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ABSTRACT
Many stochastic processes in the physical and biological sciences can be modelled as Brownian
dynamics with multiplicative noise. However, numerical integrators for these processes can lose
accuracy or even fail to converge when the diffusion term is configuration-dependent. One rem-
edy is to construct a transform to a constant-diffusion process and sample the transformed process
instead. In this work, we explain how coordinate-based and time-rescaling-based transforms can
be used either individually or in combination to map a general class of variable-diffusion Brow-
nian motion processes into constant-diffusion ones. The transforms are invertible, thus allowing
recovery of the original dynamics. Wemotivate our methodology using examples in one dimension
before then considering multivariate diffusion processes. We illustrate the benefits of the trans-
forms through numerical simulations, demonstrating how the right combination of integrator and
transform can improve computational efficiency and the order of convergence to the invariant dis-
tribution. Notably, the transforms that we derive are applicable to a class of multibody, anisotropic
Stokes-Einstein diffusion that has applications in biophysical modelling.
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1. Introduction

Many problems in finance and the physical and biolog-
ical sciences can be modelled as instances of Brownian
dynamics. Examples include portfolio optimisation [1],
options pricing [2], diffusion in biological membranes
and nanocomposites [3, 4], cell migration [5], protein
folding [6], neuronal dynamics [7], population genet-
ics [8], MRI imaging [9], ecological modelling [10] and
score-based diffusion for generativeAI [11]. In these con-
texts, configuration-dependent diffusion is often critical
to the modelling assumption but it can introduce prob-
lems for numerical modelling. It can make the problem
stiffer by introducing unbounded noise or bounds on the
state variables. Additionally, it can reduce the weak order
of convergence of an integrator. This is a problem for
simulation because sampling becomes more expensive.

CONTACT Dominic Phillips dominic.phillips@ed.ac.uk

It’s also a problem for estimation, such as when fitting
a Brownian dynamics ‘grey-box’ model, since high accu-
racy is required for the Extended Kalman Filter approxi-
mations to be meaningful [12].

One remedy for these problems is to design sophis-
ticated, derivative-free numerical integrators that main-
tain high-accuracy convergence for certain classes of
configuration-dependent diffusion. In recent years,many
authors have contributed to a series of improvements and
various integrators have been proposed [13–17]. How-
ever, a common drawback of these integrators is the
requirement of multiple evaluations of the force and dif-
fusion tensor per time step. This can be prohibitively
expensive for multi-body simulations, where the evalu-
ation of these terms is the computational bottleneck [18].
Furthermore, many of these integrators place restrictions
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on the functional form of the diffusion, often requiring
commutative noise, which is not suitable for all applica-
tions.

An alternative approach, preferred whenever possi-
ble, is to transform the original process into a process
with constant diffusion, thereby mitigating the sampling
challenges introduced by multiplicative noise [19]. For
certain classes of stochastic differential equations (SDEs),
this is achieved through a Lamperti transform, a type of
non-linear change of state variables [20, 21]. The result-
ing constant-diffusion process might exhibit enhanced
numerical stability and can be sampled with compu-
tationally cheap, high weak-order integrators. Take for
example the Black-Scholes model from financial math-
ematics, which describes geometric Brownian motion
on the positive real axis. When simulated with suffi-
ciently large step sizes, positivity can be violated which
results in numerical instability. Here the Lamperti trans-
form approach is especially valuable since it is possible
to simultaneously construct a transform to unit diffusion
whilst also removing the positivity constraint [22].

An alternative to a spatial coordinate transform is to
apply a smooth, configuration-dependent time-rescaling
[23, 24]. Recently, this has been explored as a method for
adaptive step size control in Langevin dynamics sampling
[25]. In thiswork,we take a different perspective and con-
sider time-rescaling alongside the Lamperti transform as
a strategy to remove multiplicative noise.

In this article, we derive conditions for applying the
Lamperti and time-rescaling transforms, either sepa-
rately or in combination, to achieve constant diffusion
in multivariate Brownian dynamics with multiplicative
noise. Through numerical experiments, we show how
if the right choice of numerical integrator is used for
the transformed process, then this leads to an efficient,
second-order weak sampling method that involves just
one force and one diffusion evaluation per time step.
Furthermore, we show how the original autocorrela-
tion function and evolving distribution can be accurately
recovered by applying an inverse transform to the sam-
ples. We also draw connections with rare event sampling,
illustrating by means of a one-dimensional example how
coordinate transforms can be used in that context.

The article is structured as follows. Section 2 intro-
duces Brownian dynamics and the Lamperti and time-
rescaling transformations. Section 3 explores in detail
how these transforms apply to one-dimensional Brown-
ian dynamics, including rare event sampling. Section 4
extends the theory of transforms to multivariate Brown-
ian dynamics. Numerical experiments in one dimension
are presented in Section 5 and multivariate experiments
are presented in Section 6. Conclusions are presented in
Section 7.

2. Preliminaries

2.1. Brownian dynamics

Brownian dynamics is defined through an Itô stochas-
tic differential equation (SDE), which in one dimension
reads [26]

dxt = −D(xt)
dV(xt)
dx

dt + kT
dD(xt)
dx

dt

+ √
2kTD(xt) dWt , (1)

where t ∈ R>0 is time, xt ∈ R is the state variable, Wt
is a one-dimensional Wiener process, V : R −→ R is a
potential energy function, D : R −→ R>0 is the diffu-
sion coefficient, k is the Boltzmann constant and T is
the temperature in degrees Kelvin. Note that the diffu-
sion coefficient D(x) is a function of x which means that
we have configuration-dependent noise, also known as
multiplicative noise.

In higher dimensions, (1) generalises to

dXt = −(D(Xt)D(Xt)
T)∇V(Xt) dt

+ kTdiv(DDT)(Xt) dt

+ √
2kTD(Xt) dWt , (2)

where Xt ∈ R
n is the state variable, Wt is an n-

dimensional Wiener process, V : R
n −→ R is a potential

function, and DDT : R
n −→ R

n × R
n is a configuration-

dependent diffusion tensor that is everywhere positive
definite. The matrix divergence in (2) is defined as the
column vector resulting from applying the vector diver-
gence to each matrix row. We identify DDT (not D) as
the diffusion tensor to avoid taking a matrix square root
in the noise term.

We assume that V is confining in a way that ensures
ergodicity of the dynamics. This is true for any V
that grows sufficiently quickly as |X| −→ ∞, for details
see Pavliotis (26) [26]. One consequence of ergodic-
ity is that there exists a unique invariant distribution
ρ(X) – a probability distribution that does not change
under the process dynamics. For Brownian dynamics, the
invariant distribution is the canonical ensemble; ρ(X) ∝
exp (−V(X)/kT). Another consequence of ergodicity is
that the long-time time average of any L1 integrable
function f converges to its phase-space average as the
simulation time goes to infinity, i.e.

∫
Rn

f (X)ρ(X) dX = lim
Tsim→∞

1
Tsim

∫ Tsim

t=0
f (Xt) dt. (3)

In the remainder of this paper, we shall refer to (3) as ‘the
ergodic theorem’.
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2.2. The Lamperti transformation

Consider a time-homogeneous Itô SDE of the form

dXt = f (Xt) dt + σ(Xt)R dWt , (4)

where Xt ∈ R
n is the state vector, Wt ∈ R

m is an m-
dimensionalWiener process, f : R

n −→ R
n is a drift func-

tion, σ : R
n −→ R

n × R
m is a configuration-dependent

diffusion matrix and R ∈ R
m × R

m is a constant matrix.
The Lamperti transform [20], ξ : R

n −→ R
n is an

invertible coordinate transformation that when applied
to (4), results in a process Yt := ξ(Xt) having unit diffu-
sion. The required transform can be derived by applying
the multivariate version of Itô’s lemma and setting the
coefficients of the noise terms to one. This gives a set of
ODEs that ξ must satisfy. A consistent solution exists if:
(i) the dimensions of the state variable and the noise are
the same, (ii) R is invertible, (iii) σ(Xt) has the diagonal
form:

σ(Xt) = diag(σ1(X1,t), σ2(X2,t), . . . , σn(Xn,t)), (5)

where σi : R −→ R>0 for all i ∈ {1, 2, . . . , n}. The solution
is given by

Yt = ξ(Xt) = R−1φ(Xt), (6)

where φ(Xt) = [φ1(X1,t),φ2(X2,t), . . . ,φn(Xn,t)]T and
φj : R −→ R is the invertible function:

φj(x) :=
∫ x

xj,0

1
σj(z)

dz, (7)

with xj,0 being an arbitrary constant chosen from the state
space of Xj. The governing equation of Yt then reads:

dYi,t =
n∑
j=1

R−1
ij

(
fj(φ−1(RYt))

σj(φ
−1
j ((RYt)j))

−1
2

∂

∂x
σj (x)

∣∣∣∣
x=φ−1

j ((RYt)j)

⎞
⎠ dt + dWi,t .

The Lamperti transform can be used as a tool to find
exact solutions for specific classes of SDEs [22] or to per-
form statistical inference for SDEs [27], but the extent
to which the Lamperti transform is useful in practice is
limited by the requirement in (5).We consider only time-
homogeneous SDEs in this paper, although the Lam-
perti transform can also be extended to certain time-
inhomogeneous problems [20].

2.3. The time-rescaling transform

An alternative approach for transforming an SDE to con-
stant diffusion is the time-rescaling transformation (see,

for instance, [23] Chapter 8 and [24] Chapter 8). As
before, consider an SDE of the form in Equation (4).
We introduce a configuration-dependent time rescal-
ing, denoted as t → τ(t), with Jacobian dt

dτ (Xt) = g(Xτ ).
The governing equation for the time-rescaled process
becomes

dXτ = f (Xτ )g (Xτ ) dτ + σ(Xτ )R
√
g (Xτ ) dWτ , (8)

where we have replaced dt with dt
dτ dτ = g(Xτ )dτ using a

change of variables. The factor
√
g(Xτ ) in the noise arises

from the scaling property of Brownian motion.
A transformation to unit diffusion is possible if and

only if: (i) the dimensions of the state variable and the
noise are the same, (ii) R is invertible, (iii) the diffusion
matrix σ(Xt) has the diagonal form:

σ(Xt) = diag(D(Xt),D(Xt), . . . ,D(Xt)), (9)

an isotropic matrix with arbitrary configuration depen-
dence.

