3.10)

where a = λmin(Q) − 2∥P∥2.
Remark 3: Based on (3.10), we can easily conclude that if the variable W̃ is bounded, the corre-

sponding observation error e is also bounded. Thus, we can solve the observer boundedness problem
through subsequent stability analysis.
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4. Fixed-time controller design and stability analysis

Building upon the previously mentioned NN state observer, we propose a high-performance control
scheme that guarantees stability within a fixed time frame. In order to achieve this goal, we have
introduced two key technologies: prescribed performance and command filter. The introduction of
these technologies is beneficial to the development of our research results.

4.1. Prescribed performance and command filterd method

Prescribed performance control refers to a system in which the system’s tracking error converges
to a specified small residual set while ensuring good performance in both transient and steady-state.
Specifically, the system’s convergence rate should be at least a preset value, and its maximum over-
shoot should be no greater than another preset value. By defining a region enclosed by a performance
function, the system achieves prescribed performance control if its tracking error remains within this
region.

First, choose a performance function µ(t) that is smooth, bounded, and strictly positive.

µ(t) = (µ0 − µ∞)e−mt + µ∞ (4.1)

where m > 0 and µ0 > µ∞ > 0 are design parameters with µ0 = µ(0). Then, introduce a function Ψ(·)
that is smooth, strictly monotonically increasing and ensure −κ < Ψ−1 < κ, defined as follows:

Ψ(χ) =
κeχ − κe−χ

eχ + e−χ

η =µΨ(χ)
(4.2)

where κ > 0, κ > 0, and tracking error η = x1 − yr, according to the strictly monotonic increasing
property of the function Ψ(χ), the error transformation function χ can be expressed as

χ = Ψ−1(
η

µ
) =

1
2

ln
Ψ + κ

κ − Ψ
(4.3)

χ̇ = Π(η̇ −
µ̇

µ
η) (4.4)

where Π = 1
2µ (

1
Ψ+κ
− 1
Ψ−κ

). Choose appropriate values to satisfy −κµ(0) < η(0) < κµ(0), which means
that the maximum overshoot of the specified η is less than max{−κµ(0), κµ(0)}.

Combine (4.1) and (4.2) with the selection of appropriate parameters so that the tracking error
satisfies the following conditions:

−κ µ < η < κµ (4.5)

Lemma 5: Consider the tracking error η and the error transformation function χ defined in (4.2)
and (4.3), respectively. If χ is bounded, then it can be guaranteed that the desired performance of η, as
stated in (4.5), is satisfied for all t > 0.

The proof of Lemma 5 will be provided during the stability analysis, which follows.
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We combine command filtering and prescribed performance control methods with backstepping
design, and introduce the following error coordinate transformation:

z1 = χ −
1
2

ln
κ

κ

z2 = x2 − α1

(4.6)

where α1 is the output of the first-order command filter for the virtual controller α1 as

α̇1 =
α1 − α1

Σ
, α1(0) = 0 (4.7)

where Σ is a positive design parameter. Similar to [15] and [33], in order to eliminate the error α1 − α1

caused by filtering, compensation mechanism can be introduced for offsetting.

ζ̇1 = Π(ζ2 + α1 − α1)
ζ̇2 = −Πζ1

(4.8)

where ζi(i = 1, 2) is the compensation signal, and ζi(0) = 0.

4.2. Controller design and stability analysis

In this subsection, we will develop an adaptive fixed-time control scheme for system (2.7) with
external disturbance. An adaptive fixed-time controller was designed, which combines backstepping
techniques with predetermined performance and command filtering. The controller design process
involves two recursive design steps and stability analysis is conducted on it using Lyapunov stability
theory.

Define the compensating filtering error as

νi = zi − ζi (i = 1, 2) (4.9)

Step 1: Constructing the Lyapunov function as V1 = V0 +
1
2ν

2
1. From (4.6) and (4.9), the time

derivative of V1 yields
V̇1 = V̇0 + ν1ν̇1

= V̇0 + ν1(ż1 − ζ̇1)

≤ V̇0 + Πν1(x2 − ẏr −
µ̇

µ
η − ξ2 − α1 + α1)

≤ V̇0 + Π(ν2 + α1 − ẏr −
µ̇

µ
η)

(4.10)

Choose the following virtual control function α1:

α1 = −
λ1

Π
ν

2p−1
1 −

ι1
Π
ν

2q−1
1 + ẏr +

µ̇

µ
η (4.11)

where 0 < p < 1, q = 2m+n
2m+1 > 1 (m ∈ N and n ∈ N∗), λ1 > 0 and ι1 > 0 are design parameters.

