
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Asymmetric quantum secure multi-party computation with weak
clients against dishonest majority

Citation for published version:
Kapourniotis, T, Kashefi, E, Leichtle, D, Music, L & Ollivier, H 2023 'Asymmetric quantum secure multi-party
computation with weak clients against dishonest majority' ArXiv, pp. 1-37.
https://doi.org/10.48550/arXiv.2303.08865

Digital Object Identifier (DOI):
10.48550/arXiv.2303.08865

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 11. May. 2024

https://doi.org/10.48550/arXiv.2303.08865
https://doi.org/10.48550/arXiv.2303.08865
https://www.research.ed.ac.uk/en/publications/32325eda-c812-4f22-9f83-329cea49b038


Asymmetric Quantum Secure Multi-Party Computation
With Weak Clients Against Dishonest Majority

Theodoros Kapourniotis1, Elham Kashefi2,3, Dominik Leichtle3, Luka Music4, and Harold Ollivier5

1 Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
2 School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, United Kingdom
3 Laboratoire d’Informatique de Paris 6, CNRS, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France

4 Quandela, 7 Rue Léonard de Vinci, 91300 Massy, France
5 DI-ENS, Ecole Normale Supérieure, PSL University, CNRS, INRIA, 45 rue d’Ulm, 75005 Paris, France

Abstract. Secure multi-party computation (SMPC) protocols allow several parties that distrust each
other to collectively compute a function on their inputs. In this paper, we introduce a protocol that lifts
classical SMPC to quantum SMPC in a composably and statistically secure way, even for a single honest
party. Unlike previous quantum SMPC protocols, our proposal only requires very limited quantum
resources from all but one party; it suffices that the weak parties, i.e. the clients, are able to prepare
single-qubit states in the X − Y plane.
The novel quantum SMPC protocol is constructed in a naturally modular way, and relies on a new
technique for quantum verification that is of independent interest. This verification technique requires
the remote preparation of states only in a single plane of the Bloch sphere. In the course of proving the
security of the new verification protocol, we also uncover a fundamental invariance that is inherent to
measurement-based quantum computing.

Keywords: Quantum Verification, Delegated Computation, Secure Multi-Party Computation, Dis-
tributed Quantum Computing.

1 Introduction

1.1 Motivation

Secure Multi-Party Computation (SMPC) protocols allow several parties who do not trust one another to
collectively compute a function on their inputs. This question was first considered by Yao [36] and has been
developed extensively in various settings (see [6] and references therein). Several security guarantees can be
provided by such protocols depending on the setting: all parties can be on an equal footing, doing each their
share of the computation, or one can handle the brunt of the computation while all others provide the data.
In the first case, the security goal is to maximise the privacy of the data, while in the latter it extends to
the privacy of the computation which is delegated to the server.

Practical computationally-secure protocols have been developed and implemented in commercial solutions
for protecting classical multi-party computations. In the quantum case, several concrete protocols have been
proposed (see § 1.2). In the circuit model, the state-of-the-art protocol [9] provides an information theoretic
upgrade of classical SMPC that can withstand a dishonest majority. In the measurement-based model,
where weakly quantum clients delegate their computation to a powerful server, the best protocol [25] does
not provide verification of the computation and settles instead for blindness (i.e. privacy) of the data when
there is no client-server collusion.

In this work, we show that this difference is not due to the asymmetry of the clients-server setting. We
introduce for this specific situation a statistically secure lift of a classical SMPC protocol to a quantum one
that provides blindness and verification for BQP computations. It remains secure so long as a single client
is honest, thus withstanding possible collusions between dishonest clients and the server. Building on the
techniques introduced in [22], its security is proved in the Abstract Cryptography (AC) framework. The
protocol is highly modular and can tolerate a fixed amount of global noise during the quantum computation

ar
X

iv
:2

30
3.

08
86

5v
1 

 [
qu

an
t-

ph
] 

 1
5 

M
ar

 2
02

3



without aborting nor compromising statistical security. Additionally, it has no space overhead compared to
an unprotected delegated computation, thereby allowing clients to use the server’s full power to perform
their desired computation, while security comes only at the price of a polynomial number of repetitions.

1.2 Related Work

Quantum SMPC is a long standing research topic in quantum cryptography, with several directions being
explored in the past two decades.

The first one started with [7]. Along with the introduction of the concept itself, it provided a concrete
protocol for performing such computations in the quantum circuit model. It guarantees the security of the
computation as long as the fraction of malicious parties does not exceed 1/6. This work has been later
extended in [4], lowering the minimum number of honest players required for security to a strict majority.

The second focuses on the interesting edge case of two-party quantum computations. Several constructive
results have been proposed in the circuit model. In [12], a protocol was introduced and proven secure for
quantum honest-but-curious adversaries. This restriction on the adversaries was removed in [13] which proved
security in the fully malicious setting and with negligible security bounds. The measurement-based model of
quantum computation has also been considered for constructing secure two-party quantum computations as it
provides a different set of tools than the circuit model. Verifiable Blind Quantum Computation (VBQC) first
was introduced in [16] in this model, followed by optimised protocols [27,21]. In [26] a protocol was proposed
in this setting and proven secure against honest-but-curious adversaries. In [24] this result was extended to
fully malicious adversaries with inverse-polynomial security using the Quantum Cut-and-Choose technique.
More recently, a round-optimal protocol was given in [3] based on Oblivious Transfer and LWE, showing
that two-party quantum computation tasks can be performed in as little as three rounds in the CRS model,
and two if quantum pre-processing is allowed.

A third set of results focuses on the composability of such protocols, as earlier results didn’t satisfy this
property. Bit commitment was shown to be complete in the Quantum Universal Composability framework
of [35], meaning that it is sufficient for constructing quantum or classical SMPC if parties have access to
quantum channels and operations. This result was later extended in [14,11], which gives a full analysis of
feasibility and completeness of cryptographic primitives in a composable setting.

More recently, building on these previous works, new concrete protocols have been proposed to decrease
the restrictions on adversaries while also providing composable security. In the circuit model, a composably-
secure protocol has been introduced in [9]. It is an extension of [13] that is able to cope with a dishonest
majority, but which relies on a complete graph for quantum communication and on a large number of
quantum communication rounds together with powerful quantum participants. In the MBQC model, [25]
describes a protocol that is composable, can tolerate a dishonest majority and allows the clients to delegate
the quantum computation to a powerful server. Its security is an information-theoretic upgrade of the classical
SMPC primitive used for constructing the protocol. It is however limited by the absence of verifiability of
outputs and the impossibility to tolerate client-server collusions. Other protocols have been proposed in
alternative models or with different trust assumptions such as [20,29]. Finally, recent protocols for secure
delegated quantum computations can be run even by purely classical clients. These have been lifted to a
multi-client setting in [2] while at the same time optimising the number of classical rounds of communication.
This is however at the cost of a larger computation space on the server’s device, which needs to be able to
perform QFHE computations of functions large enough to be computationally-secure.

A subset of the authors proposed an earlier protocol for QSMPC [23] which comprised a blind pre-
computation step meant to produce a resource state that could then be used to perform VBQC. This
pre-computation turned out to be vulnerable to an attack that can be applied blindly by the server while
having an effect only on some specific types of qubits thereby compromising security of the whole protocol.
While the present work is a complete redesign of the protocol that shows improved performance, we include
in § C an in-depth analysis of the shortcommings of the previous construction. This might be a useful tool
to revisit earlier work where a similar blind pre-computation step is used.

2



1.3 Overview of the Protocol and Results

In this paper, we consider the setting where several weakly quantum clients want to securely delegate their
quantum computation to a powerful server. The proposed construction turns a single-client MBQC-based
protocol into a multi-party one. More precisely, we use single-client Secure Delegated Quantum Computing
(SDQC) protocols obtained through the techniques presented in [22]. Such protocols interleave several com-
putation rounds and test rounds, the latter of which correspond to stabiliser measurements of the MBQC
resource graph-state used to perform the computations. In such a protocol, the client must perform two dif-
ferent tasks. First, it has to prepare encrypted single-qubit states and send them to the server. This prevents
the server from distinguishing computation and test rounds and also hides the client’s data. Then, the client
uses the classical encryption key as well as the measurement outcomes reported by the server to classically
drive the computations and tests performed by the server on these encrypted qubits. Hence, turning this
protocol into a multi-party one amounts to finding (i) an appropriate single-client SDQC protocol that will
(ii) be composed with a secure collaborative remote state preparation for the single qubit encrypted states
and that will (iii) be driven collaboratively to perform and verify the desired computation.

In § 2, we describe a single-client SDQC Protocol using only |+θ〉 = (|0〉 + eiθ |1〉)/
√
2 states, based on

the generic single-client SDQC Protocol of [22]. This was an open question in the field as all previous SDQC
protocols in the MBQC framework with a formal security analysis use computational basis states (called
dummies) to isolate single qubits in the computation graph. These remain unchanged if the server is honest
and can be used as traps to detect deviations. To overcome this restriction, we must ideally find a generating
set of stabilisers of the graph state for the client’s computation that can be written with I, X and Y Paulis
only.

However, while it is possible to construct N − 1 independent stabilisers of this form – where N denotes
the number of vertices of the graph – it seems that the stabiliser which consists of Z operators on odd-
degree vertices of the graph cannot be generated. This therefore corresponds to a server’s deviation which
cannot be caught by our tests on graphs containing odd degree nodes. If this attack would corrupt the
client’s computation, the whole protocol would be insecure. Fortunately, this is not the case for classical
input/output computations. Indeed, we prove that this deviation corresponds to a server which has chosen
a different orientation of the Z axis compared to the client. Because inputs are prepared in the X −Y plane
and outputs are projected onto it, we show that this has no effect on the outcome of the computation. As
a consequence, it is not necessary to detect this specific deviation by the server to verify the computation.
This proves that the generic single-client SDQC Protocol of [22] can be used to produce secure dummyless
protocols.6

Theorem (Informal). For any graph G, there exists a single-client statistically secure SDQC protocol in the
Abstract Cryptography framework that requires the client to only prepare states in the X − Y plane.

We then focus on turning this new single-client protocol into a multi-party one. In § 3, we introduce a
Collaborative Remote State Preparation (CRSP) protocol. We show that this gadget (Protocol 2) securely
implements Remote State Preparation (Resource 2), which allows a classical party request any |+θ〉 state to
be prepared on the server’s device with the help of clients preparing single qubit states in the X − Y plane.

Theorem (Informal). The CRSP gadget is a statistically secure implementation of the Remote State Prepa-
ration Resource in the Abstract Cryptography framework.

The second set of tasks in the single-client protocol, i.e. choosing the measurement angles of the various
computation and test rounds according to the states prepared using CRSP, only involve classical computa-
tions. These can be performed using a composably secure classical SMPC.7

6 Note that here has been a previous protocol for dummyless verification [15], whose security analysis didn’t take
into account the above deviation. Our proof of invariance of MBQC to this specific error shows that this deviation
does not constitute a security threat to the protocol in [15].

7 The Abstract Cryptography framework used in this work is equivalent to the Quantum Universal Composability
(Q-UC) Model of [35] if a single Adversary controls all corrupted parties – which is the case here. Therefore any
Classical SMPC protocol which is secure in the Q-UC model can be used to instantiate this functionality.

3



In § 4, we compose the CRSP gadget, classical SMPC, and the dummyless SDQC protocol into a complete
quantum SMPC protocol (Protocol 3). Its outline is:
1. The clients use the CRSP gadget to prepare |+θ〉 states on the server’s side.
2. They use the classical SMPC together to drive and verify the single-client SDQC protocol.
3. Upon acceptance, the results and decryption keys are sent by the classical SMPC to each client.
The security proof relies on the composable security of all three ingredients. Because the CRSP gadget and
the dummyless protocol are statistically secure, this is a direct upgrade of classical to quantum SMPC.

Theorem (Informal). Composable classical SMPC can be lifted to perform robust quantum SMPC for BQP
computations in a statistically secure way, such that all parties but one are restricted to singe-qubit prepara-
tions.

We note that this protocol requires no additional resources in terms of hardware or quantum commu-
nication from the client’s side compared to the single-client protocol. The server only needs to be able to
perform the CRSP gadget in addition to the operations required by the single-client protocol.

1.4 Discussion

In the course of constructing our protocol, we have built two new ingredients that we believe are of indepen-
dent interest.

The first one is the Collaborative Remote State Preparation gadget. Its main feature is to provide some
privacy amplification for the classical-quantum correlations that clients share with the server. Interestingly,
we give evidence that it is hard to construct a generic gadget that would have similar features for correlations
outside of a single plane of the Bloch sphere, while retaining its usefulness for cryptographic purposes. We
leave it as an open question to prove a full no-go theorem in the Abstract Cryptography framework to further
explore what seems to be a deep difference between classical and quantum input-output computations. Note
also that this work supersedes a previous effort to construct a quantum SMPC protocol in the clients-
server setting with quantum input and outputs. The proposed construction was similar in spirit with a
collaborative remote state preparation gadget that allowed to prepare encrypted X − Y plane states but
also dummies. However, we give an attack on multiple approaches which were explored to perform this task,
further strengthening the belief that such cryptographic protocols are hard if not impossible to construct.