To remove the configuration dependence from the dif-
fusion term, we choose g(X) = 1/D2(X). Substituting
this and the isotropic ansatz (9) into (8) simplifies the
governing equations to

dXτ = f (Xτ )

D2(Xτ )
dτ + R dWτ .

Wemay then transform to unit diffusion through a linear
transform

Yτ = R−1Xτ .

Note that time-rescaling method can also be used to
transform to an arbitrary isotropic diffusion D̃(X) by
making the choice g(X) = (D̃(X)/D(X))2.

3. Transforms for one-dimensional Brownian
dynamics

In this section, we consider the Lamperti and time-
rescaling transforms applied to one-dimensional Brow-
nian dynamics, comparing the two approaches. For
detailed proofs of all results, see Appendix 4.

3.1. The Lamperti transform

In one dimension, the Lamperti transform emerges as
an instance of a transformational symmetry inherent in
Brownian dynamics. This symmetry states that, under
an invertible coordinate transformation x −→ y(x), the
one-dimensional Brownian dynamics (1) with potential
V(x) and diffusion function D(x) is transformed into
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another Brownian dynamics process with potential V̂(y)
and diffusion function D̂(y) given by

V̂(y) = V(x(y)) + kT ln
∣∣∣∣dydx (x(y))

∣∣∣∣ ,
D̂(y) = D(x(y))

(
dy
dx

(x(y))
)2

,
(10)

where y −→ x(y) is the inverse transformation (Theorem
A.1).

Setting D̂(y) = 1 and solving for y(x) yields the one-
dimensional Lamperti transform

y(x) =
∫ x

x0

(
1

D(z)

) 1
2
dz, (11)

which is Equation (7) with σ(z) = √
D(z). From (11) we

have dy
dx = ( 1

D(x) )
1
2 . Substituting this result into (10), we

arrive at the transformed, constant-diffusion dynamics:

dyt = −dV̂(yt)
dy

dt + √
2kT dWt , (12)

with an effective potential given by

V̂(y) = V(x(y)) − kT
2

lnD(x(y)).

Note that V̂(y) implicitly depends on x0 in (11) through
the inverse transform x(y). Since x0 changes the vertical
offset of y(x), it therefore changes the horizontal offset of
x(y). Changing x0 thus corresponds to horizontally trans-
lating V̂(y), which shifts themean position but otherwise
has no physical consequence for the dynamics.

By writing down the ergodic theorem for the pro-
cess (12) and transforming back to x-space, it can be
shown that (Theorem A.2)

∫ ∞

−∞
f (x)ρ(x) dx = lim

Tsim→∞
1

Tsim

∫ Tsim

t=0
f (x(yt)) dt,

(13)
so trajectories of the transformed process can be used
directly to approximate ensemble averages with respect
to ρ(x), the invariant distribution of the original process.
Furthermore, by choosing f (x) = I(x ∈ [a, b]) (the indi-
cator function on the interval [a, b]) it can be shown that
invariant distribution ρ(x) of the original process and the
invariant distribution ρ̂(y) of the Lamperti-transformed
process are related by the equation ρ(x) = ρ̂(x(y)) dydx
(Theorem A.3). Similarly, if we have a trajectory of dis-
crete samples yn with constant step size h, then choosing
f (x) = I(x ∈ [a, b]) in (13) leads to a simple counting

formula to estimate finite-width integrals of the original
invariant distribution:∫ b

a
ρ(x) dx ≈ lim

N→∞
1
N

N∑
n=0

I(x(yn) ∈ [a, b]). (14)

This approximation becomes exact in the limit h −→ 0.

3.2. The time-rescaling transform

Consider a configuration-dependent time rescaling t −→
τ(t) with dt

dτ (x) = g(x). It can be shown that applying
this to the original Brownian dynamics (1) results in
another Brownian dynamics process but with a modified
potential V̂(x) and diffusion coefficient D̂(x), given by
(Theorem A.4):

V̂(x) = V(x) + kT ln g(x),

D̂(x) = g(x)D(x).
(15)

Setting D̂(x) = 1 implies g(x) = 1
D(x) . Substituting this

result into (15), we arrive at the time-rescaled, constant-
diffusion dynamics:

dxτ = −dV̂(xτ )

dx
dτ + √

2kT dWτ ,

where

V̂(x) = V(x) − kT lnD(x)

is the effective potential. Notably, these dynamics differ
from those obtained through the Lamperti transform.

By applying a time rescaling to the ergodic theorem
of the original process xt , it can be shown that
(Theorem A.5):∫ ∞

−∞
f (x)ρ(x) dx = lim

Tsim→∞

∫ Tsim
τ=0 f (xτ )g(xτ )dτ∫ Tsim

τ=0 g(xτ )dτ
, (16)

sotrajectories of the transformed process can be used
directly to approximate ensemble averages with respect
to ρ(x), the invariant distribution of the original process.

Discritising with a constant step size h in τ -time, and
setting f (x) = I(x ∈ [a, b]), leads to a counting formula
to estimate finite-width integrals of the original invariant
distribution:∫ b

a
ρ(x) dx ≈ lim

N→∞

∑N
n=0 g(xτn)I(xτn ∈ [a, b])∑N

n=0 g(xτn)
. (17)

This approximation becomes exact in the limit h −→ 0.

Remark: The proof of (16) and (17) does not require
Brownian dynamics, hence these results hold more gen-
erally for one-dimensional, time-homogeneous SDEs.



MOLECULAR PHYSICS 5

3.3. Comparing the two transform approaches

In one dimension, both the Lamperti and time-rescaling
transforms are applicable for any D(x) > 0. However,
whilst the time-rescaling transform can be computed
exactly, the Lamperti transform often requires a numer-
ical approximation due to the intractability of the inte-
gral (11). The two transforms also yield different effec-
tive potentials. The Lamperti transform tends to increase
confinement of the potential in y-space whereverD(x) >

1 and decrease it wherever 0 < D(x) < 1, whereas the
time-rescaled effective potential is more confining where
dD
dx < 0 and less confining where dD

dx > 0. Therefore,
deciding which transform is more useful can depend on
the functional formofD(x). For rare-event sampling, one
should choose whichever transform results in the least-
confining effective potential as this improves numerical

stability for larger step sizes. Figure 1 compares the effec-
tive potentials resulting from the two transforms for var-
ious initial diffusion coefficients. In the next section, we
provide a deeper insight into coordinate transforms for
rare event sampling. We then derive multivariate ver-
sions of the Lamperti and time-rescaling transforms in
Section 4.

3.4. Connection to variable-diffusion enhanced
sampling

Recallthat in this work, we generally consider that D(x)
is fixed by the application problem. Due to it being non-
constant, it leads to less efficient numerical computations.
Hence, the motivation to ‘transform it away’ into con-
stant noise. Nonetheless, for problems where the primary

Figure 1. Comparison of the Lamperti and time-rescaling transforms when applied to the same quadratic potential V(x) = x2 for a
variety of different diffusion coefficients. The abscissa axis represents the original x coordinate for the time-rescaled potential and is the
transformed y(x) coordinate for the Lamperti-transformed potential.
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goal is to explore a potential landscape, as is common
in biomolecular modelling [28], it can be beneficial to
take a different perspective and consider D(x) as a free
parameter that can be optimised. For this to be success-
ful, the drawback of corrupting the dynamics must be
offset by kinetic benefits, in the form of reduced metasta-
bility, gained by modifying the diffusion. A prototype of
this idea dates back to the work of Roberts and Stramer
(29), what the authors call Langevin Tempered Diffusion
[29]. More recently, the optimisation problem for D(x)
was formulated precisely by Lelièvre et al. for dynamics
without coordinate transforms [30]. Krivov and Karplus
[31] explored how the Lamperti transform can be used
to find natural reaction coordinates in small proteins
[31]. The theoretical results in the previous section also
offer new intuition for this class of sampling problem.
We illustrate this through a numerical example below.
For concreteness, we consider only the time-rescaling
transform. Similar results could be obtained using the
Lamperti transform.

Example 3.1 (Enhanced Sampling in a Double Well):
Consider the double-well potential

V(x) = −1
4
h4x2 + 1

2
c2x4 (18)

with h = c = 2. This has a local maximum at (xmax,
Vmax) = (0, 0), minima at (x±,Vmin) = (±1,−2) and
inflection points at (±

√
3
3 ,− 11

9 ). Using this potential,
we define a family of configuration-dependent diffusion
functions:

D(x;α) =

⎧⎪⎪⎨
⎪⎪⎩
exp

(
α · V(x)

kT

)
if x− < x < x+

exp
(

α · Vmin

kT

)
otherwise,

(19)

where 0 ≤ α ≤ 1 controls the degree of configuration
dependence, α = 0 corresponds to constant noise. In
Figure 2(a) we plot the potential and diffusion func-
tions for x ∈ [−2, 2] and α ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}
with kT = 1. Transforming (19) to constant diffusion
using a time-rescaling leads to an effective potential

V̂(x;α) =
{

(1 − α)V(x) if x− < x < x+
V(x) + α|Vmin| otherwise.

(20)

We plot this effective potential in Figure 2(b). As
α increases, the rescaled potential flattens, gradually
removing the metastability. This smooth removal of the
metastabilitymotivates the choice of diffusion considered
in (19).

In Figure 3 we plot the α and kT dependence of the
mean transition counts, NT , between the wells for vari-
ous numerical integrators (for details of the integrators,
see Section 5.1). Unsurprisingly, simulations of the time-
rescaled dynamics with α > 0 result in enhanced sam-
pling between the two wells, due to the lower energetic
barrier. Furthermore, this enhanced-sampling effect is
strongest at lower temperatures, since diffusion across the
barrier is a kinetically-inhibited rare event.