By using (4.10) and (4.11), the following can be obtained:

V̇1 ≤ − a∥e∥2 + lW̃TW̃ − λ1ν
2p
1 − ι1ν

2q
1

+ Πν1ν2 + ϵ
2 (4.12)
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Step 2: Taking the derivative of ν2 with respect to time yields

ν̇2 =ż2 − ζ̇2

=ẋ2 − α̇1 + Πζ1

=τu + H(x̂, u) + d(t) −
α1 − α1

Σ
+ Πζ1

=τu + ŴTφ(x̂, u) + ϵ + W̃Tφ(x̂, u)

+ d(t) −
α1 − α1

Σ
+ Πζ1

(4.13)

Choose the following Lyapunov function V2:

V2 = V1 +
1
2
ν2

2 +
l

2Γ
W̃TW̃ (4.14)

where Γ is a positive design parameter.
The time differentiation of (4.14) can be represented as

V̇2 =V̇1 + ν2ν̇2 −
l
Γ

W̃ ˙̂W

≤V̇1 + ν2
(
τu + ŴTφ(x̂, u) + W̃Tφ(x̂, u)

+ ϵ + d(t) −
α1 − α1

Σ
+ Πζ1

)
−

l
Γ

W̃ ˙̂W

(4.15)

By utilizing the Young’s inequality, we obtain

ν2(ϵ + d(t)) ≤ ν2
2 +

1
2
ϵ2 +

1
2

d
2

(4.16)

Design the following fixed-time controller u and adaptive law W:

u =
1
τ

(
− ν2 − ŴTφ(x̂, u) − λ2ν

2p−1
2 − ι2ν

2q−1
2 +

α1 − α1

Σ
− Πz1

) (4.17)

˙̂W = Γν2φ(x̂, u) − σŴ − ιŴ2q−1, Ŵ(0) ≥ 0 (4.18)

where λ2, ι2, σ, and ι are positive design parameters.
To ensure the stability of the system within a fixed-time, the adaptive law (4.18) needs to be designed

in the form of nonlinear differential equations similar to those in Lemma 4. A detailed proof of Lemma
4 is provided in [31]. Adopting this method can assist in proving, in the subsequent stability analysis,
that the system described by (2.7) satisfies the criterion for fixed-time stability in Lemma 1.

Thus, this article’s primary outcome for the stabilization theorem of closed-loop nonlinear system
is summarized as

Theorem 1: Consider the nonlinear system (2.7) with disturbance, under Assumptions 1–3, if
choosing the adaptive NN state observer (3.4), the adaptive fixed-time controller (4.17), the virtual
control function (4.11), and the adaptive law (4.18), the following conclusions can be drawn:

1) The nonlinear system (2.7) is fixed-time stable, and the upper bound on the settling time is

T ≤ Tmax =
100

β1(1 − p)
+

100
β2(q − 1)

(4.19)
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The coefficients β1 and β2 will be calculated in the forthcoming section of the proof.

2) Within a fixed-time period, the tracking error can be limited to a predetermined set. That is, for
time t ≥ 0, the condition −κ µ < η < κµ is satisfied. Additionally, all signals of the closed loop system
(CLS) are still bounded.

Proof: Substituting (4.12) and (4.16)–(4.18) into (4.15) and carrying out some computations, one
has

V̇2 ≤ − a∥e∥2 + lW̃TW̃ −
2∑

i=1

λiν
2p
i −

2∑
i=1

ιiν
2q
i

+
lσ
Γ

W̃Ŵ +
lι
Γ

W̃Ŵ2q−1 + ∆

(4.20)

where ∆ = ϵ2 + 1
2d

2
.