The second new ingredient of our proof is the first dummyless SDQC protocol. Outside of the specific
purpose of quantum SMPC, it exemplifies the usefulness of the general tests that were introduced in [22].
By reducing the requirements on the client side, it also possibly decreases a source of errors in physical
implementations as it is not uncommon that rotations around one specific axis of the Bloch sphere are
notably easier to perform than others. We also strongly believe that similar approaches, where traps are
tailored to specific settings, will find applications in the future. Additionally, we show that while dummyless
tests were not enough to detect all deviations, it is possible to nonetheless verify computations thanks to
an as of now unknown invariance in MBQC. This raises the question of whether it is possible to do this on
purpose, and engineer an invariance in order to lighten the constraints on the error-detection scheme that
the traps implement.

Finally, note that because all SDQC protocols constructed from the generic protocol of [22] are robust
to a fixed amount of global noise, so is our new multi-party protocol. While not being enough to scale to
large quantum computations, it opens the possibility to implement experimental proof-of-concepts without
resorting to error correction on near term devices.

1.5 Organisation of the Paper

In § 2 we construct a single-client SDQC Protocol using only |+θ〉 = (|0〉 + eiθ |1〉)/
√
2 states. §§ 2.1-

2.3 construct a family of such schemes and prove their security, while § 2.4 provides optimised protocols
for various classes of MBQC resource graph-states. In § 3, we introduce a Collaborative Remote State
Preparation (CRSP) protocol and prove its security in the AC framework. In § 4, we compose the CRSP

4



Protocol, the dummyless SDQC Protocol and a classical SMPC into a complete quantum SMPC Protocol
(Protocol 3) for BQP computations. In § 5, we provide an in-depth comparison with other protocols, give
arguments justifying the proposed construction – especially the need for a dummyless SDQC Protocol – and
discuss some open questions.

Some preliminary notation and material can be found in the corresponding sections of the Auxiliary
Supporting Material part: Abstract Cryptography in § A, MBQC computation in § B and the Universal
Blind Quantum Computation (UBQC) Protocol in § B.1. A detailed analysis of a previous attempt at
constructing quantum SMPC for weakly quantum clients is provided in § C.

2 Verification with States in a Single Plane

2.1 A Framework for Verification

The goal of the protocol presented in this section is to construct the Secure Delegated Quantum Computation
Resource 1 (SDQC), introduced by [10]. It allows a single Client to run a quantum computation on a Server
so that the Server cannot corrupt the computation and doesn’t learn anything besides a controlled leakage
lρ about the Client’s computation and input. The value of lρ, as a function of inputs and computation, is
specified by each protocol.

Resource 1 Secure Delegated Quantum Computation with Classical Inputs and Outputs
Inputs:
– The Client inputs a bit-string x and the classical description of a unitary U.
– The Server chooses whether or not to deviate. This interface is filtered by two control bits (e, c).

Computation by the Resource:
1. If e = 1, the Resource sends the leakage lρ to the Server’s interface and awaits further input from the Server;

if it receives c = 1, the Resource outputs Abort at the Client’s output interface.
2. If c = 0, it outputs O = MC ◦ U |x〉 at the Client’s output interface, where MC is a computational basis

measurement.

Several protocols implementing this resource have been constructed in the past [17]. Yet, none has the
ability to provide negligible statistical security while having a client sending states in a single plane. To
achieve this, we use the framework from [22] which neatly separates the various ingredients required to
implement SDQC. We start by briefly summarising the ingredients which are relevant to the present paper.

Reduction to Pauli Deviations. Using the UBQC Protocol 4 (see appendix) to delegate computations from
Client to Server hides the operations which the Client wishes to delegate. The encoding scheme of UBQC
naturally imposes a Pauli twirl on any deviation and hence any attacks by the Server can always be decom-
posed as a convex combination of Pauli operators acting on the qubits of the graph just before performing the
X-basis measurement. Because X Pauli operators applied in this fashion have no effect on the computation,
as they are absorbed by the X-basis measurement, we can focus on convex combinations of deviations of the
form

⊗
v∈V Z(v)e(v) where the values of e(v) are chosen by the Server and Z(v) applies the Pauli Z to qubit

v. Such deviation are equivalent to flipping the measurement outcome for vertices where e(v) = 1.

General Strategy for Robust Verification. Once all operations delegated to the Server are blind a general
strategy for robust and secure computation follows from the intuition that (i) correctness is obtained by
accepting with overwhelming probability in the absence of deviation, (ii) security derives from the ability of
the protocol to detect with overwhelming probability all deviations that potentially affect the computation,
and (iii) robustness follows from accepting additional deviations which have, with overwhelming probability,
no effect on the computation.

5



Generic Trappified Schemes for Classical I/O. With this strategy in mind, a whole class of protocols for
verifying BQP computations can be easily described. Their flexible design is able to accommodate objectives
that go beyond security, e.g. for instance the absence of dummy qubits. These protocols work by performing
separate rounds which are indistinguishable from the Server’s point of view, some implementing tests, and
others computing C, the Client’s target computation. More precisely, s test rounds and d computation rounds
are delegated to the Server using the UBQC Protocol 4, with the requirement that they share the same graph
G and the same order �G for measuring the qubits.

Each test round is sampled uniformly at random from a set P of possible traps called a trappified scheme.
They each consist of an input state σ which is a tensor product of single-qubit states, one for each vertex
in the graph G, a measurement pattern T , and a binary decision function τ . The test round is accepted
when the decision function outputs 0 when evaluated on the measurement results returned by the Server for
this trap. It is rejected when the output is 1. The d computation rounds correspond to repeating d times
the target computation C on the target input chosen by the Client using the graph G. The outputs of these
computations are then combined through a majority vote. When all rounds have been executed, the Client
accepts if less than a fixed fraction of test rounds reject. In this case, the output of the protocol is the result
of the majority vote. The formal protocol is described in Protocol 1.

Protocol 1 Trappified Delegated Blind Computation
Public Information:
– G = (V,E, I,O), a graph with input and output vertices I and O respectively;
– P , a trappified scheme on graph G;
– �G, a partial order on the set V of vertices;
– N, d,w, parameters representing the number of runs, the number of computation runs, and the number of

tolerated failed tests.
Client’s Inputs: A set of angles {φi}i∈V and a flow f which induces an ordering compatible with �G.
Protocol:
1. The Client samples uniformly at random a subset C ⊂ [N ] of size d representing the runs which will be its

desired computation, henceforth called computation runs.
2. For k ∈ [N ], the Client and Server perform the following:

(a) If k ∈ C, the Client sets the computation for the run to its desired computation ({φi}i∈V , f). Otherwise,
the Client samples a test (T, σ, τ) from the trappified scheme P .

(b) The Client and Server blindly execute the run using the UBQC Protocol 4.
(c) If it is a test, it uses τ on the measurement results to decide whether the test passed or not.

3. At the end of all runs, let x be the number of failed tests. If x ≥ w, the Client rejects and outputs (⊥,Rej).
4. Otherwise, the Client accepts the computation. It performs a majority vote on the output results of the

computation runs and sets the result as its output.

Security Conditions for Trappified Schemes with Classical I/O. The analysis of the security and robustness
properties in the Abstract Cryptography framework for the resulting protocol depends on two sets of Pauli
operators defined relatively to P : the set of detectable deviations and the set of deviations to which P
is insensitive. These rely on the following definitions, where we use T to denote the probability of the
measurement outcomes for a trap T in P and E ◦ T to denote the probability distribution of measurement
outcomes when the deviation E is applied to T .

Definition 1 (Pauli Insensitivity). We say that the trappified scheme P is δ-insensitive to E ⊂ GV if:

∀E ∈ E ,
∑
T∈P

Pr
T∼P
t∼E◦T

[τ(t) = 0, T ] ≥ 1− δ. (1)

6



Definition 2 (Pauli Detection). We say that a trappified scheme P ε-detects E ⊂ GV if:

∀E ∈ E ,
∑
T∈P

Pr
T∼P
t∼E◦T

[τ(t) = 1, T ] ≥ 1− ε. (2)

Definition 3 (Pauli Correctness (Informal)). We say that a computation is correct on deviation E if
the output distribution is the same whether the deviation is applied or not.

The virtue of defining these properties is that the sets of deviations above can be characterised efficiently
and yield correctness and security with negligible errors for the overall protocol:

Theorem 1 (Security of Protocol 1, Combining Theorems 8 and 13 from [22]). Let C be a set
of classical BQP computations on graph G. Let P be a trappified scheme on graph G that ε-detects a set of
Pauli deviations E1 and is δ-insensitive to E2 and perfectly insensitive to I. Assume that all computations in
a set C are correct on GV \ E1. Let n = s+ d for d and s proportional to n, and c the bounded error of BQP.
Let w be the maximum number of test rounds allowed to fail, chosen such that w < 2c−1

2c−2s(1− ε).
Then Protocol 1 η(n)-constructs the Secure Delegated Quantum Computation Resource 1 for computations

in set C in the Abstract Cryptography framework, where the leak is defined as lρ = (C, G,P ,�G), for η(n)
negligible in n.

Note that the value of η(n) heavily depends on the value of δ and ε, in particular via the coefficient in
the exponential. This means that it is crucial to minimise these detection and insensitivity errors.

Notice also that w is also reliant on ε, and minimising this error also allows the protocol to tolerate more
honest errors before aborting. This noise-robustness of Protocol 1 can be characterised as follows.

Theorem 2 (Noise-Robustness of Protocol 1, Combining Theorems 9 and 13 from [22]). For
the same parameter choices as in Theorem 1, assume an execution of Protocol 1 with an honest-but-noisy
Server such that p is the probability that less than w

sδn rounds are affected by a Pauli error. Then the Client
accepts the outcome with probability (1− p)(1− δ′), for δ′ negligible in n.

Since the protocol is secure, we can then guarantee that, if the client accepts, the outcome is also correct
up to negligible total variational distance. This means that for machines with a constant amount of global
noise below a certain bound, our protocol accepts and yields the correct result with overwhelming probability.

Traps from Stabiliser Tests. As a result, the performance of Protocol 1 is governed by the choice of s, d, w
defined above, together with the error detection and insensitivity capabilities of traps in P . Ref. [22] § 6.1
shows how to construct general traps from subset stabiliser testing. Indeed, let S be the stabiliser group for
|G〉〈G| the graph state associated to G, and consider {Sv = X(v)

⊗
(v,w)∈E Z(w), v ∈ V } the set of canonical

generators of S. One can then associate a trap to each R ∈ S by (i) having the Client prepare a +1 eigenspace
of R as input, and (ii) delegating to the Server the computation consisting of measuring R using the UBQC
Protocol 4. An accepted trap then corresponds to the measurement of R returning the +1 eigenvalue.

For the preparation, the client sets each qubit v ∈ V in the +1 eigenstate of R(v) with R(v) being uniquely
defined by:

R =
⊗
v∈V

R(v)

R(v0) ∈ {±1} × {I,X,Y,Z}, , for v0 = argminv∈V R(v) 6= I

R(v) ∈ {I,X,Y,Z}, for v ∈ V \ v0.

This corresponds to preparing a +1 eigenstate of the group generated by {R(v), v ∈ V } which contains R
hence satisfying (i) above.

For the delegated computation consisting of measuring R, the Client simply instructs the Server to
measure each qubit in the X-basis, getting outcome t(v). The motivation for these measurements is better
understood by examining to which observable they correspond on the inputs provided by the Client. To this

7



end, one can conjugate each X(v) by
∏

(v,w)∈E CZ(v,w), the entangling operation that the Server performs prior
to the measurement. A simple stabiliser computation shows that X(v) is mapped to Sv. That is, measuring
X(v) after the entangling operation corresponds to measuring Sv on the inputs provided by the client. As R
is uniquely defined as

∏
v∈1R

Sv for some set 1R ⊂ V , and because S is abelian, the outcome of R on the input
state provided by the client is the binary sum of the outcomes of Sv. Using the above correspondence for
measurements of Sv on the inputs, one concludes that

⊕
v∈1R

t(v) determines the outcome of the measurement
of R on the inputs provided by the Client. Combining the preparation and the measurement, the Client
therefore expects that for an honest Server,

⊕
v∈1R

t(v) = 1, thereby fulfilling (ii) above.
The freedom in choosing which R’s to include in the trappified scheme P will be at the core of constructing

dummyless verification protocols.