For fixed step size, numerical integrator, and temper-
ature, there exists an α value for which the sampling
error of the transformed dynamics isminimum, bounded
above by the sampling error with untransformed dynam-
ics (α = 0). In Figure 4 we plot this minimum sampling
error as a function of kT with step size h = 0.01 for
short simulations (Tsim,Tsim = 10, Monte-Carlo error
dominates the sampling error) and long simulations
(Tsim,Tsim = 1000, discretisation error dominates). For
all integrators, sampling efficiency can be improved by
considering an α > 0 and applying a time rescaling to
constant diffusion. Once more, we observe that the effect

Figure 2. (a) Black: the double-well potential V(x). Red: the configuration-dependent diffusion D(x;α) for various α with kT = 1.
(b) Time-rescaled potentials after transforming to constant diffusion D = 1 with initial diffusion D(x;α). By design, the time-rescaled
potentials are independent of kT. The transform has the effect of reducing themetastability of the well, removing it entirely whenα = 1.
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Figure 3. The mean transition counts (NT ) vs α for Brownian dynamics trajectories of length T = 1000 in a double-well potential with
a constant step size h = 0.01. Each line represents an average over 5 × 103 independent repeats. Results are shown for four different
values of kT, equally spaced in logarithmic scale. Solid lines represent integrators for the untransformed potential with diffusion function
D(x;α), while dotted lines represent integrators for the time-transformed potential with D(x) = 1.

is most dramatic at low temperatures. See Appendix 1 for
the full experimental methodology.

4. Transforms for multivariate Brownian
dynamics

This section examines generalisations of the Lam-
perti and time-rescaling transforms to multivariate

Brownian dynamics. Proofs of all results can be found in
Appendix 4.

4.1. Themultivariate Lamperti transform

Considermultivariate Brownian dynamics withDmatrix

D(X)ij = Di(Xi)Rij,

Figure 4. L1 error in the invariant measure as a function of kT for the different integrators. Solid lines correspond to integrators of the
original dynamics with α = 0 (constant, unit diffusion). Dotted lined correspond to integrators of the transformed dynamics using the α
value that gives the minimum L1 error at that temperature. The left panel shows the error for trajectories to final time 10, where Monte
Carlo error generally dominates. The right panel shows the error for trajectories to final time 1000, where discretisation error generally
dominates.
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where Rij are the elements of an invertible, constant
matrix. For this class of diffusion, although a Lam-
perti transform to unit diffusion can be constructed
(Section 2.2), the transformed dynamics are only Brow-
nian dynamics if R is proportional to the identity.
Specifically, when D(X)ij = Di(Xi)δij, the Lamperti-
transformed process is Yi,t = √

2kT
∫ Xi,t
x0

1
Di(x) dx :=√

2kTφi(Xi,t), and obeys

dYi,t = −∇YiV̂(Y) dt + √
2kT dWi,

with an effective potential (Theorem A.6)

V̂(Y) = V(φ−1(Y)) − kT
n∑

k=1

lnDk(φ
−1
k (Yk,t)). (21)

In this case, the ergodic theorem generalises to
(Theorem A.7)∫

Rn
f (X)ρ(X) dX = lim

Tsim→∞
1

Tsim

∫ Tsim

t=0
f (φ−1(Yt)) dt,

(22)
where the map φ−1 : R

n → R is constructed by individ-
ually applying φ−1

i to each component of its argument,
1 ≤ i ≤ n. We observe that there is an independent con-
tribution to the effective potential for every diagonal
component ofD.

4.2. Themultivariate time-rescaling transform

Considermultivariate Brownian dynamics withDmatrix

D(X) = D(X)R,

where R is invertible. For this class of D matrix, a time-
rescaling to Brownian dynamics unit diffusion can be
constructed (Section 2.3). The time-rescaled process is
given byYτ = R−1Xτ where dt

dτ = g(X) := 1/D2(X) and
it obeys

dYτ = −∇YV̂(Y) dt + √
2kT dW,

with an effective potential (Theorem A.8)

V̂(Y) = V(RY) − 2kT lnD(RY). (23)

The ergodic theorem generalises to (Theorem A.9)

∫
Rn

f (X)ρ(X) dX = lim
Tsim→∞

∫ Tsim
τ=0 f (RYτ )g(RYτ )dτ∫ Tsim

τ=0 g(RYτ )dτ
.

(24)

Remark: The proof of (24) does not require the assump-
tion of Brownian dynamics and therefore it holds more
generally for SDEs of the form considered in Section 2.3.

4.3. Combiningmultivariate transforms

The Lamperti and time-rescaling transforms can be com-
bined. This allows transforming a wider class of diffusion
processes to constant diffusion than is possible when
applying either transform separately. Specifically, from
the results of Sections 4.1 and 4.2, one expects that dif-
fusion matrices of the form D(X) = D(1)(X)RD(2)(X),
where

D(1)(X) =
⎡
⎢⎣
D(X)

. . .
D(X)

⎤
⎥⎦ ,

D(2)(X) =
⎡
⎢⎣
D1(X1)

. . .
Dn(Xn)

⎤
⎥⎦ , (25)

can be transformed to constant diffusion. However, in
this case, the transformed process has a non-conservative
drift force unless R is proportional to the identity
(Theorem A.10). In particular, if Rij = δij, then the pro-
cess can be transformed to a constant-diffusionBrownian
dynamics process Yτ through a time rescaling followed
by a Lamperti transform, i.e.

Xt

dt
dτ =g(X):=D(X)−2

−−−−−−−−−−−→ Xτ
Yτ =∫ Yi,τ Di(x)−1 dx−−−−−−−−−−−→ Yτ .

The effective potential of the transformed process is
(Theorem A.11)

V̂(Y) = V(Y) − 2kT lnD(φ−1(Y))

− kT
n∑

i=1
lnDi(φ

−1
i (Y)),

and the ergodic theorem is

∫
Rn

f (X)ρ(X) dX

= lim
Tsim→∞

∫ Tsim
0 f (φ−1(Yτ ))g(φ−1(Yτ ))dτ∫ Tsim

0 g(φ−1(Yτ ))dτ
.

5. Numerical experiments in one dimension

In this section, we simulate Brownian dynamics trajec-
tories for a particular one-dimensional potential with
variable noise. Specifically, we consider the potential
V(x) = x2

2 + sin(1 + 3x) with diffusion profile D(x) =
1 + |x| and kT = 1. Applying the results of Section 3, the
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Figure 5. Comparison of effective potentials with original diffusion D(x) = 1 + |x|, V(x) = x2
2 + sin(1 + 3x) and kT = 1. The original

potential is in black, the Lamperti-transformed potential is in red and the time-rescaled potential is in blue. Metastability in the potential
makes this a challenging sampling problem. We observe that the Lamperti transform stiffens the potential, while the time-rescaling
softens it.

Lamperti-transformed effective potential is

V̂(y) = V
(y
4
(|y| + 4)

)
− kT

2
ln
∣∣∣∣1 + |y| + y2

4

∣∣∣∣
and the time-rescaled effective potential is

V̂(x) = V(x) − kT ln (1 + |x|).
In Figure 5, we sketch V(x), V̂(y) and V̂(x) for kT = 1.

For this setup, we consider various numerical inte-
grators (introduced below) both with and without the
application of transforms. We compare the weak con-
vergence to the invariant distribution, the sampling effi-
ciency, and the effect of transforms on estimates of the
autocorrelation function and the evolving distribution.
All experiments are run on a Thinkpad P17 with a 12-
core, 2.60GHz Intel i7-10750HCPU, using code imple-
mented in Julia 1.8.5.1

5.1. Numerical integrators

We consider the following numerical integrators: Euler-
Maruyama (EM), Milstein Method (MM), Leimkuhler-
Matthews (LM), Hummer-Leimkuhler-Matthews
(HLM), Stochastic Heun (SH), and Limit Method with
Variable Diffusion (LMVD). The defining equations
of these integrators in the context of one-dimensional
Brownian dynamics can be found in Appendix 2. The
integrators can be summarised as follows:

The Euler-Maruyama (EM) integrator extends the
Euler method to SDEs. It has a strong convergence order
of 1/2 and a weak convergence order of 1 [32]. The Mil-
stein Method (MM) modifies EM by incorporating a
second-order correction derived from a stochastic Tay-
lor series expansion. It is strong order 1 and weak order

1 and reduces to EM for constant diffusion [33]. The
Leimkuhler-Matthews (LM) integrator is derived from
the high-friction limit of the BAOAB-splittingmethod in
the constant diffusion regime [34]. It has weak conver-
gence order 2 for constant diffusion but is invalid (does
not converge) for multiplicative noise. The Hummer-
Leimkuhler-Matthews (HLM) integrator is an extension
of LM that ensures that the expectation of position is
exact in the case of locally linear diffusion, and is con-
jectured to improve convergence in the variable diffusion
regime.2 It reduces to LM for constant diffusion. The
Stochastic Heun (SH) integrator is a two-stage Runge-
Kutta method. It has weak convergence order of 2 for
constant diffusion, otherwise order 1 for variable diffu-
sion [35]. The accuracy gains of SH come at the cost
of higher computational requirements, as it involves two
force evaluations, two diffusion coefficient evaluations,
and two diffusion gradient evaluations per iteration. The
LimitMethod with Variable Diffusion (LMVD) is a novel
integrator that we introduce for the first time in this work.
It has a weak convergence order of 2 for both constant
and variable diffusion. It stems from the high-friction
limit of the BAOAB-splitting method in the variable dif-
fusion regime. Unlike SH, it requires one force evaluation
per iteration, however, it requires two ODE solves per
timestep,making it comparatively expensive compared to
the related LMmethod. The derivation of LMVD can be
found in Appendix 3. Note that LMVD reduces to LM for
constant diffusion regime.

5.2. Error in infinite time

We compare weak convergence to the invariant distri-
bution ρ(x) ∝ exp (−V(x)/kT) with varying step size h,
using trajectories generated by the different integrators
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Figure 6. Rates of convergence to the invariant measure. The simulation time was fixed at Tsim,Tsim = 7.5 × 107 and 12 independent
runs were averaged to further reduce sampling errors. (a) The untransformed methods. (b) When applying a transform to constant
diffusion, either a Lamperti transform or a time rescaling. The untransformed methods are shown in faint in panel (b) to facilitate
comparison.

both with and without transforms to constant diffusion.
For untransformed dynamics, we compare EM, MM,
HLM, SH, and LMVD. For the Lamperti-transformed
dynamics and the time-rescaled dynamics, we compare
the EM, LM, and SH integrators. We omit MM since it
reduces to EM for constant diffusion, while LMVD and
HLM both reduce to LM for constant diffusion. For each
method, we run trajectories of length Tsim,Tsim = 7.5 ×
107, and 12 independent runs are averaged to reduce
sampling errors.