Utilizing the Young’s inequality yields

W̃Ŵ = W̃(W − W̃) ≤ −
1
2

W̃TW̃ +
1
2

W2 (4.21)

Based on Lemma 4 and (4.18), it can be inferred that Ŵ ≥ 0 is satisfied for all ∀t ≥ t0. Furthermore,
by Lemma 3, we have

W̃Ŵ2q−1 = W̃(W − W̃)2q−1

≤
2q − 1

2q
(W2q − W̃2q)

(4.22)

For Lemma 2, if we let x = l
2ΓW̃

TW̃, y = 1, m = p, n = 1 − p, and k = 1
p , then we can obtain the

following inequality:

(
l

2Γ
W̃TW̃)p ≤

l
2Γ

W̃TW̃ + (1 − p)p
p

1−p (4.23)

Likewise, can derive (4.24) and (4.25)

∥e∥2p ≤ ∥e∥2 + (1 − p)p
p

1−p (4.24)

∥e∥2q ≤ ∥e∥2 + (1 − q)q
q

1−q (4.25)
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In the light of formulas (4.21)–(4.25), we have

V̇2 ≤ −
a
2
∥e∥2p −

a
2
∥e∥2q −

2∑
i=1

λiν
2p
i

−

2∑
i=1

ιiν
2q
i − (σ − 2Γ)(

l
2Γ

W̃TW̃)p

− 2ql1−qΓq−1ι
2q − 1

2q
(

l
2Γ

W̃TW̃)q + ∆̆

≤ −
a
2

(∥e∥2)p −
a
2

(∥e∥2)q −

2∑
i=1

2pλi(
ν2

i

2
)p

−

2∑
i=1

2pιi(
ν2

i

2
)q − (σ − 2Γ)(

l
2Γ

W̃TW̃)p

−
2Γι

l
(

l
2Γ

W̃TW̃)q + ∆̆

≤ − β1V p
2 − β2Vq

2 + ∆̆

(4.26)

where β1 = min{a2 , 2
pλi, σ − 2Γ, i = 1, 2}, β2 = min{ a2 , 2

pιi,
2Γι

l , i = 1, 2}, ∆̆ = ∆ + (σ − 2Γ + a
2 )(1 −

p)p
p

1−p + a
2 (1 − q)q

q
1−q + lι

Γ

2q−1
2q W2q + lσ

Γ
W2.

From (4.26), we can see that we only need to let σ − 2Γ > 0 to conclude that both νi and W̃ are
bounded, and the proof of the boundedness of ζi has been given in [15] and [33]. Thus, the boundedness
of zi can be inferred by means of (4.9). Furthermore, using the error transformation (4.3), we can
demonstrate that χ remains bounded.

In summary, the proof of Lemma 5 is presented as follows.
Since χ is bounded, there exist constants χ and χ such that χ < χ < χ holds for t ≥ 0. By using

η = µΨ(χ), one has
Ψ(χ)µ < η < Ψ(χ)µ, t ≥ 0 (4.27)

Then, from the fact that −κ < Ψ−1 < −κ, we obtain

−κ µ < η < κµ,∀t ≥ 0 (4.28)

The performance of η as prescribed in (4.5) is achieved for ∀t ≥ 0.
The proofs of Theorem 1 and Lemma 5 are complete.
Remark 4: From Lemma 1 and (4.26), the nonlinear system (2.7) is proven to be fixed-time stable

and the settling time T is restricted by (4.19). The boundary of the set time T , independent of initial
conditions, is evident from (4.19). Furthermore, the tracking error can converge within a predetermined
range that is within Tmax. Different time boundaries can be set by adjusting the parameters according to
performance requirements in advance, without imposing any conditions on the initial state. Therefore,
in comparison to the existing adaptive control methods for TRICS discussed in the current literature,
the proposed control scheme in this paper can ensure both the steady-state and transient performance
of the TRICS, which holds great significance in practical engineering applications.

Remark 5: It is noteworthy that the design process of the latter step in the traditional backstepping
process necessitates utilizing the derivative of the virtual control function constructed in the previous
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step. When differentiating the virtual control (designed in Eq (4.11)), the λ1
Π
ν

2p−2
1 is calculated by the

first term (i.e., λ1
Π
ν

2p−1
1 ). If 2p − 2 < 0, a singularity may appear. To address this issue, we have

introduced the command filter control method in the backstepping step, which obviates the necessity
of calculating the first-order derivative of the virtual control law α1 and avoids the singularity problem.