2.2 A Natural Invariance of MBQC with Classical Input and Output

In MBQC, computation qubits, i.e. v ∈ Oc, are measured in the
∣∣±φ′(v)〉 basis, where φ′(v) ∈ Θ ={

kπ
4

}
k∈{0,...,7} is defined by the pattern used for the computation. As a result, the computation is invariant

under rotations around the φ′(v) axis in the X − Y plane just before the measurement. The reason is that
such rotations leave the projectors

∣∣+φ′(v)〉〈+φ′(v)∣∣ and ∣∣−φ′(v)〉〈−φ′(v)∣∣ untouched so that it does not affect
the probabilities of the outcomes of a measurement in the

∣∣±φ′(v)〉 basis. This property is well known and
is actively used in the proof of security of the UBQC protocol as it allows to fully twirl the deviation of the
server on computation qubits.

If one not only considers local unitary transformations but more generally local invertible transformations,
then MBQC is also invariant under reflections through the X − Y plane for v ∈ Oc. The reason is similar
to the one given above: such transformations do not change the projectors onto the

∣∣±φ′(v)〉 basis and hence
do not affect probability distributions of measurements in the

∣∣±φ′(v)〉 basis.
We will now explore the latter invariance in the special case of classical input classical output computa-

tions where it naturally extends to the result of the computation itself, as in such case all qubits are measured
in the X − Y plane.

Lemma 1. For matrices ρ =
∑

P∈{I,X,Y,Z}⊗n αPP decomposed in the Pauli basis, let FA be the linear map
that applies the reflection through the X − Y plane for all vertices in A ⊂ V , defined as

FA(ρ) =
∑

P∈{I,X,Y,Z}⊗n
(−1)zwtA(P)αPP,

where zwtA(P) = |{v ∈ A|Pv = Z}| counts the number of vertices in A on which P equals the Pauli Z. Then,
MBQC is invariant under FA when applied right before the

∣∣±φ′(v)〉 measurements.

Proof. The probability to obtain the all-zero outcome when measuring all qubits v ∈ Oc of a state ρ in the∣∣+φ′(v)〉〈+φ′(v)∣∣-bases is given by

Tr

((
1O ⊗

⊗
v∈Oc

∣∣+φ′(v)〉〈+φ′(v)∣∣
)
ρ

)
.

Decomposing the above expression in the Pauli basis yields

Tr

 ∑
P′∈{I,X,Y}⊗n

βP′P
′

 ∑
P∈{I,X,Y,Z}⊗n

αPP


=

∑
P′∈{I,X,Y}⊗n

∑
P∈{I,X,Y,Z}⊗n

βP′αP Tr (P
′P) =

∑
P∈{I,X,Y}⊗n

βPαP2
|V |.

8



Calculating the same probability for the all-zero outcome when measuring after applying FA yields

Tr

((
1O ⊗

⊗
v∈Oc

∣∣+φ′(v)〉〈+φ′(v)∣∣
)
FA(ρ)

)

Tr

 ∑
P′∈{I,X,Y}⊗n

βP′P
′

 ∑
P∈{I,X,Y,Z}⊗n

(−1)zwtA(P)αPP


=

∑
P∈{I,X,Y}⊗n

βPαP2
|V |,

and therefore the same value. By an analogous argument, the probabilities for any other outcome coincide
as well. �

Note that FA(ρ) might not always be a physical state. As a result, if |G〉〈G| denotes the graph state used
to implement classical input classical output MBQC on G, one has:

|G〉〈G| = 1

2|V |

∑
S∈S

S, (3)

for S the stabiliser group of the graph state, so that for any S′ ∈ S we have:

Tr(S′ |G〉〈G|) = 1

2|V |

∑
S∈S

tr(S′S) = 1. (4)

In turn, this implies that

Tr(S′FA(|G〉〈G|)) =
1

2|V |

∑
S∈S

(−1)zwtA(S) Tr(S′S) = (−1)zwtA(S′). (5)

If FA(|G〉〈G|) was a physical state, Equation (5) would imply that it would be stabilised by (−1)zwtA(S)S
for all S ∈ S. The group structure of stabilisers would then imply that it is also stabilised by the operator
(−1)zwtA(S)+zwtA(S′)SS′ for all S,S′ ∈ S, and hence zwtA(SS

′) ≡ zwtA(S) + zwtA(S
′) (mod 2).

However, for A ( V , zwtA(·) does not in general satisfy the above equation. More precisely, take (v, w) ∈
E, the stabiliser SvSw will then satisfy zwt(SvSw) ≡ zwt(Sv) + zwt(Sw) − 1 (mod 2). This is because the
overlap of Sv and Sw at v will always remove a single Z coming from Sw, while if the two stabilisers overlap
at some other Z location in A this will remove 2 from the weight.

Conversely8, setting A = V , then indeed zwtV (SS
′) ≡ zwtV (S) + zwtV (S

′) (mod 2) for all S,S′ ∈ S.
Moreover, it is possible to find a unitary transformation that has the same effect as FA on |G〉〈G|, implying
that FA(|G〉〈G|) is then a physical state, as witnessed by the following lemma.

Lemma 2. For any graph G = (V,E) it holds that FA(|G〉〈G|) = U |G〉〈G|U†, where

U =
∏
v∈V,

deg v≡1 (mod 2)

Zv

describes the application of Z’s to all odd-degree vertices of G.

Proof. It will be useful to rewrite the stabilisers of |G〉〈G| as follows. For every S ∈ S, there exists exactly
one subset of vertices VS ⊂ V such that

S =
∏
v∈VS

Sv.

8 More generally, for disconnected graphs this holds if and only if A is a connected component or a union of connected
components.

9



We start with the right side of the equation:

U |G〉〈G|U† = U

(
1

2|V |

∑
S∈S

S

)
U† =

1

2|V |

∑
S∈S

U

(∏
v∈VS

Sv

)
U†.

Complementing U†U terms, this expression gives:

1

2|V |

∑
S∈S

∏
v∈VS

USvU
†.

It is easy to verify that USvU
† = (−1)zwtV (Sv)Sv because of the particular structure of U, and hence the

above expression equals

1

2|V |

∑
S∈S

∏
v∈VS

(−1)zwtV (Sv)Sv.

Exploiting the additivity of zwtV (·), we arrive at

1

2|V |

∑
S∈S

(−1)
∑
v∈VS

zwtV (Sv)S =
1

2|V |

∑
S∈S

(−1)zwtV (S)S = FV (|G〉〈G|),

which concludes the proof. �

Combining the statements of Lemma 1 and Lemma 2, we finally arrive at the following result, capturing
the inherent invariance of classical I/O MBQC to one specific nontrivial error.

Lemma 3. Let G = (V,E) be a graph and U be the unitary operation given by

U =
∏
v∈V,

deg v≡1 (mod 2)

Zv,

describing the application of Z’s to all odd-degree vertices of G. For MBQC on G with classical input and
output, the application of U before the measurements has no effect on the results of the computation.

Summarising the results of this section, for any classical-input classical-output MBQC there exists a non-
trivial and non-stabiliser deviation that has no influence on the results of the computation. It is important to
bear in mind the harmlessness of this error when constructing a verification scheme, as dummyless stabiliser
tests will – by construction – not be able to detect it.

2.3 Dummyless Verification

We now arrive at the core of this section: designing single-round traps restricted to preparing states in the
X − Y plane. Using the construction of traps from Section 2.1, it amounts to finding a set of stabilisers of
|G〉〈G| that are only made out of I, X, Y tensor products.

More precisely, we show that

Lemma 4. For any G = (V,E), consider the graph state |G〉 and its stabiliser group S. Then, it is always
possible to find |V | − 1 generators of S that are tensor products of I, X and Y only.

Proof. We proceed constructively and exhibit a set of |V | − 1 generators of R, subgroup of S, and show that
|R| = 2|V |−1.

We start with one such stabiliser, Rfull =
∏
v Sv. This follows simply from

Rfull(v) = XZdeg(v), (6)

10



as for qubit v, Sv contributes to the X and all neighbours contribute a Z each. Additionally, this shows
that for vertices v of even degree R\v =

∏
w∈V \v Sv = RfullSv is also a tensor product of I, X, Y. This is

because removing Sv from Rfull leaves an I at v and changes by one the number of Zs on the neighbours of
v. Unfortunately, removing Sv for v of odd degree leaves a Z at v. To further remove this unwanted Z, one
can also remove one stabiliser Sw from a neighbouring node w of v from the product. If, in addition, w is
of odd degree, then the obtained stabiliser will be a tensor product of I, X, Y only. The reason is that at w,
one Z has been removed when Sv was removed from Rfull thereby leaving an X at w, so that removing Sw
leaves an I. In the general case, one can always remove from Rfull the stabilisers Sv along a chain between u
and w consisting of even degree nodes except for u and w that are odd degree. We denote by R\(u,w) such
generator. Note that a given odd-degree node will always be in at least one such stabiliser as there are always
an even number of odd degree nodes in a connected component of a graph.

Now define the group R generated by Rfull, R\v and R\(u,w) above. Notice that multiplying Rfull with R\v
gives Sv, so that Sv is in R for even deg(v). Similarly, multiplying Rfull with R\(u,w) and Sv for v an even-
degree node linking u to w shows that any SuSw with u and w odd-degree nodes are also in R. Therefore, R
contains all stabilisers that have an arbitrary number of even-degree node and an even number of odd-degree
ones. Counting the number of such stabilisers gives 2|V |−1 while we know that the size of S is 2|V |, which
concludes the proof. �

We now consider the trappified scheme P that can be obtained by sampling uniformly at random from
all these traps rounds. We can characterise the errors that can be detected by P and those to which it is
insensitive using properties of stabilisers. To this end, recall that if a Pauli error E is applied right before the
measurement of a 2-outcome observable M, then (i) the measurement outcome probabilities are unchanged
if [E,M] = 0, and (ii) are swapped for {E,M} = 0. Hence, whenever E commutes with

⊗
v∈1R

X(v) the
trap never detects E, whereas it always detects it whenever it anticommutes. As a consequence, the set of
detectable errors is the set of errors that anticommute with at least one of the

⊗
v∈1R

X(v) for R a dummyless
trap measurement.

Hence, for an error E = EZEX we need to assess whether there exists at least one R in P such that
|1R ∩ 1EZ | ≡ 1 (mod 2) – where we have implicitely defined EZ (resp. EX) as the operators made of Zs
at location of Y or Z qubits in E (resp. X or Y qubits). To this end, consider F such that UGF = EUG
where UG is the entangling operation for creating the graph state. Because a trap amounts to measuring the
corresponding stabiliser before the entangling operation, the above question amounts to knowing whether F
commutes with the stabilisers used to define the dummyless traps of P . Alternatively, we can answer this
question by finding out which Pauli operations commute with all stabilisers defining the dummyless traps
while not being a product of them.

Using Lemma 4, there is one generator S0 of S that is not in R and such that all errors that commute
with R and are not in R are of the form S0R. From the above description of R, S0 can be taken as being
equal to Z on all odd-degree nodes. S0 commutes with all elements of R since they have an even number of
Sv for v odd-degree, and it is not in R as R has no element with Zs only. Yet, Lemma 3 shows that while S0
cannot be detected, it is indeed harmless for the computation.

Hence, we are led to conclude that all possibly harmful errors are detected by the trappified scheme P .
Using § 2.1, we conclude that

Theorem 3. Let G = (V,E) be a graph, and P the trappified scheme on G defined by sampling at random
from a generating set of R containing only stabilisers with no Zs. Then, P constructs the SDQC Resource 1
for BQP computations that can be embedded on the graph G with negligible correctness and security errors.

This follows from the fact that Theorem 1 states that a secure verification scheme can be built from
a trappified scheme that 1) detects a specific set E of Z-Pauli errors, and 2) correctly evaluates the target
computation in the presence of any other Z-Pauli error in GZV \E . Lemma 3 then shows that there is a specific
error E∗ which never affects the output distribution of the target computation and which therefore does not
need to be detected. It hence suffices to find a dummyless trappified scheme detecting E = GZV \ {I,E∗}.
As shown with Lemma 4, it is indeed possible to find such a trappified scheme. Therefore, this settles the
question whether dummyless verification for BQP is possible by the affirmative.

11



2.4 Concrete Dummyless Tests

The previous subsection left open how to concretely construct the trappified scheme P . More precisely, since
the efficiency of the resulting SDQC protocol is tightly linked to the detection rate of the trappified scheme,
it is important to minimise its detection, insensitivity and correctness errors. In this section, we discuss the
question of optimising the detection rate. In particular, we construct concrete dummyless trappified schemes
for universal BQP computations with constant detection rates, independent of the size of the computation.

[22] shows that the general optimisation problem of maximising the detection rate can be expressed in
the language of linear programming. Adapted to the case of dummyless trappified schemes, we recall it in
the following, as Problem 1.

Problem 1 Optimisation of the Distribution of Tests
Given
– the set of errors E = GZV \ {I,E∗} to be detected,
– the set of dummyless tests Tdummyless,
– the relation between tests and errors describing whether a test detects an error, R : Tdummyless × E → {0, 1},

find an optimal distribution p : Tdummyless → [0, 1] maximising the detection rate ε ∈ [0, 1] subject to the following
conditions:
– p describes a probability distribution, i.e.