To assess the convergence of the invariant distribu-
tion, we divide a subset of the x domain into M equal-
length intervals and compute themean error between the
empirical probabilities and the exact probabilities given
by the invariant distribution. For Lamperti-transformed
experiments, we derive empirical probabilities using
Equation (14), for time-rescaled experiments we use
Equation (17). We compute the L1 error:

Error := 1
M

M∑
i=1

|ωi − ω̂i|, (26)

where ωi is the exact occupancy probability of the ith
interval and ω̂i is the empirical estimate.We use 30 equal-
width intervals in the range −5 to 5 and run each inte-
grator using 10 different step sizes, equally spaced in log
space between 10−3 and 10−1. Steps are in τ -time for
time-rescaled methods, but t-time for all other methods.
The error is plotted against the step size on a log-log scale,
so first-order weak methods have a gradient of one, and
second-order weak methods have a gradient of two. The
results are shown in Figure 6.

Figure 6(a) confirms the expected orders of weak
convergence for the untransformed methods. Notably,

MM has a larger error constant than EM, illustrat-
ing that improved strong convergence doesn’t guar-
antee improved weak convergence. Examining Figure
6(b), we see that the effect of applying a transform
is also integrator-dependent. Applying a transform to
EM hardly changes the convergence properties, while
applying a transform to constant diffusion for SH or
LM restores their second-order convergence behaviour,
with the transformed LM method closely following the
convergence properties of LMVD. Note that the time-
transformedmethods are shifted relative to the Lamperti-
transformed methods. This is expected because of the
discrepancy between a constant step size in τ -time
and t-time. It does not automatically imply that time-
rescaled integrators result in more efficient samplers
than Lamperti-transformed integrators. We investigate
the question of efficiency in Section 5.3 below.

5.3. Computational efficiency and numerical
stability

We assess the computational efficiency of each method
by comparing the wall-clock time required to achieve a
fixed L1 error in the invariant measure, as defined by
Equation (26). We estimate the wall-clock cost per iter-
ation of each method by timing 108 iterations with a
fixed step size of h = 0.01, averaging over 12 runs. For
transformedmethods, any additional cost of applying the
counting formulas (14) or (17) is included in these tim-
ings. We then fix a target error and run trajectories with
various step sizes for each method, stopping when first
reaching the target error. For each step size, we average
6000 repeats and find the minimum number of iterations
to reach the specified error. The total wall-clock time is
then estimated as theminimumnumber of iterations over
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Figure 7. Cost-error diagramto comparenumerical efficiency. Error is definedasper Equation (26). The cost is thewall-clock time to reach
the target error (number of iterations times cost per iteration), relative to thewall-clock time for untransformed EM to reach a target error
of 10−3. (a) Untransformed methods. (b) When applying constant-diffusion transform: Lamperti or time rescaling. The untransformed
methods are shown in faint for comparison.

Table 1. Stability thresholds (h∗) and the compute time required for 108 iterations (t) compared for untransformed and transformed
methods.

Untransformed Lamperti Time-rescaling

Integrator t(s) h∗ t(s) h∗ t(s) h∗

EM 10.83(8) 0.20 12.77(8) 0.25 13.18(9) 0.25
SH 14.47(13) 0.25 17.22(8) 0.32 15.56(14) 2.5
LM – – 12.54(8) 0.25 13.09(4) 2.5
MM 11.97(18) 0.16 – – – –
HLM 10.72(10) 0.20 – – – –
LMVD 48.20(12) 0.25 – – – –

Note: Standard errors in t were computed by averaging 12 runs with a constant step size of 0.01. Stability thresholds were determined as the first step size (in
geometric increments of 100.1) that resulted in numerical blow-up. Errors are in bracket notation, e.g. 10.83(8) = 10.83 ± 0.08.

the various step sizes times the cost per iteration. This
calculation is repeated for 5 target errors logarithmically
spaced between 10−3.5 and 10−3. The resulting cost-error
diagram is illustrated in Figure 7.

Numerical stability is estimated by determining the
smallest step size, in logarithmic increments of 100.1,
where numerical blow-up occurs before Tsim,Tsim =
106. These stability threshold estimates as well as tim-
ing results for 108 iterations are shown in Table 1. We
see that time-rescaling significantly improves the stabil-
ity threshold of SH and LM in this case whereas the
Lamperti transform does not. This is explained by the
fact that, for this diffusion coefficient, the time-rescaled
potential is the softer of the two transformed potentials
(Figure 5). Thus, for this problem, the time-rescaling
approach might be preferable if simulations with large
step sizes are required.

As for the efficiency of the untransformed meth-
ods (Figure 7(a)), we note that the method with the
best weak convergence (LMVD) isn’t necessarily the
most computationally efficient for a given range of
target errors (HLM). Furthermore, Figure 7(b) shows
how applying coordinate transforms can significantly

improve the computational efficiency of certain integra-
tors but have amoremodest impact on others. For exam-
ple, the Lamperti-transformed/time-rescaled LM is the
most computationally efficient method overall – approx-
imately 5 times more efficient than LMVD. However,
applying transforms only slightly improves the efficiency
of SH, and even slightly reduces the efficiency of EM. In
general, both types of transform have very similar effects
on efficiency, and any differences can be attributed to
small differences in the iteration cost (Table 1). Overall,
we see that transformations only improve the efficiency
of numerical integrators that have better convergence
properties for constant noise.

5.4. Error in finite time

In the continuous limit, the Lamperti and time-rescaling
transforms are invertible, allowing recovery of the orig-
inal dynamics. However, the transforms of discredited
dynamics could introduce additional bias for numerics.
This section explores the effect of transforms on estimates
of dynamic quantities, specifically the autocorrelation
function and the evolving distribution.
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5.4.1. Autocorrelation function
To obtain a reference estimate of the autocorrelation
function, we run 200 randomised trajectories of length
T = 5000 using the Stochastic Heun integrator with step
size of h = 0.01, and with initial positions drawn from a
standard normal distribution. For each trajectory, we use
the Fast Fourier Transform (FFT) algorithm to estimate
the normalised autocorrelation function and compute
the mean and standard deviation of the best estimate.
Additionally, we run trajectories under the same parame-
ters but separately apply a Lamperti transform and time-
rescaling transform.We then transform these trajectories
back to x-space and t-time respectively and compute the
normalised autocorrelation function. The three autocor-
relation functions so obtained (reference, Lamperti and
time-rescaling) are shown in Figure 8(a). We also cal-
culate the mean and standard deviation in the mean of
the difference between the Lamperti/time-rescaling auto-
correlation functions and the reference estimate. These
results are displayed in Figure 8(b).

Overall, at short times (t � 8) the differences in auto-
correlation estimates are minimal and often not statisti-
cally significant. As time increases (between 10 and 20),
the fractional error in the mean becomes more signifi-
cant, but still much smaller than the standard deviation
across runs (the standard deviation is

√
200 ≈ 14 times

larger than the standard error in this case).
Note that while inverting the Lamperti transform

is straightforward (apply the inverse coordinate trans-
formation), undoing the time-rescaling process can be
more challenging. This is because direct conversion from
τ -time to t-time results in an irregular time series,

making it unsuitable for direct application of FFT-based
methods. To address this, we perform linear interpola-
tion on a t grid with the same regular spacing of h = 0.01
before applying the FFT. This interpolation step intro-
duces bias. However, as we have seen in Figure 8, the
overall bias remains small and unlikely to be practically
significant. Alternatively, methods designed for unevenly
spaced time series, such as least-squares spectral analy-
sis, could be used but these add significant computational
cost, negating any sampling efficiency benefits of the time
transform.

5.4.2. Evolving distribution
With initial positions drawn from a standard normal
distribution, we estimate the evolving distribution using
2.5 × 107 independent trajectories made with the SH
integrator, step size h = 10−4 and compare this to the
evolving distribution estimates computed with step size
h = 0.02 for each method. We compute the L1 errors
with respect to the reference distribution at time snapshot
intervals of δt = 0.04, using the same histogram binning
as introduced in Section 5.2.

For methods involving the Lamperti transform, the
initial condition is transformed to y-space, trajectories
are evaluated and then transformed back to x-space. For
methods involving time rescaling, trajectories are eval-
uated in τ -time and then transformed back to t-time.
However, the conversion from τ -time to t-time is prob-
lematic since this transform depends on the unique his-
tory of each trajectory. To overcome this, we choose to
simulate each trajectory in τ -time (in steps of h = 0.02)
until slightly overshooting the δt = 0.04 interval. The

Figure 8. Comparing normalised autocorrelation function estimates with and without transforms. Panel (a) shows the mean and stan-
dard deviation in the mean of autocorrelation function estimates obtained using the Stochastic Heun integrator with 200 trajectories of
length Tsim,Tsim = 5000 and step size h = 0.01. In black is the reference (no transform applied), in blue is when using a Lamperti trans-
form and in orange is when using time rescaling. Panel (b) displaysmean and standard error of the differences in autocorrelation function
estimates using the Lamperti transform (blue) and time-rescaling transform (orange) compared to the reference (ACFref ). Overall, biases
introduced by the transforms are small and only practically significant at large times.
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Figure 9. Finite-time errors of the evolving distribution in the interval t ∈ [0, 6] for fixed step size h = 0.02. The reference distribution
at time t is computed by averaging over 2.5 × 107 independent trajectories using the SHmethod with small step size h = 10−4. In each
plot, the dotted black line represents the L1 difference between the reference evolving distribution and the invariant distribution. (a)
Errors of the untransformed methods. (b) Errors when applying a transform to constant diffusion, either a Lamperti transform or a time
rescaling. The untranformed methods are shown in faint to facilitate comparison. Integrators are Leimkuhler-Matthews (LM), Milstein
Method (MM), Euler-Maruyama (EM), Hummer-Leimkuhler-Matthews (HLM), Stochastic Heun (SH), Limit Method with Variable Diffusion
(LMVD).

position at the required t-time is then estimated by linear
interpolation with the previous sample. This approach is
inexpensive but can introduce bias.

The resulting errors for the untransformed and trans-
formed methods are shown in Figure 9(a,b), respectively.
Additionally, the figures include a dotted black line repre-
senting the L1 difference between the reference evolving
distribution and the invariant distribution. For points
below this line, the evolving distribution is distinguish-
able from the invariant distribution.