Given the results presented in this article, in order to facilitate understanding, the control flow
diagram of TRICS is provided as shown in Figure 2.
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Figure 2. Block diagram of TRICS.

5. Simulation results

In this section, the effectiveness of the developed controller for TRICS with disturbance was verified
through a simulation example.
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To facilitate the simulation, the design parameters utilized in the control scheme are presented in
Table 1. The corresponding system parameters are selected as R = 150 mm, L = 200 mm, ω = 170
mm/s and β = 5◦. The chosen reference signal for tracking is yr = sin(t), and the external disturbance
is d(t) = 0.1cos(t). For the performance function in (4.1), select µ0 = 2.8, µ∞ = 0.1, and m = κ = κ = 1,
yielding µ(t) = 2.7e−t + 0.1.

In Table 2, two groups of initial values for different systems are provided. Among them, xi (i = 1, 2)
represents the state variables (x2 represents the unmeasurable state). Meanwhile, state variables x1 and
x2 respectively correspond to the level of molten steel and the rate of change of the level of molten
steel in TRICS.

Table 1. Design parameters.

Parameters Values Parameters Values
λ1, λ2 12, 30 Γ, σ 2, 10
ι1, ι2, ι 15, 25, 20 p, q 99

101 ,
102
99

k1, k2 25, 300 Σ 0.2

Table 2. Initial values.

Initial states of system Initial values in case 1 Initial values in case 2
x1(0), x2(0) 0.2, 0.2 -0.5, 0.2
x̂1(0), x̂2(0) -0.2, -0.2 -0.3, 0.5
Ŵ(0), α1(0) 0.15, 0 0.4, 0
ζ1(0), ζ2(0) 0, 0 0, 0

In addition, all basis functions are selected as Gaussian functions, which include 11 nodes. These
nodes are evenly spaced between −5 and 5, with a width of 0.5 for each node.

Based on the definition of parameters β1 and β2 in the above design parameters and inequality
(4.19), we can obtain T ≤ Tmax ≤ 1295 s and can set the upper limit of the settling time by adjusting
the control parameters.

The simulation results are shown in Figures 3–8. Figure 3 shows the trajectories of the system states
xi (i = 1, 2) and observer states x̂i (i = 1, 2) in case 1. Figure 4 plots the trajectories of η and Ŵ in
case 1. Figure 5 displays the curves of control input u in case 1. Figure 6 plots the trajectories of
xi (i = 1, 2) and x̂i (i = 1, 2) in case 2. Figure 7 plots the trajectories of η and Ŵ in case 2. Figure 8
plots the trajectory of u in case 2.

From Figures 3 and 6, it can be seen that the designed NN observer is capable of effectively esti-
mating unmeasurable states. Figures 3–8 validate that both sets of different initial values can ensure
excellent system performance, with the upper limit of the convergence time unaffected by the initial
system state, while also able to quickly limit the tracking error within the predetermined boundaries.
This further demonstrates the effectiveness of the proposed control scheme in this paper. The simula-
tion results indicate that the control strategy designed for TRICS in this paper is feasible.
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Figure 3. System states xi (i = 1, 2) and observer states x̂i (i = 1, 2) in case 1.
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Figure 4. Trajectories of η and Ŵ in case 1.

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2282–2301.



2297

0 5 10 15 20 25 30

Time / s

-250

-200

-150

-100

-50

0

50

100

Figure 5. System control input u in case 1.
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Figure 6. System states xi (i = 1, 2) and observer states x̂i (i = 1, 2) in case 2.
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Figure 7. Trajectories of η and Ŵ in case 2.
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Figure 8. System control input u in case 2.
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6. Conclusions

The proposed adaptive output feedback fixed-time control strategy in this paper provides an effective
solution for optimizing the performance of TRICS with external disturbance. This method can effec-
tively estimate the observed state while avoiding the complexity and singularity issues in traditional
backstepping methods. Simulation results show that this strategy not only guarantees that the signals in
the closed-loop system are fixed-time bounded, but also achieves fast tracking of the molten pool level,
with good transient and steady-state performance. Therefore, this method plays an important role in
improving the overall performance of the process and has the potential for practical applications. In the
future, efforts will be made to extend the control scheme to handle more complex scenarios and explore
the application of the proposed approach in other industrial processes with similar control challenges.
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