∑
T∈Tdummyless

p(T ) ≤ 1,
– errors are detected at least with the target detection rate, i.e.

∀E ∈ E :
∑

T∈Tdummyless
R(T,E)=1

p(T ) ≥ ε.

For any feasible solution to Problem 1, the trappified scheme induced by the given distribution of tests
gives rise to a secure dummyless SDQC protocol if and only if the detection rate satisfies ε > 0.

Recall from Section 2.2 the structure of the harmless error:

E∗ =
∏

v∈V (G),
deg(v)≡1 (mod 2)

Zv.

Further, as described in Section 2.3, the set of dummyless tests can be expressed as:

Tdummyless =

 ∏
v∈Vtrap

Xv
∏

w∈NG(v)

Zw

∣∣∣∣∣∣ Vtrap ⊆ V, ∀v 6∈ Vtrap : |NG(v) ∩ Vtrap| ≡ 0 (mod 2)

 .

The last condition ensures that there are no vertices with a single Z in the respective stabiliser. In this
way, every test can be identified with the subset of vertices which act as traps, or equivalently with the
complement, the subset of vertices which act as holes, i.e. vertices on which the respective stabiliser equals
the identity and which can therefore be ignored by the decision function of the trappified scheme. In the
following we will also write Vtrap(T ) and Vhole(T ) as shorthands for these two sets of vertices.

Analogously, we write Verror(E) for the set of vertices on which the error E is not equal to the identity
(and therefore equals the Pauli Z). This makes it easy to give a short description of the relation R:

R : (T,E) 7→ |Verror(E) ∩ Vtrap(T )| (mod 2).

Handling Errors on Even-degree Vertices. As described in Section 2.3, for all even-degree vertices v ∈ V , the
test T with Vhole(T ) = {v} is indeed dummyless. Generalising this concept, for any independent set V ∗ of
even-degree vertices, we can define a dummyless test T with Vhole(T ) = V ∗. Similarly to the construction of

12



tests in [22], any (fractional) colouring of the vertices of a graph G gives rise to a distribution of independent
sets of G, and therefore also a distribution of independent sets of even-degree vertices and tests. To this end,
let D be a distribution of independent sets of G such that

∀v ∈ V : Pr
I←D

[v ∈ I] ≥ 1

χf (G)
,

where χf (G) is the fractional chromatic number of G. This distribution exists by definition of the fractional
chromatic number. Consider the test strategy given by the distribution Deven of tests in Tdummyless described
as follows:
1. Sample an independent set: V1 ← D.
2. Restrict the set to even-degree vertices: V2 = V1 ∩ Veven(G), where Veven(G) = {v ∈ V | deg(v) ≡ 0

(mod 2)}.
3. Choose a random subset to determine the location of holes: V3 ← U (℘(V2)).
4. Perform the dummyless test T determined by Vhole(T ) = V3.
As the following Lemma shows, this strategy allows for a detection rate of errors that affect even-degree
vertices that scales inversely with the fractional chromatic number of the graph.

Lemma 5 (Even-degree Error Detection). The above-mentioned test strategy
(

1
2χf (G)

)
-detects the error

set Eeven = {E ∈ GZV | Verror(E) ∩ Veven 6= ∅}, i.e.

∀E ∈ Eeven : ET←Deven [|Verror(E) ∩ Vtrap(T )| ≡ 1 (mod 2)] ≥ 1

2χf (G)
.

Proof. Let E ∈ Eeven. Then, by definition of the test distribution, it holds that

ET←Deven [|Verror(E) ∩ Vtrap(T )| ≡ 1 (mod 2)]

≥ EV3←U(℘(V2)) [|Verror(E) ∩ V3| ≡ 1 (mod 2) | Verror(E) ∩ V2 6= ∅]
· Pr
V1 ←$D

[Verror(E) ∩ V1 ∩ Veven(G) 6= ∅]

≥ 1

2
· 1

χf (G)
,

which concludes the proof. �

Handling Errors on Odd-degree Vertices. Since all errors acting non-trivially on even-degree vertices are
already handled in the previous case, it remains to detect errors that affect only odd-degree vertices and act
as the identity on even-degree vertices.

To this end, we construct a specific type of test. For k ≥ 2, let (v1, . . . , vk) ∈ V k be a chain of vertices in
G satisfying the following conditions:
1. The end vertices are of odd degree: deg(v1) ≡ deg(vk) ≡ 1 (mod 2).
2. All intermediate vertices are of even degree: deg(v2) ≡ · · · ≡ deg(vk−1) ≡ 0 (mod 2).
3. Only subsequent vertices are neighbours in G:

∀i, j ∈ {1, . . . , k} : {vi, vj} ∈ E(G)⇔ |i− j| = 1.

It is easy to verify that under these conditions there exists a valid dummyless test T with Vhole(T ) =
{v1, . . . , vk}. Note, that there might not be a chain of this type in G for any pair of odd-degree vertices as
end points. However, it is possible to connect any two odd-degree vertices through a chain of chains that
might traverse other odd-degree vertices at the end and starting points of chains. In this way, it is possible
to choose a “spanning tree” of (|Vodd(G)| − 1) chains that connects all odd-degree vertices in the graph G.

Define the set of errors on odd-degree nodes only as Eodd = {E ∈ GZV | Verror(E)∩Veven(G) = ∅ ∧ Verror(E)∩
Vodd(G) 6= ∅} and let E ∈ Eodd \ {E∗}. Then, there must exist two odd-degree vertices v1 ∈ Verror(E) and
v2 6∈ Verror(E). But then at least one of the chains connecting v1 and v2 with start in a vertex affected by the
error E and end in a vertex unaffected by E. Since all intermediate vertices are of even degree and therefore
unaffected by E, the test given by this chain detects E. This essentially shows the following statement.

13



Lemma 6 (Odd-degree Error Detection). There exists an efficient testing strategy that
(

1
|Vodd(G)|−1

)
-

detects errors in Eodd \ {E∗}.

Combining the testing strategies from Lemma 5 and Lemma 6 immediately yields the following result for
testing strategies on general graphs.

Lemma 7 (Error Detection on General Graphs). For any graph G, there exists an efficient testing
strategy that ε-detects E = GZV \ {I,E∗}, where

ε =
1

2χf (G)(|Vodd(G)| − 1)

(
1

2χf (G)
+

1

|Vodd(G)| − 1

)−1
≥ 1

2
min

{
1

2χf (G)
,

1

|Vodd(G)| − 1

}
.

This already shows that the detection rate that is achievable on general graphs decreases at most linearly
in the number of vertices of the graph. This lower bound is however far from tight in many cases. In fact,
even for universal graph states a constant lower bound is possible as the following result shows.

(a) Holes in even-degree
vertices, type 1.

(b) Holes in even-degree
vertices, type 2.

(c) Holes in odd-degree
vertices, type 1.

(d) Holes in odd-degree
vertices, type 2.

(e) Holes in odd-degree
vertices, type 3.

(f) Holes in odd-degree ver-
tices, type 4.

(g) Holes in odd-degree
vertices, type 5.

Fig. 1: The seven types of dummyless tests for the brickwork graph. A trap configuration is sampled by
randomly choosing one of the seven types, and then in cases 1a-1b sampling uniformly at random a subset
of marked vertices as holes, and in cases 1c-1g sampling uniformly at random a subset of marked chains as
holes.

Lemma 8 (Error Detection on the Brickwork State). Let G be a brickwork graph. Then, there exists
an efficient testing strategy that (1/14)-detects E = GZV \ {I,E∗}.

Proof Sketch. To detect errors affecting even-degree vertices, use the strategy from Lemma 5. As the brick-
work graph is bipartite, this will yield a detection rate of 1/4.

To detect errors on odd-degree vertices, follow the strategy from Lemma 6, but use chains that can be
tested in parallel to boost the detection rate. There are five classes of chains between odd-degree vertices that
can each be run at the same time. One class consists of all vertical chains, and the other four of horizontal
chains where every class contains chains only in every second row and only every second horizontal chain
on these rows. By testing random subsets of these classes of chains, the detection rate in this case is lower
bounded by 1/10.

Optimal switching between these two strategies (with probabilities 2/7 and 5/7) yields an overall detection
rate of 1/14. The different types of tests on the brickwork graph are depicted in Figure 1. �

14



3 Collaborative State Preparation

Following the approach outlined in § 1.3, we now turn to the design of a composably secure protocol for
implementing the preparation of the input states required by the dummyless protocols introduced in § 2.3.
The Collaborative Remote State Preparation Protocol 2 presented here will allow n Clients to collaboratively
construct an encrypted state on the Server whose encryption key is held by a purely classical party called
the Orchestrator. It guarantees that no malicious coalition including up to n− 1 Clients and the Server (but
not the Orchestrator) has any knowledge about the final state.

This security property is captured formally as follows. The Remote State Preparation Resource 2 (or RSP)
allows one party called the Sender to prepare a quantum state on a device held by another party called the
Receiver. Its simplest instantiation requires only a direct quantum channel between the two participants but
more interesting scenarios can be considered, for example using untrusted relays or additional participants.
We specify this resource for our specific case, i.e. sending states in the X − Y plane.

Resource 2 Remote State Preparation

Inputs: The Sender has as input an angle θ ∈ Θ =
{
kπ
4

}
k∈{0,...,7}.

Computation by the Resource: The Resource prepares and sends the state |+θ〉 to the Receiver.

The goal of the Collaborative Remote State Preparation Protocol is then to construct this Remote State
Preparation Resource 2 between the Orchestrator and the Server using one Quantum Channel Resource
between each Client and the Server and one Secure Classical Channel Resource between each Client and the
Orchestrator. This latter Resource transmits faithfully and privately any classical message from the sender
to the receiver, while only leaking the size of the message to an eavesdropper.

Protocol 2 Collaborative Remote State Preparation
Input: The Orchestrator has as input an angle θ ∈ Θ. The Server and Clients have no input.
Protocol:
– Client j samples uniformly at random θj ∈R Θ and sends

∣∣+θj〉 to the Server.
– Client j sends θj to the Orchestrator using a Secure Classical Channel.
– For each j 6= n, the Server applies CNOTn,j between the qubits n and j, with the first being the control and

the second the target. It measures the target qubit j in the computational basis with measurement outcome
tj . It sends the vector t containing all the measurement outcomes to the Orchestrator.

– The Orchestrator computes θ′ = θn +
∑
j∈[n−1](−1)

tjθj and sends a correction (b, (−1)bθ − θ′) to the Server,
who applies XbZ((−1)bθ − θ′) to the unmeasured qubit, keeping it as output.

We can now state the main result of this section, namely the correctness and security of Protocol 2 in
the AC framework. Both properties are proven independently below.

Theorem 4 (Security of Collaborative Remote State Preparation). Protocol 2 perfectly constructs
the Remote State Preparation Resource 2 from Secure Classical Channel Resources between each Client and
the Orchestrator, for malicious coalitions that include the Server and at most n− 1 Clients.

Proof of Correctness. The state of the central qubit after an honest execution of Protocol 2 before the
correction sent by the Client is |+θ′〉 with:

θ′ = θn +
∑

j∈[n−1]

(−1)tjθj . (7)

15



(a) The Server receives the qubits and applies
CNOT gates. The central qubit n is the control,
the rest are targets.

(b) The Server measures all qubits but the central
one in the computational basis and gets outcomes
tj ∈ {0, 1}.

Fig. 2: Collaborative Remote State Preparation for eight qubits. All qubits start in the state
∣∣+θj〉.

It is sufficient to prove this for a pure state |φ〉 = α |0〉+ β |1〉 as control. We apply a CNOT gate with |φ〉 as
control and

∣∣+θ̂〉 with θ̂ ∈ Θ as target, followed by a measurement of this second qubit in the computational
basis. Let t ∈ {0, 1} be the measurement result. After tracing out the second qubit post-measurement, the
system is in the following state:

√
2 〈0|2 X

t
2CNOT1,2 |φ〉

∣∣+θ̂〉 = 〈0|2 Xt2(α |00〉+ αeiθ̂ |01〉+ β |11〉+ βeiθ̂ |10〉
)

= 〈0|2 (α |0〉+ βeiθ̂ |1〉) |t〉+ eiθ̂ 〈0|2 (α |0〉+ βe−iθ̂ |1〉) |t⊕ 1〉

=Z(θ̂) |φ〉 〈0|t〉+ eiθ̂Z(−θ̂) |φ〉 〈0|t⊕ 1〉

Therefore, the result of this single step is Z((−1)tθ̂) |φ〉 up to a global phase. Replacing the result above in
the sequence of CNOT’s and measurements performed by the Server where the control is qubit n and the
targets are qubits j 6= n yields the desired value for θ′. Finally, the rotation correction (−1)bθ − θ′ sent by
the Orchestrator, along with Xb, transform the value of the final state into |+θ〉. �

Proof of Security. We first construct a Simulator against an adversarial Server and a coalition of n − 1
Clients, which represents the worst case. The Server expects to receive n qubits and a final correction
after transmitting the measurement results. The Simulator has single-query oracle access to the Remote
State Preparation Resource 2 for state set {|+θ〉}θ∈Θ. It receives a state from this resource, without the
corresponding classical description, and must make the Server accept this state as its output at the end of
the interaction. The actions of this Simulator are described in Simulator 1. Let h be the index associated to
the honest Client.