Examining the untransformedmethods in Figure 9(a),
we observe that by t = 6, the errors for each method
have already converged to their corresponding infinite-
time errors depicted in Figure 6(a), which is consistent
with the correlation timescale implied in Figure 8. How-
ever, we see that MM, EM and LM are unsuitable at this
step size if high accuracy is required, as their errors soon
exceed the difference between the evolving and invariant
distributions.

Examining the transformed methods, we see that the
Lamperti transform has no detrimental impact on finite-
time errors. In particular, the Lamperti-transformed
LM method has the same finite-time error as the
more expensive LMVD method. By contrast, the time-
rescaled methods show a noticeable bias, likely orig-
inating from the need for linear interpolation when
computing the evolving distribution at fixed t. This
bias can make these methods ill-suited for high-
accuracy simulations of the evolving distribution in
practice.

6. Multivariate numerical experiments

As an example of multivariate Brownian dynamics, we
consider Stokes-Einstein diffusion, whichmodels the dif-
fusion of a low concentration of non-interacting, spheri-
cal particles suspended in a fluid. It has widespread appli-
cations, particularly in materials science [36, 37], and is
also used for modelling water diffusion in MRI imag-
ing applications [9]. In n dimensions, the Stokes-Einstein
diffusion tensor is given by

DSE = kBT
6πηr

1n,

where T is Kelvin temperature, η is viscosity and 1n is the
n-dimensional identity matrix.

Ifthe temperature field or the fluid’s material prop-
erties are non-homogeneous, then DSE is an isotropic,
position-dependent matrix, and can be transformed to
constant diffusion by time rescaling. Furthermore, if the
medium is anisotropic, and certain diffusion directions
are preferred over others, then the diffusionmodel can be
generalised toD(X) = DSE(X)D(2)(X), whereD(2)(X) is
the diagonal matrix given by Equation (25). This kind
of diffusion is common in biological tissues, for example
in the brain, where positional alignment of white matter
tracts results in preferred diffusion directions for water
molecules [38]. Importantly, since this diffusion is of
the form D(X) = D(1)(X)D(2)(X) as per Equation (25),
the process can be transformed to constant-diffusion
through the combination of a time-rescaling and a Lam-
perti transform.
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Figure 10. Heatmap of the quadruple-well potential func-
tion (27). White circles depict contours of the Frobenius norm
of the Moro-Cadin diffusion tensor (28). The black path shows a
Euler-Maruyama trajectory of Brownian dynamics of 1000 steps
with time step of h = 0.01 and kT = 1. Note the small norm
of the diffusion tensor in the vicinity of the origin. This inhibits
hopping between the wells, making this a more challenging
sampling problem.

The example of Stokes-Einstein diffusion we consider
is multivariate Brownian dynamics in a 2D quadruple-
well potential given by

V(x, y) =
√
17
16

− 2x2 + x4 +
√
17
16

− 2y2 + y4, (27)

with a diffusion tensor given by the Moro-Cardin tensor
[39]

Figure 11. Rates of convergence to the invariant measure for Brownian dynamics in a 2D quadruple well potential with Moro-Cadin
diffusion tensor. The simulation time was fixed at Tsim,Tsim = 5 × 106 and 12 independent runs were averaged to further reduce
sampling errors. (a) The untransformed methods. (b) When applying a transform to constant diffusion through a time rescaling. The
untransformed methods are shown in faint to facilitate comparison. Integrators are Leimkuhler-Matthews (LM), Euler-Maruyama (EM),
Hummer-Leimkuhler-Matthews (HLM) and Stochastic Heun (SH).

D(x, y) =
(
1 + A exp

(
−x2 + y2

2σ 2

))−1

1, (28)

where A = 5 and σ = 0.3, see Figure 10. Since this dif-
fusion tensor is isotropic, it can be mapped to constant
diffusion through time rescaling.

Figure 11 illustrates the comparison of weak conver-
gence to the invariant measure for the LM, EM, SH, and
HLM integrators. Figure 11(a) is without any transforms,
while Figure 11(b) is after a time-rescaling transform to
constant diffusion has been applied. We follow the same
general approach as first outlined in Section 5.2. We run
trajectories of length Tsim,Tsim = 5 × 106 and average
over 12 independent runs and we run each integrator
using 10 different step sizes, equally spaced in log-space
between 10−2.5 and 10−0.5. For histogram computation,
we use a 30 × 30 grid of equal-width square bins covering
the domain [−3, 3] × [−3, 3] in the x-y plane.

We observe similar behaviour to the one-dimensional
numerical experiments discussed in Section 5.2. It is
noteworthy that applying a time-rescaling transform
enhances the convergence rate for both the SH and
LM integrators. Similar to the one-dimensional case, the
transformed LM integrator exhibits a lower error con-
stant compared to SH, indicating its superior efficiency
for this particular problem.

7. Conclusions

We examined two types of transform to constant diffu-
sion for Brownian dynamics with multiplicative noise:
the Lamperti transform and the time-rescaling trans-
form. We derived conditions on the noise term for these
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transforms to be applied and combined. Furthermore,
through numerical experiments in one and two dimen-
sions, we have shown how using these transforms, com-
bined with an appropriate SDE integrator, can lead to a
highly efficient sampling method for certain classes of
multivariate noise.

For one-dimensional Brownian dynamics, we showed
that both transforms are always applicable, regardless of
the form of the diffusion coefficient. However, the two
transforms affect the dynamics differently, so the choice
of transformmaydependon the specific problemat hand.
We showed numerically that applying either transform
with the Leimkuhler-Matthews (LM) integrator signifi-
cantly improves the convergence to the invariant mea-
sure, resulting in a method that has approximately five
times higher sampling efficiency than the Limit Method
with Variable Diffusion (LMVD) – a highly-performant
integrator for multiplicative noise that does not utilise
transformations. This transformed method also signifi-
cantly outperformed the popular Euler-Maruyama inte-
grator, with a 10 to 25 times higher computational
efficiency for the problem investigated. Crucially, this
method only requires one force and one diffusion ten-
sor evaluation per iteration, thus scaling better to high-
dimensional problems than competing methods that
require multiple force and/or diffusion evaluations per
step.

In addition to investigating convergence to the invari-
ant measure, we also verified whether dynamics infor-
mation, in the form of the autocorrelation function and
the evolving distribution, can be recovered after simulat-
ing a transformed process and then applying the inverse
transform. We found that the Lamperti transform intro-
duced no appreciable bias for estimates of either quantity,
but that the time-rescaling transform is less suitable for
recovering finite-time distributions.

For multivariate Brownian dynamics, the Lamperti
and time-rescaling transforms have somewhat limited
application. However, the two transformations can be
combined to transform non-homogeneous, anisotropic
Stokes-Einstein diffusion into a constant diffusion pro-
cess. This is a broad class of diffusion tensors with appli-
cations in biological diffusion processes. Furthermore, in
the context of rare event sampling, the flexibility of the
coordinate transforms offers an additional advantage. In
Section 3.4 we showed that they can be used to design
diffusion profiles that, when transformed back to con-
stant diffusion, lead to enhanced sampling. In ongoing
research, we are actively exploring these techniques in
diverse applications and are investigating further refine-
ments to optimise their effectiveness for enhanced sam-
pling. We anticipate that coordinate transforms will

improve the efficiency of Brownian dynamics simulations
in various contexts.

Notes

1. GitHub repository: https://github.com/dominicp6/Trans
forms-For-Brownian-Dynamics

2. We would like to thank Gerhard Hummer for suggesting
this method in personal correspondence.

Acknowledgments

We extend our gratitude to the reviewers for their insight-
ful comments and constructive suggestions, which greatly
improved the quality and clarity of this manuscript.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by the United Kingdom Research
and Innovation (grant EP/S02431X/1), UKRI Centre for Doc-
toral Training in Biomedical AI at the University of Edinburgh,
School of Informatics.

Data availability statement

The software and data that support the findings of this study are
openly available in Zenodo at https://zenodo.org/badge/latest
doi/616585156.

ORCID

Dominic Phillips http://orcid.org/0000-0002-5707-4778

References

[1] R.C. Merton, Rev. Econ. Stat. 51 (3), 247–257 (1969).
[2] F. Black and M. Scholes, J. Polit. Econ. 81 (3), 637–654

(1973).
[3] P.G. Saffman and M. Delbrück, Proc. Natl. Acad. Sci.

U.S.A. 72 (8), 3111–3113 (1975).
[4] N. Fakhri, F.C. MacKintosh, B. Lounis, L. Cognet and M.

Pasquali, Science (NewYork,N.Y.) 330 (6012), 1804–1807
(2010).

[5] D. Selmeczi, L. Li, L.I. Pedersen, S.F.Nrrelykke, P.H.Hage-
dorn, S. Mosler, N.B. Larsen, E.C. Cox and H. Flyvbjerg,
Eur. Phys. J. Spec. Top. 157 (1), 1–15 (2008).

[6] R.B. Best and G. Hummer, Proc. Natl. Acad. Sci. 107 (3),
1088–1093 (2010).

[7] D. Johnston and S.M.s. Wu, Foundations of Cellular Neu-
rophysiology (MIT Press, Cambridge, Mass, 1995).

[8] T. Maruyama, Bull. Math. Biol. 45 (4), 521–554 (1983).
[9] A.L. Alexander, J.E. Lee, M. Lazar and A.S. Field, Neu-

rotherapeutics 4 (3), 316–329 (2007).
[10] M.M. Varughese and E.A.D. Pienaar, Ecosphere 4 (8),

1–14 (2013).

https://github.com/dominicp6/Transforms-For-Brownian-Dynamics
https://zenodo.org/badge/latestdoi/616585156
http://orcid.org/0000-0002-5707-4778


16 D. PHILLIPS ET AL.

[11] Y. Song, J. Sohl-Dickstein, D.P. Kingma, A. Kumar, S.
Ermon and B. Poole, Internation Conference on Learning
Representations, 2020.

[12] N.R. Kristensen,H.Madsen and S.B. Jørgensen, Automat-
ica 40 (2), 225–237 (2004).

[13] G.N. Milstein and M.V. Tretyakov, Stochastic Numerics
forMathematical Physics ScientificComputation (Springer,
Berlin, Heidelberg, 2004).