We can now prove that no Distinguisher can tell apart the following two situations with one honest client:
(i) the ideal resource interacting with the Simulator, and (ii) the real scenario.

Data and transcripts available to the Distinguisher. By construction, the Distinguisher fixes θ the angle of
the desired state to be prepared at the Server output-interface. It also fixes the value of all θj for j 6= h both
in the real and ideal scenarios and has perfect knowledge of the states sent by malicious parties. It does not
have access to θh as this is fixed by the honest client protocol.

16



Simulator 1 Malicious Server and n− 1 Clients
1. The Simulator calls the Remote State Preparation Resource 2 and receives a state |+θ〉.
2. It then emulates the behaviour of the n Quantum Channel Resources:

– For indices j 6= h, it simply forwards the state from corrupted Client j to the Server;
– For index h, it samples uniformly at random θh ∈R Θ and bh ∈R {0, 1}, and sends an encrypted version

Z(θh)X
bh(|+θ〉) of the state received from the RSP Resource.

3. It then emulates the Secure Classical Channel Resources and receives from each corrupted Client j 6= h a value
θj

4. It receives from the Server a bit-string of measurement results t ∈ [n− 1].
5. After extending the bit-string t with tn = 0, it computes θ′ using Equation 7 and sends the correction (th⊕bh,−θ′)

to the Server (by impersonating the Orchestrator) and halts.

Before sending the values for the measurement outcomes, the Distinguisher receives from the non-
corrupted party the state |+θh〉 in the real case and the state

∣∣∣+(−1)bhθ+θh

〉
in the ideal case. After sending

the bit-string t, regardless of how it was chosen, the Distinguisher receives a bit and an angle correspond-
ing to the corrections chosen by either the Orchestrator or the Simulator. In the first case this is equal to
(b, (−1)bθ − θ′) and in the second case (th ⊕ bh,−θ′) with b being chosen uniformly at random and θ′ being
computed in the exact same way in both settings (see Equation 7).

The remaining parameters in the real case and ideal cases are the received honest state, the associated
measurement outcome, the X-correction bit and the Z-correction angle. This gives us the following variables
that are in the hands of the Distinguisher (rows are labeled by the meaning of the corresponding data in the
real setting):

Real world Ideal world

Orchestrator-chosen output angle θ θ

Server’s received quantum state |+θh〉
∣∣∣+(−1)bhθ+θh

〉
Measurement result bit th th
Orchestrator correction bit b bh ⊕ th
Orchestrator correction angle (−1)bθ − (−1)thθh −(−1)thθh

Indistinguishability of data and transcripts for the Distinguisher. To finish the security proof, we need to
show that the distributions of the above data and transcripts are statistically indistinguishable in both
scenarios. To do this, we will perform a series of row-wide operations and eliminate the parameters of the
corrupted parties so that we are left with a new set of variables that will be trivially indistinguishable. The
reversibility of each operation and its dependency on values that are known to the Distinguisher guarantees
that it can always undo them.

First, multiply the final angle by (−1)th and use this angle to apply a rotation to the state. This transforms
the above values into:

Real world Ideal world

θ θ∣∣∣+(−1)b⊕thθ

〉 ∣∣∣+(−1)bhθ

〉
th th
b bh ⊕ th

(−1)b⊕thθ − θh −θh

Note that in both cases, the value for θh only appears in the last row term. Since it is chosen uniformly at
random both final terms follow the same distribution, meaning that they give no distinguishing advantage.
We can therefore safely omit them in the rest of the process:

17



Real world Ideal world

θ θ∣∣∣+(−1)b⊕thθ

〉 ∣∣∣+(−1)bhθ

〉
th th
b bh ⊕ th

Since b in the first row is a bit sampled uniformly at random, we can substitute it with b ⊕ th without
changing the distribution.9 We arrive at

Real world Ideal world

θ θ∣∣+(−1)bθ
〉 ∣∣∣+(−1)bhθ

〉
th th

b⊕ th bh ⊕ th

Because the b and bh are uniformly random bits, the above two distributions are identical, which concludes
the proof. �

4 Quantum Secure Multi-Party Computation

We present in this section an extension of the SDQC Protocol 1 from Section 2.3 based on the trappified
schemes in the X−Y plane. We consider here that n Clients want to perform a joint MBQC computation on
private classical inputs, receiving at the end either the same classical output or an abort message. There are
two steps in the SDQC protocol which must be modified: the preparation of a state which is compatible with
the SDQC protocol and does not leak any information to coalitions of malicious parties, and the classical
interaction between with the server to drive the computation and tests. If these components are available,
the composable security of the SDQC protocol ensures that the multi-party version is also secure.

The second step is purely classical once the state and computation have been fixed and we will use a
Classical SMPC Resource to handle it. This Resource will also sample the trappified canvas and embed the
Client’s desired computation into it. Hence, no malicious coalition will be able to learn where the tests are
located among the blind computations. The first step will make use of the Collaborative RSP Protocol 2
from the previous section, replacing the Orchestrator by calls to the Classical SMPC Resource. The n Clients
will use it to prepare rotated |+〉 states on the Server such that the encryption angle θ is unknown to any
malicious coalition, which protects the blindness of each computation.

Our resulting Secure Delegated Quantum Secure Multi-Party Computation Protocol with Classical IO
(Protocol 3) is therefore an information-theoretic upgrade of the Classical SMPC functionality. This is
the best one can hope for without an honest majority since it is impossible in that case to construct an
information-theoretically secure Quantum SMPC protocol. Crucially, no additional computational assump-
tions are used beyond what is required to construct the Classical SMPC Resource. This modularity means
that we can instantiate our protocol using any post-quantum secure assumption which is capable of con-
structing a Classical SMPC.

Quantum Secure Multi-Party Computation Resource. Our protocol will construct the following Quantum
Secure Multi-Party Computation Resource 3. It has n + 1 interfaces, one for each Player and the last one
for an Eavesdropper. It allows n Players to perform a collectively defined quantum computation C over their
private classical inputs with the guarantee that their computation is either executed properly, in which case
Player j receives the correct classical output, or it is aborted altogether. It is allowed to leak a known value
lρ about the Players’ computation and input on the Eavesdropper’s filtered interface.

9 This is the hidden reason for the additional encryption via Xb in the protocol.

18



Resource 3 Quantum Secure Multi-Party Computation with Classical IO
Inputs:
– Player j sends a classical bit-string xj . It can also input two bits fj and cj as a filtered interface.
– The n Players send the classical description of a quantum polynomial-time computation C with classical inputs

and outputs.
– The Eavesdropper can input two bits e and c as a filtered interface.

Computation by the Resource:
– If e = 1, the Resource sends the leakage lρ to the Eavesdropper’s interface.
– If c = 1 or there exists j such that cj = 1, the Resource sends Abort to all Players j such that cj = 0.
– It computes O = C(x), where x is the concatenation of strings xj .
– If there exists j ∈ [n] such that fj = 1, it sends O to Player j.
– If there has been no abort at this stage, it sends the outputs O to all other Players j in a similar fashion.

In order to construct this resource, we will make use of its classical equivalent. Our protocol will in the
end be an information theoretical upgrade of the following Resource.

Classical Secure Multi-Party Computation Resource. Resource 4 allows n Players to provide their private
inputs and perform a collectively defined computation C on them with the guarantee that the computation
is performed properly. We assume that it keeps an internal state between calls.

Resource 4 Classical Secure Multi-Party Computation
Inputs:
– Player j sends a classical bit-string xj . It can also input two bits fj and cj as a filtered interface.
– The n Players send the description of a classical polynomial-time computation C.

Computation by the Resource:
– If there exists j such that cj = 1, the Resource sends Abort to all Players j such that cj = 0.
– It computes O = C(x), where x is the concatenation of strings xj .
– If there exists j ∈ [n] such that fj = 1, it sends O to Player j.
– If there has been no abort at this stage, it sends the outputs O to all other Players j in a similar fashion.

Delegated QSMPC Protocol. Our final protocol will be built upon the two presented earlier. In an execution
the Trappified Delegated Blind Computation Protocol 1, the Client can perform all of its classical interactions
with the Server via a Classical SMPC Resource 4 if it provides this resource with its input and computation
(angles and flow). This resource is then responsible for sampling all the secret parameters – angles, bits, order
of test and computation runs, which tests to perform – and simply instructs the Client to prepare specific
states to send to the Server. Since only rotated |+〉 states are required for this verification protocol, this step
can further be replaced by an instance of the Remote State Preparation Resource 2 for states {|+θ〉}θ∈Θ,
as sending a state from this set is a perfect protocol constructing the RSP Resource. We can then finally
replace this resource by the Collaborative Remote State Preparation Protocol 2, in which the Orchestrator
is played by the Classical SMPC Resource.

In essence, the Classical SMPC together with the Collaborative RSP emulate the behaviour of the honest
Client in an execution of the Trappified Delegated Blind Computation Protocol, whose tests – described
in Section 2.4 – needed to be tailored specifically to require only the preparation of rotated |+〉 states.
The full description is given below in Protocol 3. We continue to refer to the Classical SMPC Resource as
the Orchestrator for simplicity, since in the Abstract Cryptography framework there is no formal difference
between an honest party and an interactive Resource.

19



Protocol 3 Secure Delegated Quantum Secure Multi-Party Computation with Classical IO
Public Information:
– G = (V,E, I,O), a graph with input and output vertices I and O respectively;
– {Ij}j∈[n], a partition of the input vertices, with each Ij being associated to Client j.
– P , a trappified scheme on graph G;
– �G, a partial order on the set V of vertices;
– N, d,w, parameters representing the number of runs, the number of computation runs, and the number of

tolerated failed tests.
Clients’ Inputs:
– Each Client j has as input a classical bit-string xj ∈ {0, 1}|Ij |.
– The n Clients collaboratively have as input a set of angles {φi}i∈V and a flow f which induces an ordering

compatible with �G.
Protocol:
1. The Clients send their input xj to the Orchestrator, together with the computation angles {φi}i∈V and flow
f . Let x be the concatenation of all xj .

2. The Orchestrator and the Server perform an execution of the Trappified Delegated Blind Computation Pro-
tocol 1. Instead of having the Orchestrator send rotated states during the UBQC execution, they perform for
each state an instance of the Collaborative State Preparation Protocol 2 together with the n Clients.
(a) The Orchestrator samples uniformly at random a subset C ⊂ [N ] of size d representing the computation

runs.
(b) For k ∈ [N ]:

i. If k ∈ C, the Orchestrator sets the computation for the run to ({φi}i∈V , f) with input x. Otherwise,
the Orchestrator samples a test (T, σ, τ) from the trappified scheme P .

ii. The Orchestrator and Server execute the chosen run with the UBQC Protocol 4. For each qubit sent
during the execution of the protocol, they instead execute the Collaborative RSP Protocol 2 together
with the n Clients.

iii. If the run is a test, the Orchestrator checks whether it passed.
(c) If the number of failed tests is greater than w, the Orchestrator sets the output to (⊥,Rej).
(d) Otherwise, let O be the majority vote on the output results of the computation runs. The Orchestrator

sets the output to (O,Acc).
3. The Orchestrator sends its set output to all Clients.

Extending the Functionality. The presentation above restricts how the input and output are treated for
simplicity’s sake and any additional efficient classical pre- and post-processing steps can be performed by
the Orchestrator with no impact on the security of the protocol.

Removing the Correction in the Collaborative RSP Protocol used with UBQC. The final step of the Collabo-
rative RSP Protocol calls for the Orchestrator to instruct the Server to apply a correction XbZ((−1)bθ− θ′)
to a state which in the honest case is equal to |+θ′〉, for a random value of b ∈R {0, 1} and the Orchestrator’s
desired angle θ. This is required to make the protocol simulatable against a malicious coalition – otherwise,
the Simulator has no way of transmitting the correct state to the Server. However, in Protocol 3 these qubits
are used in an execution of the UBQC Protocol, in which the Orchestrator requests that the Server measures
the qubit in the basis {|±δ〉} for δ = φ′+θ+rπ. Together, the unitary operations on this qubit in the honest
case can be written as

Z(−δ)EXbZ((−1)bθ − θ′)Z(θ′) |+〉 ⊗ |ψ〉

for a state |ψ〉 representing the rest of the state and the graph entangling operation E. Then, this is equal
to

Z(−φ′ − θ − rπ)EZ(θ − (−1)bθ′)Z((−1)bθ′) |+〉 ⊗ |ψ〉 = Z(−φ′ − (−1)bθ′ − rπ)EZ((−1)bθ′) |+〉 ⊗ |ψ〉 .

20



By performing the change of variables θ̂ = (−1)bθ′, which is drawn from the same distribution, we recover
the state in the original UBQC Protocol, with no correction from the Orchestrator:

Z(−φ′ − θ̂ − rπ)EZ(θ̂) |+〉 ⊗ |ψ〉 .

Therefore in the full protocol, requesting and applying the correction are unnecessary steps, either for
correctness or security, since the states with or without these corrections are equal.

Security of QSMPC. We now prove the correctness and security of our QSMPC protocol using the compo-
sition of AC resources and protocols.

Theorem 5 (Security of Delegated Quantum SMPC). Suppose that the Trappified Delegated Blind
Computation Protocol 1 εV -constructs the Secure Delegated Quantum Computation with Classical IO Re-
source 1 for leak lρ. Then Protocol 3 εV -constructs the Quantum Secure Multi-Party Computation with
Classical IO Resource 3 from an interactive Classical Secure Multi-Party Computation Resource 4 for the
same leak lρ, against malicious coalitions that include at most the Server and n− 1 Clients.

Proof. This proof is very simple and works by retracing in reverse order the high-level description of the
protocol in the worst case with n− 1 malicious Clients in collusion with a malicious Server

We first use the security of the Collaborative RSP Protocol as expressed in Theorem 4 to replace each
instance of this protocol with a call to the RSP Resource 2, at no security cost. The Secure Classical Channel
Resources from the Clients to the Orchestrator come for free since this party is now replaced by the Classical
SMPC Resource in our protocol.

We can then replace these Resources with a direct quantum communication channel between the Or-
chestrator and the Server, since this protocol perfectly implements the RSP Resource. We obtain as a result
exactly an execution of the UBQC Protocol 4 between the Orchestrator and the Server in step 2.b.ii of Pro-
tocol 3. The whole step 2 of Protocol 3 is then exactly an execution of Protocol 1 between the Orchestrator
and the Server.

We then use the fact that this protocol εV -constructs the Secure Delegated Quantum Computation with
Classical IO Resource and replace it by a call to that resource with a cost of εV .

In this final stage, the Clients send their desired computation and inputs to the Orchestrator, which only
forwards the concatenated input to the SDQC Resource. This Resource leaks the value lρ to the Server and
returns the correct value to the Orchestrator if there has been no abort from the Server. The Orchestrator
then sends back this output to the malicious Clients if they desire to receive it first. If there has been no abort
at this stage, the Orchestrator finally transmits the output to the honest Clients as well. Therefore merging
the Orchestrator – a Classical SMPC Resource – and the SDQC Resource yields exactly the behaviour of
the desired QSMPC Resource between the n Clients and the Server. �

5 Discussion

5.1 Comparison with Other QSMPC Protocols

Table 1 below gives a comparison of our protocol with the peer-to-peer protocols of [9] and [29], and with
the more recent semi-delegated protocol of [1]. We note n is the number of parties, d the depth of the
computation (MBQC for our paper, circuit for [29] and {T,CNOT}-depth for [9]), t the number of T gates,
c the number of CNOT gates, Cdist the code distance used in [29] and η a statistical security parameter. The
values below correspond to the simple case where each player has a single qubit of input.

Security guarantees. Reference [9] achieve an information-theoretic upgrade of a Classical SMPC to the
quantum domain, secure against an arbitrary number of corrupted parties. On the other hand, the protocol
from [1] is only computationally-secure since it relies on a Fully-Homomorphic Encryption Scheme on top
of the Classical SMPC, but it is also secure against arbitrary corruptions. The protocol of [29] constructs
an information-theoretically secure Quantum SMPC but suffers from an artificial blow-up in the number of

21



Dulek et al. [9] Lipinska et al. [29] Alon et al. [1] This work

Security Stat. upgrade of CSMPC Stat. Comp. (FHE + CSMPC) Stat. upgrade of CSMPC

Abort Unanimous Unanimous Identifiable Unanimous

Composability Composable Stand-Alone Stand-Alone Composable

Max adversaries n− 1
⌊
Cdist−1

2

⌋
n− 1 n− 1

Protocol nature Symmetric Symmetric Semi-Delegated Delegated

Network topology Q and C: Complete Q and C: Complete Q and C: Complete Q: Star / C: Complete

Q operations FTQC FTQC FTQC Cl: Single Qubit
S: FTQC

Classical SMPC Clifford Computation,
Operations in Z2, CT

CT Clifford Computation,
FHE verification Operations in Z8, Z2, CT

Rounds (C) O(d+ η(N + t)) d+ 2 O(1) d+ 3

Rounds (Q) Par: O(nd)
Seq: O(n(n+ t+ c))

Par: 3 (2 if C output)
Seq: O

(
η2(n+ t)

) Par: O
(
n4
) Par: 1

Seq: O(ηnd)

Size of Q memory Par: O
(
η2(n+ t))

)
Seq: O

(
η2n

) Par: O
(
η2n(n+ t)

)
Seq: O

(
n2
) Par: O

(
tn9η2

) Cl: 0
S (par): O

(
ηn2d

)
S (seq): O(nd)

Table 1: Comparison with [9,29,1]. Q stands for quantum and C for classical. The abbreviations Cl and S
stand for Client and Server respectively. Stat. means statistical, FTQC stands for Fault-Tolerant Quantum
Computer and CT for Coin-Toss.

participants and exchanged qubits.10 The protocols of [29,1] are proven secure in the Stand-Alone Model,
whereas ours and that of [9] are fully composable. On top of blindness, all protocols provide verifiability with
unanimous abort apart from that of [1] which achieves the stronger notion of identifiable abort.11

Communication requirements. One key advantage of our protocol over the others lies in its delegated nature,
where only one participant needs a full fault-tolerant quantum computer while the rest only perform very
limited quantum operations, compared with the symmetric setup in [9,29] where all participant has requires
fault-tolerance. The protocol of [1] can be considered semi-delegated in the sense that the brunt of the
quantum computation is performed by a single player. However, all players must have the ability to perform
arbitrary Cliffords on large states and cannot do so without having at their disposal a full fault-tolerant
quantum computer. This is also reflected in the network topology: whereas the best performance in [9,29,1]
can only be reached by using a complete quantum and classical communication graph, we only need a star
graph for quantum communications. While the network topology of [9] and [29] can also be star-shaped – with

10 It is based on error-correcting codes and the size of the code must correspond to the number of players n. The
maximum number of cheaters tolerated by the protocol is the number of correctable errors

⌊
Cdist−1

2

⌋
, which by

the quantum Singleton bound [33] is at most
⌊
n−1
4

⌋
. In their example, 7 players are required for implementing a

two-party computation since the code that is used is of size 7 and corrects 1 error. This leads to a situation where
5 participants that don’t have inputs nor outputs must still exchange messages and none can be malicious if one
of the players with inputs is.

11 A protocol satisfies the unanimous abort property if all honest players abort at the same time, as compared with
selective aborts where the Adversary can choose which players will abort separately. On top of that, identifiable
abort means that all honest players agree on the malicious party responsible for the failure of the protocol.

22



one player acting as a router – this would degrade their performance in terms of quantum communication
rounds.

Usage of Classical Primitives. Regarding classical primitives, [29] only requires secure coin-tossing and au-
thenticated broadcast channels (information-theoretically secure since they can rely on an honest majority).
We only use our Classical SMPC to perform coin-tossing, basic string operations (array lookup) and compu-
tations in Z8 and Z2. The Classical SMPC is more complex in [9,1] since it must be able to sample uniformly
at random and perform computations on the classical descriptions of arbitrary Cliffords.

Rounds of communication. We can now quantify more precisely the number of classical rounds of commu-
nication or calls to the Classical SMPC resource, quantum rounds of communication, and size of quantum
memory required by each participant in the protocol. [9] calls the Classical SMPC very often: a constant
number of times for each input qubit and gate in the circuit. But the most costly part is the generation of
ancillary magic states (for implementing T gates via gate-teleportation), which requires O(η(n+ t)) invoca-
tions of the Classical SMPC. Our protocol simply uses d+3 calls to this Resource, 2 for setting up the state
and 2 for the key-release step. This is equivalent to the classical communication requirements of [29], where
they only need d + 2 classical broadcasts per participant (with one for setting up the shared randomness
and another for the state preparation). If all quantum communications are done in parallel in [29], it can
be further parallelised to only require a constant number of classical broadcast rounds. The protocol of [1]
uses FHE (classical and quantum) to perform the computation and consequently the number of calls to the
Classicl SMPC is only constant. We note that using a classical primitive called functional encryption, where
a party in possession of an evaluation key can recover the clear-text of a function of the encrypted values
(and only that), would allow to attain the same result for our construction by allowing the Server to compute
the next measurement angle as a function of the encrypted secrets and previous measurement results.

The protocol of [9] requires numerous rounds of quantum communication as they need to send encoded
states around for the verification of inputs and T and CNOT gates. After parallelisation the total cost is
O(nd) quantum rounds. [1] aims to remove the circuit dependency in the number of rounds, obtaining O

(
n4
)

quantum rounds in the worst case in the case where the protocol is parallelised.12

Qubit Count and Memory Requirements. [29] seeks to optimise the quantum memory requirement of players
and therefore their communication is done sequentially, yielding O

(
η2(n+ t)

)
quantum rounds. Parallelisa-

tion lowers it to 3 (or 2 for classical outputs), at a higher quantum memory cost for all parties. Our protocol
is optimal as there is only a single quantum round (in the parallel case): sending to the Server all states
required for the collaborative state preparation phase.

Finally, the number of qubits required by [9] during the computation phase is O(η(n+ t)) for each partic-
ipant (they encode each of their input qubits, ancillae and magic states using O(η) qubits). However they use
O
(
η2(n+ t)

)
additional qubits in the offline phase to prepare the ancillary qubits (if the quantum communi-

cations are performed in parallel). On the other hand, [29] reduces the number of qubits for each participant
to O

(
n2
)
for sequential quantum communication, but this blows up to O

(
η2n(n+ t)

)
if parallelised. The

construction from [1] uses a compiler that adds automatically a cost of O
(
n2
)
for each base qubit. The costly

double encryptions and multiple layers of traps, in particular for the magic state distillation procedure, yields
a total quantum memory cost per participant of at least O

(
tn9η2

)
(this is a weak lower bound). In our paper

the Server needs O(nd) qubits to perform each blind computation or test. Each qubit in these graphs is
generated using n qubits via the Collaborative RSP Protocol and the computations and tests are repeated
O(η) times in total, resulting in a total qubit cost of O

(
ηn2d

)
for parallelised quantum communication but

only O(nd) if the rounds are performed sequentially. However, the Clients can prepare these states on the
fly and the Clients do not need quantum memory.

12 They send states along a path of size n2 in the communication graph of the parties, and remove a party if it doesn’t
deliver a packet before resending the states along a different path of the same size. In the worst case where there
are n − 1 malicious players which do not want to get caught cheating, they can drop (n − 1)(n − 2)/2 packets
without being disconnected from the communication graph.

23



5.2 Impossibility of Single-Qubit Privacy Amplification on the Whole Bloch Sphere

The construction and security of Protocol 3 relies on the composition of a collaborative encryption gadget
with the regular robust VBQC protocol driven by the Orchestrator.

The crucial features of the collaborative encryption are that (i) a single honest Client providing a random
state from the allowed input set is enough to randomize the output of the gadget, and (ii) no information
about the state provided by an honest Client leaks to the Server. These are the two properties that were
shown to hold in § 3.

It can also be seen that those do not hold whenever the set of input states for the clients not only comprise
the 8 |+θ〉 states in the X − Y plane but also the computational basis states |0〉 , |1〉. The reason is that in
such case, if the central qubit is set to a computational basis state, it cannot be randomized by the states
provided by other clients.

While this specific failure is contingent to the chosen transformation implemented by our gadget, we will
show here that it is indeed a more generic problem that gadgets fulfilling (i-ii) have in common, thereby
restricting these “gadget-assisted” approaches to verification of classical input classical output computations.

First, we give a mathematical definition of (i):

Definition 4 (Randomizing gadget). Let P be a protocol with two Clients and one Server such that it
takes a quantum state at each Client’s input interface, and produces a quantum state at the Server’s output
interface together with a common classical bit string at each of the parties output interface.

We say that this gadget is randomizing whenever conditionned on the value of the common bit string, the
linear maps implemented by the protocol when one of the two input states is fixed is invertible for pure input
states.

The motivation for this definition is simple: whenever one of the input is fixed, then the other one is
enough to randomize the output at the Server’s side. The role of the common bit string shared by all the
parties at the end of the protocol is to allow the possibility of having a linear map that depends on this bit
string as it is the case in our construction. As a consequence, the output state at the Server’s interface might
not be normalized in order to encapsulate the probability of a specific common bit string to be produced by
the protocol.

The following Lemma 10 shows that for a fixed common string, there will always exist a specific state for
one of the two inputs such that the map will not be invertible. This can result in one of the two following
cases. Either the output is a fixed non-zero quantum state or it produces the null vector. In the former, this
implies that the gadget is not able to correctly produce random states required by the VBQC protocol to be
secure. In the latter, observing a specific common bit string excludes some input state for the honest Client,
thereby also violating the assumptions required to obtain the security of the whole protocol.