[14] A. Rößler, J. Comput. Appl. Math. 164–165, 613–627
(2004).

[15] A. Rößler, SIAM. J. Numer. Anal. 47 (3), 1713–1738
(2009).

[16] H. Lamba, J.C. Mattingly and A.M. Stuart, IMA J. Numer.
Anal. 27 (3), 479–506 (2007).

[17] D.F. Anderson and J.C. Mattingly, Commun. Math. Sci. 9
(1), 301–318 (2010).

[18] B. Sprinkle, A. Donev, A.P.S. Bhalla and N. Patankar, J.
Chem. Phys. 150 (16), 164116 (2019).

[19] Y. Aït-Sahalia, Ann. Stat. 36 (2), 906–937 (2008).
[20] J.K. Møller and H. Madsen, Technical University of Den-

mark, DTU Informatics, Building, 2010, 321.
[21] H. Luschgy and G. Pagès, Stoch. Process. Their. Appl.116

(2), 310–336 (2006).
[22] S.G. de Boer, MSc thesis, Delft University of Technology,

2020.
[23] B. Øksendal, Stochastic Differential Equations, Universi-

text (Springer, Berlin, Heidelberg, 2003).
[24] A. Agazzi and J.C. Mattingly, Duke University Lecture

Notes, 2023.
[25] A. Leroy, B. Leimkuhler, J. Latz and D.J. Higham,

arXiv:2403.11993, 2024.
[26] G.A. Pavliotis, Stochastic Processes and Applications: Dif-

fusion Processes, the Fokker-Planck and Langevin Equa-
tions, Texts in Applied Mathematics, 60 vols (Springer,
New York, NY, 2014).

[27] P. Craigmile, R. Herbei, G. Liu and G. Schneider, WIREs.
Comp. Stats. 15 (2), e1585 (2023).

[28] C. Abrams and G. Bussi, Entropy 16 (1), 163–199 (2014).
[29] G.O. Roberts and O. Stramer, Methodol. Comput. Appl.

Probab. 4 (4), 337–357 (2002).
[30] T. Lelièvre, G.A. Pavliotis, G. Robin, R. Santet and G.

Stoltz, arXiv:2404.12087 [cs, math], 2024.
[31] S.V. Krivov and M. Karplus, Proc. Natl. Acad. Sci. U.S.A.

105 (37), 13841–13846 (2008).
[32] M. Hutzenthaler, A. Jentzen and P.E. Kloeden, Proc. R.

Soc. A: Math. Phys. Eng. Sci. 467 (2130), 1563–1576
(2011).

[33] G.N. Mil’shtejn, Theory Probab. Appl. 19 (3), 557–562
(1975).

[34] B. Leimkuhler and C. Matthews, Appl. Math. Res.
Express. 2013 (1), 34–56 (2013).

[35] E.K. Blum,Numerical Analysis and Computational Theory
and Practice (Addison Wesley, Boston, 1972).

[36] R. Catlow, R. Bell, F. Cora and B. Slater, in Introduction
to Zeolite Science and Practice, edited by J. Čejka, H. van
Bekkum, A. Corma, and F. Schüth, Studies in Surface Sci-
ence and Catalysis, 168 vols. (Elsevier, Amsterdam, 2007),
pp. 659–700.

[37] K.F. Kelton and A.L. Greer, in Nucleation in Condensed
Matter, edited by K. F. Kelton, and A. L. Greer, Pergamon
Materials Series, 15 vols (Pergamon, Oxford, 2010), pp.
279–329.

[38] M. Moseley, J. Kucharczyk, H. Asgari and D. Norman,
Magn. Reson. Med. 19 (2), 321–326 (1991).

[39] G.J. Moro and F. Cardin, Chem. Phys. 235 (1), 189–200
(1998).

[40] B. Leimkuhler, C. Matthews and J. Weare, Stat. Comput.
28 (2), 277–290 (2018).

[41] T. Lelièvre, G. Stoltz and M. Rousset, Free Energy Com-
putations: A Mathematical Perspective. (Imperial Col-
lege Press, London, Hackensack, NJ, 2010). OCLC:
ocn244765923.

Appendices

Appendix 1. Double-well enhanced sampling

Transition counts in a double well. Given a Brownian dynamics
trajectory X = (x0, x1, . . . , xn), we define the transition counts
NT to be the total number of times that the trajectory’s state
passes directly from the left inflection point of the double well
to the right inflection point (or vice versa) through a sequence
of intermediate states.

L1 error in the invariant measure. We use an identical
method to the method of computation of L1 discussed in
Section 5.2. We use 30 equal-width intervals in the range −5
to 5.

Methodology details for Figure 4. For each kT value and
integrator, experiments were run with 30 values for α equally
spaced between 0 and 1 inclusive. For each α value, 5 × 105
independent repeats were run for the simulations of length
Tsim,Tsim = 10 and 5 × 103 repeats for the simulations of
length Tsim,Tsim = 1000 and themean L1 error was calculated.
The minimum L1 error across all considered α values is plotted
in Figure 4.

Appendix 2. Numerical Integrators

We use the shorthand notation

a(x) := −D(x)
dV
dx

+ kT
dD
dx

,

σ(x) := √
2kTD(x),

ã(x) := a(x) − 1
2
σ(x)

dσ
dx

= −D(x)
dV
dx

+ 1
2
kT

dD
dx

,

where a(x) is the drift term, σ(x) the diffusion term, and ã(x)
is the Stratonovich-corrected drift [26]. We consider the fol-
lowing integrators, where wn,wn+1

iid∼N (0, 1) and h is the step
size:

(i) Euler-Maruyama (EM)

xn+1 = xn + a(xn)h + σ(xn)
√
hwn;

(ii) Milstein Method (MM)

xn+1 = xn + a(xn)h + σ(xn)
√
hwn

+ 1
2
kT

dD
dx

(xn)(w2
n − 1)h;

(iii) Leimkuhler-Matthews (LM)

xn+1 = xn + a(xn)h + σ(xn)
√
h
wn + wn+1

2
;
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(iv) Hummer-Leimkuhler-Matthews (HLM)

xn+1 = xn +
(
a(xn) + 1

4
kT

dD
dx

(xn)
)
h

+ σ(xn)
√
h
wn + wn+1

2
;

(v) Stochastic Heun (SH)

x∗
n+1 = xn + ã(xn)h + σ(xn)

√
hwn

xn+1 = xn + 1
2
(
ã(xn) + ã(x∗

n+1)
)
h

+ 1
2
(
σ(xn) + σ(x∗

n+1)
)√

hwn;

(vi) Limit Method with Variable Diffusion (LMVD)

x̂n+1 = √
kTwn − √

2hD(xn)
dV
dx

(xn)

+ kT

√
h

2D(xn)
dD
dx

(xn)

x̃n+1 =
{
x

(√
h
2

) ∣∣∣∣x(0) = xn, dx = √
D(x)x̂n+1 dt

}

xn+1 =
{
x

(√
h
2

) ∣∣∣∣x(0) = x̃n+1, dx

= √
kTD(x)wn+1 dt

}
.

(A1)

Appendix 3. Derivation of the Limit Methodwith
Variable Diffusion

Consider the dynamics originally proposed in [40, Equation 6]

dXt = B(Xt)Pt dt,

dPt = −B(Xt)
T∇V(Xt) dt + kTdiv(BT)(Xt) dt − γPt dt

+ √
2γ kT dWt ,

(A2)
where B(X) is a positive definite matrix, γ > 0 is a fric-
tion parameter and P ∈ R

n denotes the instantaneous system
momentum. It is straightforward to check that these dynamics
preserve the canonical distribution

ρ(X,P) ∝ exp
(−V(X)/kT − ‖P‖2/2kT) ,

for any positive definite matrix B(X), where the marginal dis-
tribution of position satisfies∫

ρ(X,P) dP ∝ ρ(X).

We now consider discretisations of (A2) built via splitting the
SDE into three pieces denoted A, B, and O:

d
[

Xt
Pt

]
=
[

B(Xt)Pt
0

]
dt︸ ︷︷ ︸

A

+
[

0
−B(Xt)

T∇V(Xt) + kTdiv(BT)(Xt)

]
dt︸ ︷︷ ︸

B

+
[

0
−γPt dt + √

2γ kT dWt

]
︸ ︷︷ ︸

O

.

Note that when B is a constant matrix (A2) reduces to conven-
tional Langevin dynamics, and the above splitting matches the
pieces given in [34].

Taking any of the A, B or O pieces in isolation, we may
solve the implied SDE exactly (in distribution) for time t> 0.
Denoting the solution to each piece as φt(X,P), given the initial
conditions at t = 0 are (X,P), we can write

φA
t (X,P) = ({Y(t)|Y(0) = X, dY = B(Y)P dt} ,P),

φB
t (X,P) = (X,P − tB(X)T∇V(X) + tkTdiv(BT)(X)),

φO
t (X,P) = (X, e−γ tP + √

kT
√
1 − e−2γ tR),

where R ∼ N(0, I) is a normal random vector. As φA has no
explicit closed form, we write the update purely as the solution
to the underlying ODE.

We now consider the overdamped limit γ → ∞with a time
step s> 0, using the discretisation scheme

(Xn+1,Pn+1) := φA
s/2 ◦ φO

s ◦ φA
s/2 ◦ φB

s (Xn,Pn).

Writing out the resulting steps, we obtain

P̂n = Pn − sB(Xn)
T∇V(Xn) + skTdiv(BT)(Xn)

X̂n =
{
Y(s/2)

∣∣∣Y(0) = Xn, dY = B(Y)P̂n
}

Pn+1 = √
kTRn+1

Xn+1 =
{
Y(s/2)

∣∣∣Y(0) = X̂n, dY = B(Y)Pn+1

}
which we may simplify by recognising that Pn ≡ √

kTRn.
We recover the LMVDmethod given in (A1) by considering

the one-dimensional case where B(x) = √
D(x) and choosing

s = √
2h for a time step of h> 0 to ensure consistency between

schemes [41].

Appendix 4. Proofs

This section contains proofs of all results stated in Sections 3
and 4.

TheoremA.1: Applying a continuous coordinate transform to a
one-dimensional Brownian dynamics process results in another
Brownian dynamics process with potential and diffusion function
given by (10).