Lemma 9. Every two-dimensional linear subspace V ⊂ C2×2 contains at least one nonzero, singular matrix.

Proof. Let A,B ∈ V form a basis of V . If A or B is singular, the claim is trivial. Assume henceforth that
both A and B are invertible.

For α ∈ C, let Cα = A + αB. Clearly, Cα ∈ span({A,B}). Since A and B are linearly independent,
Cα 6= 0. It further holds that

det(Cα) = det

[
a11 + αb11 a12 + αb12
a21 + αb21 a22 + αb22

]
= (a11 + αb11)(a22 + αb22)− (a12 + αb12)(a21 + αb21)

= α2(b11b22 − b12b21) + α(a11b22 + b11a22 − a12b21 − b12a21) + a11a22 − a12a21
= α2 det(B) + α(a11b22 + b11a22 − a12b21 − b12a21) + det(A).

As det(B) 6= 0, this is a polynomial of degree 2 in the variable α. By the fundamental theorem of algebra,
this polynomial admits at least one complex root. �

24



Lemma 10. There exists no linear map Ξ : C2×2 → C2 such that for all nonzero v ∈ C2 both Ξ(· ⊗ v) and
Ξ(v ⊗ ·) are invertible.

Proof. Assume the existence of such a map Ξ. By the rank-nullity theorem, it holds then that

dim(Ker(Ξ)) = dim(C2×2)− dim(Im(Ξ)) ≥ 2.

By Lemma 9, there exists a rank-one matrix C ∈ Ker(Ξ). We can rewrite C = vwT = v ⊗ w with nonzero
vectors v, w ∈ C2. It follows that Ξ(v⊗w) = 0 which contradicts the invertibility of Ξ(·⊗w) and Ξ(v⊗·). �

This leads us to conclude that such gadget assisted approaches will inherently be limited to classical I/O
computations.

5.3 Open Questions

This work closes a gap between the circuit and MBQC models regarding secure multi-party computations.
It shows that both are able to perform the required lift from classical to quantum in a statistically secure
way, in spite of the more stringent requirements the delegation imposes on what clients can do. Yet, this is
only partially satisfactory as we do not consider the quantum input/output case. This specific question was
considered by some of the authors. This lead to designing a protocol that was similar in spirit to the one
presented here, but where the Collaborative Remote State Preparation would not only be able to prepare
states in the X − Y plane, but also dummy qubits. An attack on this protocol is analysed in § C. It’s
discovery initiated the current work using dummyless verification as a way to avoid it. Yet, we also show
in § 5.2 that such approach based on Collaborative Remote State Preparation outside a single plane is not
likely to succeed, thereby leaving open the question of how to perform Delegated QSMPC with quantum
I/O.

Other open questions regarding SMPC in the MBQC model include the verification of sampling with
possibly better than polynomial security bounds. The question of the delegation of fault-tolerant computation
in the MBQC model is also a long standing open question that we believe can benefit from the theoretical
tools developed in [22] and from an approach similar to the one exemplified in this work.

Finally, [30] showed how to blindly delegate quantum computations with trusted rotations, even if both
state preparations and measurements are untrusted, but left open the question whether verification is possible
in this setting. The difficulty of verification seems to stem from the fact that (i) their analysis concerns states
in the X−Y plane, but not dummy states, and (ii) the remotely prepared states are blind, but not necessarily
verifiable. While this work does not overcome the second obstacle, it shows that verification is indeed possible
without the remote preparation of dummy states, and therefore constitutes a step towards the solution of
this open problem.

Acknowledgments. The authors would like to thank Michael Oliveira for discussions about the results from
Section 5.2. TK was supported by a Leverhulme Early Career Fellowship. HO was partially funded by the
Hybdrid HPC Quantum Initiative. EK, DL, and HO acknowledge the support by ANR research grant ANR-
21-CE47-0014 (SecNISQ). LM is grateful for support from the grant BPI France Concours Innovation PIA3
projects DOS0148634/00 and DOS0148633/00 – Reconfigurable Optical Quantum Computing.

References

1. Alon, B., Chung, H., Chung, K.M., Huang, M.Y., Lee, Y., Shen, Y.C.: Round efficient secure multiparty quantum
computation with identifiable abort (Nov 2020), https://eprint.iacr.org/2020.1464

2. Bartusek, J.: Secure quantum computation with classical communication. In: Nissim, K., Waters, B. (eds.) Theory
of Cryptography. pp. 1–30. Springer International Publishing, Cham (2021)

3. Bartusek, J., Coladangelo, A., Khurana, D., Ma, F.: On the round complexity of secure quantum computation.
In: Malkin, T., Peikert, C. (eds.) Advances in Cryptology – CRYPTO 2021. pp. 406–435. Springer International
Publishing, Cham (2021)

25

https://eprint.iacr.org/2020.1464


4. Ben-Or, M., Crepeau, C., Gottesman, D., Hassidim, A., Smith, A.: Secure multiparty quantum computation
with (only) a strict honest majority. In: Proceedings of the 47th Annual IEEE Symposium on Foundations of
Computer Science. pp. 249–260. FOCS ’06, IEEE Computer Society, Washington, DC, USA (2006). https:
//doi.org/10.1109/FOCS.2006.68, http://dx.doi.org/10.1109/FOCS.2006.68

5. Broadbent, A., Fitzsimons, J., Kashefi, E.: Universal blind quantum computation. In: IEEE (ed.) 50th Annual
IEEE Symposium on Foundations of Computer Science (2009)

6. Cramer, R., Damgrd, I.B., Nielsen, J.B.: Secure Multiparty Computation and Secret Sharing. Cambridge Uni-
versity Press, USA, 1st edn. (2015), https://dl.acm.org/doi/book/10.5555/2846411

7. Crépeau, C., Gottesman, D., Smith, A.: Secure multi-party quantum computation. In: Proceedings of the Thiry-
fourth Annual ACM Symp. on Theory of Computing. p. 643. STOC ’02, ACM, New York, NY, USA (2002).
https://doi.org/10.1145/509907.510000, http://doi.acm.org/10.1145/509907.510000

8. Danos, V., Kashefi, E.: Determinism in the one-way model. Phys. Rev. A 74, 052310 (Nov 2006). https://doi.
org/10.1103/PhysRevA.74.052310, http://link.aps.org/doi/10.1103/PhysRevA.74.052310

9. Dulek, Y., Grilo, A.B., Jeffery, S., Majenz, C., Schaffner, C.: Secure multi-party quantum computation with a
dishonest majority. In: Canteaut, A., Ishai, Y. (eds.) Advances in Cryptology – EUROCRYPT 2020. pp. 729–758.
Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_25

10. Dunjko, V., Fitzsimons, J.F., Portmann, C., Renner, R.: Composable security of delegated quantum computation.
In: Sarkar, P., Iwata, T. (eds.) Advances in Cryptology – ASIACRYPT 2014. pp. 406–425. Springer Berlin
Heidelberg, Berlin, Heidelberg (2014)

11. Dupuis, F., Fehr, S., Lamontagne, P., Salvail, L.: Adaptive versus non-adaptive strategies in the quantum setting
with applications. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology – CRYPTO 2016. pp. 33–59. Springer
Berlin Heidelberg, Berlin, Heidelberg (2016)

12. Dupuis, F., Nielsen, J.B., Salvail, L.: Secure Two-Party Quantum Evaluation of Unitaries against Specious Adver-
saries. Springer Berlin Heidelberg, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_
37, http://dx.doi.org/10.1007/978-3-642-14623-7_37

13. Dupuis, F., Nielsen, J.B., Salvail, L.: Actively secure two-party evaluation of any quantum operation. In: Advances
in Cryptology–CRYPTO 2012, pp. 794–811. Springer (2012)

14. Fehr, S., Katz, J., Song, F., Zhou, H.S., Zikas, V.: Feasibility and completeness of cryptographic tasks in the
quantum world. In: Sahai, A. (ed.) Theory of Cryptography. pp. 281–296. Springer Berlin Heidelberg, Berlin,
Heidelberg (2013)

15. Ferracin, S., Kapourniotis, T., Datta, A.: Reducing resources for verification of quantum computations. Physical
Review A 98(2), 022323 (2018)

16. Fitzsimons, J.F., Kashefi, E.: Unconditionally verifiable blind quantum computation. Phys. Rev. A 96, 012303
(Jul 2017). https://doi.org/10.1103/PhysRevA.96.012303, https://link.aps.org/doi/10.1103/PhysRevA.
96.012303

17. Gheorghiu, A., Kapourniotis, T., Kashefi, E.: Verification of quantum computation: An overview of ex-
isting approaches. Theory of Computing Systems 63(4), 715–808 (May 2019). https://doi.org/10.1007/
s00224-018-9872-3, https://doi.org/10.1007/s00224-018-9872-3

18. Hallgren, S., Smith, A., Song, F.: Classical cryptographic protocols in a quantum world. International Journal of
Quantum Information 13(04), 1550028 (2015). https://doi.org/10.1142/S0219749915500288, https://www.
worldscientific.com/doi/abs/10.1142/S0219749915500288

19. Hein, M., Eisert, J., Briegel, H.J.: Multi-party entanglement in graph states (2003)
20. Houshmand, M., Houshmand, M., Tan, S.H., Fitzsimons, J.: Composable secure multi-client delegated quantum

computation. arXiv preprint arXiv:1811.11929 (2018)
21. Kapourniotis, T., Dunjko, V., Kashefi, E.: On optimising quantum communication in verifiable quantum com-

puting (2015), presented at AQIS’15 conference
22. Kapourniotis, T., Kashefi, E., Leichtle, D., Music, L., Ollivier, H.: Unifying quantum verification and error-

detection: Theory and tools for optimisations. arxiv:2206.00631 (2022)
23. Kapourniotis, T., Kashefi, E., Music, L., Ollivier, H.: Delegating multi-party quantum computations vs. dishonest

majority in two quantum rounds (2021)
24. Kashefi, E., Music, L., Wallden, P.: The quantum cut-and-choose technique and quantum two-party computation

(2017)
25. Kashefi, E., Pappa, A.: Multiparty delegated quantum computing. Cryptography 1(2), 1–20 (7 2017). https:

//doi.org/10.3390/cryptography1020012
26. Kashefi, E., Wallden, P.: Garbled quantum computation. Cryptography 1(1), 6 (2017)
27. Kashefi, E., Wallden, P.: Optimised resource construction for verifiable quantum computation. Journal of Physics

A: Mathematical and Theoretical; preprint arXiv:1510.07408 (2017), http://iopscience.iop.org/10.1088/
1751-8121/aa5dac

26

https://doi.org/10.1109/FOCS.2006.68
https://doi.org/10.1109/FOCS.2006.68
http://dx.doi.org/10.1109/FOCS.2006.68
https://dl.acm.org/doi/book/10.5555/2846411
https://doi.org/10.1145/509907.510000
http://doi.acm.org/10.1145/509907.510000
https://doi.org/10.1103/PhysRevA.74.052310
https://doi.org/10.1103/PhysRevA.74.052310
http://link.aps.org/doi/10.1103/PhysRevA.74.052310
https://doi.org/10.1007/978-3-030-45727-3_25
https://doi.org/10.1007/978-3-642-14623-7_37
https://doi.org/10.1007/978-3-642-14623-7_37
http://dx.doi.org/10.1007/978-3-642-14623-7_37
https://doi.org/10.1103/PhysRevA.96.012303
https://link.aps.org/doi/10.1103/PhysRevA.96.012303
https://link.aps.org/doi/10.1103/PhysRevA.96.012303
https://doi.org/10.1007/s00224-018-9872-3
https://doi.org/10.1007/s00224-018-9872-3
https://doi.org/10.1007/s00224-018-9872-3
https://doi.org/10.1142/S0219749915500288
https://www.worldscientific.com/doi/abs/10.1142/S0219749915500288
https://www.worldscientific.com/doi/abs/10.1142/S0219749915500288
https://doi.org/10.3390/cryptography1020012
https://doi.org/10.3390/cryptography1020012
http://iopscience.iop.org/10.1088/1751-8121/aa5dac
http://iopscience.iop.org/10.1088/1751-8121/aa5dac


28. Leichtle, D., Music, L., Kashefi, E., Ollivier, H.: Verifying bqp computations on noisy devices with minimal
overhead. Phys. Rev. X Quantum 2(040302) (2021)

29. Lipinska, V., Ribeiro, J., Wehner, S.: Secure multi-party quantum computation with few qubits. arXiv e-prints
arXiv:2004.10486 (Apr 2020)

30. Ma, Y., Kashefi, E., Arapinis, M., Chakraborty, K., Kaplan, M.: QEnclave – a practical solution for secure
quantum cloud computing. npj Quantum Information 8(1), 128 (2022)