Proof: Applying Itô’s Lemmawith y = y(x), where x obeys (1),
we have,

dy =
(

−D(x(y))
dV
dx

(x(y)) + kT
dD
dx

(x(y))
)
dy
dx

(x(y)) dt

+ kTD(x(y))
d2y
dx2

(x(y)) dt

+ √
2kTD(x(y))

dy
dx

(x(y)) dWt .

Now substituting in the transformations (10),

= −D̂
d
dx

(
V̂ dt − kT ln

∣∣∣∣dydx
∣∣∣∣
)(

dy
dx

)−1
dt
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+ kT
d
dx

(
D̂
dy
dx

−2
)

dy
dx

dt

+ kTD̂
dy
dx

−2 d2y
dx2

dt +
√
2kTD̂ dWt

= −D̂
dV̂
dy

dt + kTD̂
d2y
dx2

dy
dx

−2
dt

+ kT
dD̂
dy

dt − 2kTD̂
d2y
dx2

dy
dx

−2
+ kTD̂

dy
dx

−2 d2y
dx2

dt

+
√
2kTD̂ dWt

= −D̂(y)
dV̂
dy

dt + kT
dD̂
dy

dt +
√
2kTD̂(y) dWt ,

which is Brownianmotionwith potential V̂(y) and diffusion
function D̂(y). �

Theorem A.2: In one dimension, the Lamperti-transformed
process can be used to compute phase space averages through (13).

Proof: We assume that the transformed process yt is ergodic
and therefore satisfies

lim
Tsim→∞

1
Tsim

∫ Tsim

t=0
f (yt) dt =

∫ ∞

−∞
f (y)ρ̂(y) dy, (A3)

where ρ̂(y) = 1
Ẑ
exp (−−V̂(y)

kT ) is the invariant distribution of
the transformed process. Substituting in the effective potential
from (10), the right-hand side of (A3) becomes∫ ∞

−∞
f (y)

exp(−V(x(y))
kT )

Ẑ

√
D(x(y)) dy

=
∫ ∞

−∞
f (y(x))

exp(−V(x)
kT )

Ẑ

√
D(x)

dy
dx

dx.

Using the fact dy
dx = 1√

D(x) , this equation simplifies to

∫ ∞

−∞
f (y(x))

exp(−V(x)
kT )

Ẑ
dx = Z

Ẑ

∫ ∞

−∞
f (y(x))ρ(x) dx (A4)

where Z = ∫∞
−∞ exp(−V(x)

kT ) dx and Ẑ = ∫∞
−∞ exp(− V̂(y)

kT ) dy
are the partition functions of the original and transformed
processes respectively.

But Z = Ẑ since, by change of variables:

Z =
∫ ∞

−∞
exp

(
−V(x)

kT

)
dx

=
∫ ∞

−∞
exp

(
−V(x(y))

kT

)(
dy
dx

(x(y))
)−1

dy

=
∫ ∞

−∞
exp

(
−V(x(y)) + kT ln | dydx (x(y))|

kT

)
dy

=
∫ ∞

−∞
exp

(
− V̂(y)

kT

)
dy

= Ẑ.

Hence, from (A3) and (A4) we have∫ ∞

−∞
f (y(x))ρ(x) dx = lim

Tsim→∞
1

Tsim

∫ Tsim

t=0
f (yt) dt.

Finally, if we redefine f as f ◦ x, then we obtain:∫ ∞

−∞
f (x)ρ(x) dx = lim

Tsim→∞
1

Tsim

∫ Tsim

t=0
f (x(yt)) dt, (A5)

as required. �

Theorem A.3: In one dimension, the Lamperti-transformed
invariant measure ρ̂(y) and the original invariant measure ρ(x)
are related by ρ(x) = ρ̂(x(y)) dydx .

Proof: Set f (x) = I(x ∈ [a, b]), the indicator function on the
interval [a, b], in (A5). This gives∫ ∞

−∞
f (x)ρ(x) dx

=
∫ b

a
ρ(x) dx = lim

T→∞
1

Tsim

∫ Tsim

t=0
I(x(yt) ∈ [a, b]) dt

= lim
Tsim→∞

1
Tsim

∫ Tsim

t=0
I(yt ∈ [y(a), y(b)]) dt =

∫ y(b)

y(a)
ρ̂(y) dy

=
∫ b

a
ρ̂(x(y))

dy
dx

dx, (A6)

where in the second line we re-expressed the indicator function
in terms of yt and then applied the ergodic theorem for the yt
process. (A6) implies∫ b

a

(
ρ(x) − ρ̂(x(y))

dy
dx

)
dx = 0

which, from the arbitrariness of the constants a and b, proves
the result. �

Theorem A.4: Applying a time-rescaling to a one-dimensional
Brownian dynamics process results in another Brownian dynam-
ics process with potential and diffusion given by (15).

Proof: Applying a version of the time rescaling appearing in
Equation (8) to one-dimensional Brownian dynamics we arrive
at,

dxτ = −g(x)D(x)
dV
dx

dτ + kTg(x)
dD(x)
dx

dτ

+ √
2kTg(x)D(x) dWτ . (A7)

Inserting the identities from Equation (15) into (A7) we obtain

dxτ = −D̂(x)
d
dx

(
V̂(x) − kT ln g(x)

)
dτ

+ kTg(x)
d
dx

(
D̂(x)
g(x)

)
dτ +

√
2kTD̂(x) dWτ

= −D̂(x)
dV̂
dx

dτ + kTD̂(x)
g′(x)
g(x)

dτ

+ kT
dD̂(x)
dx

dτ − kTD̂(x)
g′(x)
g(x)

dτ +
√
2kTD̂(x) dWτ
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= −D̂(x)
dV̂
dx

dτ + kT
ˆdD(x)
dx

dτ +
√
2kTD̂(x) dWτ ,

which is a transformed version of the original one-dimensional
Brownian dynamics but in an effective potential V̂(x) and a
rescaled diffusion coefficient D̂(x), as required. �

Theorem A.5: In one dimension, the time-rescaled process can
be used to compute phase space averages through (16).

Proof: From the ergodic theorem applied to the original pro-
cess, ∫ ∞

−∞
f (x)ρ(x) dx = lim

Tsim−→∞
1

Tsim

∫ Tsim

t=0
f (xt) dt.

Changing variables t → τ in the integration, the right-hand
side becomes,

lim
Tsim−→∞

1
Tsim

∫ τ(Tsim)

τ=0
f (xτ )

dt
dτ

dτ

= lim
Tsim−→∞

1
Tsim

∫ τ(Tsim)

τ=0
f (xτ )g(xτ )dτ .

Writing Tsim := τ(Tsim), this can be alternatively written as

lim
Tsim−→∞

1
t(Tsim)

∫ Tsim

τ=0
f (xτ )g(xτ )dτ .

Finally, we note that by integrating dt
dτ = g(x) between 0 and

Tsim we can obtain an expression for t(Tsim),

t(Tsim) =
∫ Tsim

τ=0
g(xτ )dτ .

Substituting this into the above equation completes the proof.
�

TheoremA.6: A Lamperti-transformed process with originalD
matrix of the form D(X)ij = Di(Xi)Rij is an instance of Brown-
ian dynamics if and only ifR is diagonal. Further, when Rij = δij,
the effective potential is given by (21).

Proof: The stated transformation is a multivariate Lamperti
transform (6) with

f (X) = −D(X)D(X)T∇V(X) + kTdiv(DDT)(X),

σ(X) = √
2kTD(X).

The transformed process therefore satisfies

dYi,t =
n∑
j=1

R−1
ij

√
2kT

(
−∑n

k=1(DD
T)jk∂kV√

2kTDj

+kT
∑n

k=1 ∂k(DDT)jk√
2kTDj

− 1
2

√
2kT∂jDj

)
dt

+ √
2kT dWi,

where ∂j := ∂
∂Xj

and V, D and Dj are functions of Yt through
the relations

V(Xt) = V(φ−1(RYt)), D(Xt) = D(φ−1(RYt)),

D(Xj,t) = D(φ−1
j ((RY)j,t)).

Substituting D(X)ij = Di(Xi)Rij, this becomes

dYi,t =
n∑

j,k,l=1

R−1
ij

(−RjkRklDjDk∂kV
Dj

+kT
RjlRkl∂k(DjDk)

Dj

)
dt

− kT
n∑
j=1

R−1
ij ∂jDj dt

+ √
2kT dWi.

Expanding,

dYi,t =
n∑

k=1

−RkiDk∂kV dt

+ kT

⎛
⎝ n∑

j,k,l=1

R−1
ij RjlRkl

(
∂kDj

Dk

Dj
+ ∂kDk

)

−
n∑
j=1

R−1
ij ∂jDj

⎞
⎠ dt

+ √
2kT dWi.

Noting that ∂kDj = δkj∂jDj, this becomes

dYi,t =
n∑

k=1

−RkiDk∂kV dt

+ kT

⎛
⎝∑

j,l

R−1
ij RjlRjl∂kDk +

∑
k

Rki∂kDk

−
n∑
j=1

R−1
ij ∂jDj

⎞
⎠ dt

+ √
2kT dWi.

Changing variables so that the derivatives are with respect to Y
we get

∂

∂Xk
=

n∑
l=1

∂Yl

∂Xk

∂

∂Yl
=

n∑
l=1

R−1
lk

Dk(Xk)

∂

∂Yl
,

and the transformed equation becomes

dYi,t = −∂iV dt + kT
n∑

k=1

(( n∑
l=1

R−1
ik RklRklR−1

kk

)

+RkiR−1
kk + R−1

ik R−1
kk
)∇Yk lnDk dt

+ √
2kT dWi,

or equivalently:

dYi,t = −∂iV dt + kT
n∑

k=1

Mik∇Yk lnDk dt + √
2kT dWi,

whereM is the matrix defined in the theorem statement. Note
that only if the matrixR is diagonal (and therefore,Mij = δij) is
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it possible to express the drift term as a gradient of an effective
potential, given by

V̂(Y) = V(φ−1(RY)) − kT
n∑
i=1

lnDi(φ
−1
i (RYi)). (A8)

In particular, if we set Rij = δij, then we identify the trans-
formed process as constant-diffusion Brownian dynamics with
an effective potential

V̂(Y) = V(φ−1(Y)) − kT
n∑

k=1

lnDk(φ
−1
k (Yk)). (A9)

Remark: The functions Di can be arbitrarily scaled in such a
manner that for all i,Rii = 1 in Equation (A8). The transformed
process then becomes equivalent to the caseR = I, as discussed
in Section 4.1.

�

TheoremA.7: A Lamperti-transformed process with originalD
matrix of the form D(X) = Di(Xi)δij can be used to compute
phase-space averages through (22).

Proof: We assume that the effective potential (A9) is such
that geometric ergodicity holds for Yt . Then, by applying the
ergodic theorem to the transformed process, we obtain:

lim
Tsim→∞

1
Tsim

∫ Tsim

t=0
f (Yt) dt =

∫
Rn

f (Y)ρ̂(Y) dY.

Substituting in the effective potential, we have:

=
∫

Rn
f (Y)

1
Ẑ
exp

(
−V(φ−1(Y))

kT

) n∏
i=1

(
Di(φ

−1
i (Yi,t))

)
dY

Next, we change variables from Y to X. The Jacobian factor is
given by:

J =
∣∣∣∣ dYdX

∣∣∣∣ =
∣∣∣∣ 1
Di(Xi)

δij

∣∣∣∣ =
n∏

i=1

1
Di(Xi)

,

which exactly cancels with the diffusion coefficients in the
integral, and we have

=
∫

Rn
f (φ(X))

1
Ẑ
exp

(
−V(X)

kT

)
dX

= Z
Ẑ

∫
Rn

f (φ(X))ρ(X) dX.

Choosing f (Y) = 1 leads to Ẑ = Z, hence

lim
Tsim→∞

1
Tsim

∫ Tsim

t=0
f (Yt) dt =

∫
Rn

f (φ(X))ρ(X) dX.

Finally, if we redefine f as f ◦ φ−1, then we obtain:

lim
Tsim→∞

1
Tsim

∫ Tsim

t=0
f (φ−1(Yt)) dt =

∫
Rn

f (X)ρ(X) dX,

as required. �

TheoremA.8: The effective potential of a time-rescaled Brown-
ian dynamics process with original D matrix D(X) = D(X)R is
given by (23).

Proof: The time-rescaling transform follows (8), (9) with
f (X) = −D(X)D(X)T∇V(X) + kTdiv(D(X)D(X)T), which
gives (we transform to constant diffusion

√
2kT):

dYτ = −R−1DD
T∇XV − kTdiv(DDT)

D2 dt + √
2kT dWτ .

Here, V,D and D are functions of Yτ through the relations:

V(Xτ ) = V(RYτ ), D(Xτ ) = D(RYτ ), D(Xτ ) = D(RYτ ).

Substituting D(X) = D(X)R, in components this becomes

dYi,τ = −
∑

j D
2Rji∂jV − kT

∑
j Rji∂j(D

2)

D2 dt + √
2kT dWi,τ ,

which simplifies to

dYi,τ =
∑
j
Rji

(−∂jV + 2kT∂j lnD
)
dt + √

2kT dWi,τ .

Changing variables so that the derivatives are with respect to Y
we get

∂

∂Xi
=

n∑
j=1

∂Yj

∂Xi

∂

∂Yj
=

n∑
j=1

R−1
ji

∂

∂Yj
.

The R matrix then cancels with its inverse, and the dynamics
now reads

dYτ = (−∇YV(RY) + 2kT∇Y lnD(RY)) dt + √
2kT dWτ ,

which is constant-diffusion Brownian dynamics in an effective
potential V̂(Y) given by

V̂(Y) = V(RY) − 2kT lnD(RY).

This completes the proof. �

Theorem A.9: A time-rescaled process with original D matrix
of the formD(X) = D(X)R can be used to compute phase-space
averages through (24).

Proof: We begin with the ergodic theorem of the original
process, which states∫

Rn
f (X)ρ(X) dX = lim

Tsim−→∞
1

Tsim

∫ Tsim

t=0
f (Xt) dt.

To express this in terms of the time-rescaled process, we change
the variable t → τ in the integration, resulting in:

lim
Tsim−→∞

1
Tsim

∫ τ(Tsim)

τ=0
f (Xτ )

dt
dτ

dτ

= lim
Tsim−→∞

1
Tsim

∫ τ(Tsim)

τ=0
f (Xτ )g(Xτ )dτ .

Writing Tsim := τ(Tsim), this can alternatively be written as

lim
Tsim−→∞

1
t(Tsim)

∫ Tsim

τ=0
f (Xτ )g(Xτ )dτ , (A10)

where g(Xτ ) = 1/D2(X) by the definition of time rescaling.
Next, we integrate dt

dτ = g(X) from 0 to Tsim to obtain an
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expression for t(Tsim),

t(Tsim) =
∫ Tsim

τ=0
g(Xτ )dτ , (A11)

Substituting Equation (A11) and the relation Xτ = RYτ into
Equation (A10), we have:∫

Rn
f (X)ρ(X) dX = lim

Tsim→∞

∫ Tsim
τ=0 f (RYτ )g(RYτ )dτ∫ Tsim

τ=0 g(RYτ )dτ
,

as required. �

TheoremA.10: Performing a time rescaling followed by a Lam-
perti transform to a multivariate Brownian dynamics process
with D matrix D(X) = D(1)(X)RD(2)(X), where R is not diag-
onal, results in a constant-diffusion process that is not Brownian
dynamics.

Proof: First, consider the time-rescaled process Xτ , where
dt
dτ = 1/D2(X), which obeys the dynamics

dXτ = −DDT∇XV − kTdiv(DDT)

D2 dt + √
2kTRD(2) dWτ .

Defining a transformed process Yτ = R−1Xτ , then applying
the multidimensional Itô formula gives

dYτ = −R−1
(
DDT∇XV|RYτ − kTdiv(DDT)|RYτ

D2

)
dt

+ √
2kTD(2) dWτ ,

where

V = V(RYτ ), D = D(RYτ ),

D(2) = D(2)(RYτ ), D = D(RYτ ).

Finally, we apply a Lamperti transform to remove the noise
dependence on D(2). The transformed process Zτ = φ(Yτ )
then satisfies (using Einstein summation convention for sums
over repeated indices)

dZi,τ

= −R−1
ij

(DjkDlk∂lV|Rφ−1(Zτ ) − kT∂l(DjkDlk)|Rφ−1(Zτ )

D2Di

)
dt

+ √
2kT dWi,τ .

Changing variables,

∂

∂Xk
=

n∑
l=1

∂Zl
∂Xk

∂

∂Zl
=

n∑
l=1

R−1
lk

Dk(Xk)

∂

∂Zl

and substituting Dij = δikδljRklDDl this becomes

dZi,τ = −R−1
ij

(
δjmδnkδlpδqkRmnRpqD2DnDqR−1

rl ∇YrV
D2DiDl

×−kTR−1
rl ∇Yr (δjmδnkδlpδqkRmnRpqD2DnDq)

D2DiDl

)
dt

+ √
2kT dWi,τ ,

which simplifies to

dZi,τ

= −R−1
ij

⎛
⎜⎜⎜⎝

RjkRlkD2D2
kR

−1
rl ∇YrV

−kTR−1
rl ∇Yr (RjkRlkD2D2

k)

D2DiDl

⎞
⎟⎟⎟⎠ dt

+ √
2kT dWi,τ ,

dZi,τ
(nosumi)=

−
(
RliD2D2

i R
−1
rl ∇YrV − kTR−1

rl Rli∇Yr (D2D2
i )

D2DiDl

)
dt

+ √
2kT dWi,τ .

Expanding this expression does not lead to a great simplifica-
tion of terms. In particular, the non-vanishing of the R matrix
elements in the dt term means that the drift term cannot be
written as a gradient of a potential energy, hence this is not
Brownian dynamics. �

Theorem A.11: Consider a multivariate Brownian dynamics
process Xt following (2), where the diffusion tensor D is defined
as

D(X) = D(1)(X)D(2)(X),
where D(1) and D(2) are given by (25). Then the transformed
process Yτ = φ(Xτ ), resulting from a time rescaling where dt

dτ =
g(X) := 1/D2(X), followed by a Lamperti transform given by

Yi,τ = √
2kT

∫ Xi,τ

x0

1
Di(x)

dx := √
2kTφi(Xi,τ ),

satisfies the constant-diffusion Brownian dynamics process:

dYi,τ = −∇Yi V̂(Y) dt + √
2kT dWi,

where V̂(Y) is the effective potential defined as

V̂(Y) = V(φ−1(Y)) − 2kT lnD(Y)

− kT
n∑

i=1
lnDk(φ

−1
k (Yk,τ )).

Proof: The time-rescaling transformation gives

dXτ = −DDT∇XV − kTdiv(DDT)

D2 dt

+ √
2kTD(2)(X) dWτ . (A12)

Applying the Lamperti transform then gives

dYi,τ = √
2kT

(
−DijDkj∂kV − kT∂k(DijDkj)√

2kTD2Di

−1
2

√
2kT∂iDi

)
dt + √

2kT dWi,

where V(Xτ ), D(Xτ ), D(Xτ ) and Di(Xτ ) are functions of Yτ

through the relation Xτ = φ−1(Yτ ). Since

Dij(X) =
n∑

k=1

D(1)
ik (X)D(2)

kj (X)
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=
n∑

k=1

δikδkjD(X)Dk(Xk) = D(X)Di(Xi),

this becomes

dYi,τ = −Di∂iV dt + kT
∂i(D2D2

i )

D2Di
dt − kT∂iDi dt

+ √
2kT dWi

which simplifies to

dYi,τ = −Di∂iV dt + 2kT
Di

D
∂iD dt + kT∂iDi dt

+ √
2kT dWi.

Changing variables so that the derivatives are with respect to Y
we get

∂

∂Xk
=

n∑
l=1

∂Yl

∂Xk

∂

∂Yl
=

n∑
l=1

δlk

Dk(Xk)

∂

∂Yl
= 1

Dk

∂

∂Yk
,

and the transformed equation becomes

dYi,τ = −∇YiV dt + 2kT∇Yi lnD dt

+ kT∇Yi lnDi dt + √
2kT dWi,

which we identify as Brownian motion in an effective potential

V̂(Y) = V(φ−1(Y)) − 2kT lnD(φ−1(Y))

− kT
n∑
i=1

lnDi(φ
−1
i (Yi),

as required. �
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