31. Maurer, U.: Constructive cryptography – a new paradigm for security definitions and proofs. In: Mödersheim,
S., Palamidessi, C. (eds.) Theory of Security and Applications. pp. 33–56. Springer Berlin Heidelberg, Berlin,
Heidelberg (2012)

32. Maurer, U., Renner, R.: Abstract cryptography. In: Innovations in Computer Science. pp. 1 – 21. Tsinghua
University Press (jan 2011), https://conference.iiis.tsinghua.edu.cn/ICS2011/content/papers/14.html

33. Rains, E.M.: Nonbinary quantum codes. IEEE Transactions on Information Theory 45(6), 1827–1832 (1999).
https://doi.org/10.1109/18.782103

34. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (May 2001).
https://doi.org/10.1103/PhysRevLett.86.5188, http://link.aps.org/doi/10.1103/PhysRevLett.86.5188

35. Unruh, D.: Universally composable quantum multi-party computation. In: Gilbert, H. (ed.) Advances in Cryp-
tology – EUROCRYPT 2010. pp. 486–505. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

36. Yao, A.: How to generate and exchange secrets. In: Foundations of Computer Science, 1986., 27th Annual Sym-
posium on. pp. 162–167. IEEE (1986)

27

https://conference.iiis.tsinghua.edu.cn/ICS2011/content/papers/14.html
https://doi.org/10.1109/18.782103
https://doi.org/10.1103/PhysRevLett.86.5188
http://link.aps.org/doi/10.1103/PhysRevLett.86.5188


28



Auxiliary Supporting Material





A The Abstract Cryptography Framework

Abstract Cryptography is a framework for defining and proving the security of cryptographic protocols, first
introduced in [32,31]. Its main advantage compared to so-called Stand-Alone Models such as [18] is that any
system that follows the structure defined by the framework is inherently composable, in the sense that if
two protocols are secure separately, the framework guarantees at an abstract level that their sequential or
parallel composition is also secure. It is equivalent to the Quantum Universal Composability (Q-UC) Model
of [35] if a single Adversary controls all corrupted parties – which is the case in this work. Therefore any
protocol which is secure in the Q-UC model is also secure in the AC model considered here. We refer the
reader to [10] for a more in-depth presentation.

In this framework, the purpose of a secure protocol π is, given a number of available resources R, to
construct a new resource – written as πR. This new resource can be itself reused in a future protocol.

The actions of all honest players in a given protocol are represented as a sequence of efficient CPTP
maps acting on their internal quantum registers – which may contain communication registers, both classical
and quantum. An n-party quantum protocol is therefore described by π = (π1, . . . , πn) where πj is the
aforementioned sequence of efficient CPTP maps executed by party j, called the converter of party j.

A resource R is described as a sequence of CPTP maps with an internal state. It has input and output
interfaces describing which party may exchange states with it. Some interfaces may be filtered, meaning that
they are only accessible to a corrupted party.13 It works by having the party sending it a given state at
one of its input interfaces, applying the specified CPTP map after all input interfaces have been initialised
and then outputting the resulting state at its output interfaces in a specified order. Classical resources are
modelled by considering that the input state is measured in the computational basis upon reception and the
output is a measurement result on its internal state.

In order to define the security of a protocol, we need to give a pseudo-metric on the space of resources.
The security analysis then consists of considering a special type of converters called distinguishers. The
distinguisher’s aim is to discriminate between resources R0 and R1 which have the same input and output
interfaces. It attaches to the inputs and outputs of one of the resources, interacting with it according to its
own – possibly adaptive – strategy, and outputs a single bit indicating its guess as to which resource it had
access to. Two resources are said to be indistinguishable if no distinguisher can make this guess with good
probability.

Definition 5 (Indistinguishability of Resources). Let ε(η) be a function of security parameter η and R0

and R1 be two resources with same input and output interfaces. The resources are ε-statistically-indistinguish-
able if, for all distinguishers D, we have:∣∣∣Pr[b = 1 | b← DR0]− Pr[b = 1 | b← DR1]

∣∣∣ ≤ ε (8)

We then write R0 ≈
stat,ε
R1.

The correctness of a protocol protocol π applied to resource R can be expressed as the indistinguishability
between the resource πR and a desired target resource S.

The security of the protocol is captured by the fact that the resources remain indistinguishable if we
allow some parties to deviate in the sense that they are no longer forced to use the converters defined in
the protocol but can use any other CPTP maps instead. This is done by removing the converters for those
parties in Equation 8, keeping only πMc = {πj}j /∈M where M is the set of corrupted parties. On the other
side, there must exist a converter called a simulator which attaches to the interfaces of S for corrupted
parties j ∈ M and aims to reproduce the transcript of honest players interacting with the corrupted ones.
The security is formalised as follows in Definition 6.

Definition 6 (Construction of Resources). Let ε(η) be a function of security parameter η. We say
that an n-party protocol π ε-statistically-constructs resource S from resource R against adversarial patterns
P ⊆ ℘([N ]) if:
13 In this paper filtered input interfaces consist of single bits, set to 0 in the default, honest case.

31



1. It is correct: πR ≈
stat,ε
S⊥, where ⊥ filters the malicious interfaces;

2. It is secure for all subsets of corrupted parties in the pattern M ∈ P: there exists a converter called
simulator σM such that πMcR ≈

stat,ε
SσM .

We can now present the General Composition Theorem (Theorem 1 from [32]).

Theorem 6 (General Composition of Resources). Let R, S and T be resources, α, β and id be protocols
(where protocol id does not modify the resource it is applied to). Let ◦ and | denote respectively the sequential
and parallel composition of protocols and resources. Then the following implications hold:
– The protocols are sequentially composable: if αR ≈

stat,εα
S and βS ≈

stat,εβ
T then (β ◦ α)R ≈

stat,εα+εβ
T

– The protocols are context-insensitive: if αR ≈
stat,εα

S then (α | id)(R | T ) ≈
stat,εα

(S | T )

Combining the two properties presented above yields concurrent composability (the distinguishing ad-
vantage cumulates additively as well).

The computational versions of these definitions are obtained by quantifying over quantum polynomial
time parties. Composing a statistically-secure protocol with a computationally-secure protocol is possible
provided that the simulator for the statistically-secure one runs in expected polynomial time. The resulting
protocol is of course only computationally-secure.

Comments on the Security Framework. First, we always consider in this work a single Adversary controlling
all the corrupted parties. As explained above, it is therefore possible to instantiate all purely classical Re-
sources using any classical protocol which is secure in the Q-UC framework of [35] with the same security
guarantees. It is also possible to instantiate them with any classical UC-secure protocol whose security relies
on a quantum-hard problem thanks to Theorem 18 (Quantum Lifting Theorem – Computational) from [35].

Also, it is impossible to have fairness of output distribution in the case of a dishonest majority, the
malicious parties can always choose to receive their output before the honest players. This is modelled in the
resources by a filtered bit fj at each player’s interface, indicating that it receives the output before others.
The corrupted players can then decide to make the honest players abort before receiving their output.

B Measurement-Based Quantum Computing

The protocols in the present paper relies on Measurement-Based Quantum Computing (or MBQC). The
MBQC model of computation emerged from the gate teleportation principle. It was shown in [34] that any
quantum computation can be implemented by performing single-qubit measurements on a type of entangled
states called graph states.

Given a graph G = (V,E), and input and output vertices I,O ⊆ V , the corresponding graph state is
generated by initialising a qubit in state |+〉 for each vertex in V and performing entangling operator CZ
between qubits whose vertices are linked by an edge in E. The qubits are measured according to an order
given by a function f : Oc → Ic called the flow of the computation.

We define the rotation operator around the Z axis of the Bloch sphere by an angle θ as Z(θ) =
(
1 0
0 eiθ

)
and |+θ〉 = Z(θ) |+〉 = 1√

2
(|0〉 + eiθ |1〉). For approximate universality, we can restrict the set of angles to

Θ =
{
kπ
4

}
k∈{0,...,7} [5]. The measurement associated to an angle φ ∈ Θ is given by the basis |±φ〉. We

consider in this paper that this measurement is performed by rotating the state to be measured using the
operation Z(−φ) and then measuring in the X-basis.

Later measurement may depend on the outcomes of previous measurements. Let {φ(v)}v∈Oc be a set
of default measurement angles for non-output qubits. Let SX(v) and SZ(v) be respectively the X and Z
dependency-sets for qubit v.14 The measurement result s(w) for qubit w ∈ SX(v) ∪ SZ(v) induces Pauli
14 These sets are also given by the flow, see [19,8] for details.

32



corrections on qubit v which are equivalent to measuring qubit v with corrected angle φ′(v) = (−1)sX(v)φ(v)+
πsZ(v), where sX(v) =

⊕
w∈SX(v) s(w) and sZ(v) =

⊕
w∈SZ(v) s(w).

The special case of classical inputs is handled by adding an angle x(v)π to the measurement angle φ(v)
of input qubit v ∈ I. Classical outputs correspond to the case where all qubits are measured.

The classical input-output computation is defined by a graph G = (V,E), input and output vertices
I,O ⊆ V , a set of default measurement angles {φ(v)}v∈V and a flow function f : Oc → Ic. To perform the
computation, one generates the graph state associated to G, performs the measurements with angles φ′(v)
using the default angles and the flow. The outcome is defined by bit-string {s(v)}v∈O.

B.1 Universal Blind Quantum Computing

An MBQC computation can easily be delegated by a Client to a quantum Server by having the Server create
the graph state and perform measurements instructed by the Client. Universal Blind Quantum Computation
(or UBQC) [5] is an upgrade of delegated MBQC which guarantees that the Server does not learn anything
about the computation besides the computation graph, order of measurements and position of output qubits.

This is achieved as follows. The Client hides the computation by sending rotated states
∣∣+θ(v)〉 instead of

|+〉 for each qubit v. The effect of this rotation is cancelled by a corresponding rotation of the measurement
angle. An additional parameter r(v) adds an extra r(v)π rotation to the measurement angle in order to hide
the measurement outcome. This can be classically accounted for by the Client by setting s(v) = r(v)⊕ b(v),
where s(v) is used as above in MBQC for corrections while b(v) is the outcome returned by the Server.
The measurement angle sent by the Client is then δ(v) = φ′(v) + θ(v) + r(v)π + x(v)π, where x is its input
bit-string, extended by 0 on non-input vertices.

We give the full UBQC protocol for classical inputs and outputs in Protocol 4.

Protocol 4 Classical Input-Output Universal Blind Quantum Computation
Public Information:
– G = (V,E, I,O), a graph with input and output vertices I and O respectively;
– �G, a partial order on the set V of vertices;

Client’s Inputs: A bit-string x ∈ {0, 1}|I| and the classical description of a unitary U as default measurement
angles {φ(v)}v∈V and a flow f which induces an ordering compatible with �G.
The Protocol:
1. The Client, for each vertex v ∈ V , samples at random θ(v) ∈R Θ and sends

∣∣+θ(v)〉 to the Server.
2. The Server receives the qubits one-by-one and applies the entangling operations CZ that correspond to the

edges of the graph G.
3. For each qubit v ∈ V , following the partial order of the flow:

(a) The Client samples at random r(v) ∈R {0, 1}, calculates and sends an angle to the Server:

δ(v) = φ′(v) + θ(v) + r(v)π + x(v)π. (9)

(b) The Server measures in the {
∣∣+δ(v)〉 , ∣∣−δ(v)〉} basis and returns to the Client outcome b(v). The Client

sets s(v) = b(v)⊕ r(v).
4. The Client sets the bit-string {s(v)}v∈O as its output.

C Post-Mortem of Previous Protocol

A subset of the authors of the current paper proposed an earlier protocol for QSMPC [23]. We show here
the limits of the design and discuss possible paths towards fixing it.

33



State-Selective Flipping Attack. The principle of the previous protocol was to separate the computation in two
parts. The first section, which is blind only and not verifiable, is responsible for preparing the verifiable graph
state from [27], i.e. a single graph state which includes traps. This requires to prepare both rotated qubits
and dummies. The Collaborative RSP prepares only rotated states which must then either be transformed
into dummies {|0〉 , |1〉} or left undisturbed (for computation and trap qubits). This is done with a blind
computation on all these qubits, the additional qubits required for this computation being also generated
using the Collaborative RSP. This is essentially a way to extend the Collaborative RSP to a bigger set of
states.

The blindness of this gadget is proven in the Abstract Cryptography framework, so it would seem that it
can be composed with the single-Client SDQC protocol to yield QSMPC in the same way as in the current
work. However, this is not the case since we do not verify that the Server acts honestly so the final state
is correct up to a global deviation. In general this deviation depends on the state that is being prepared,
in particular the deviation can depend on whether the final state is a dummy or computation/trap qubit.
Conscious of this, [23] exhibit a number of sufficient conditions on the computation so that this global
deviation is independent of the secret state the the Clients prepare collaboratively.

These conditions are as follows:
1. The inputs in the graph of the Clients’ desired computation have degree 1.
2. All measurement angles are from the set {kπ/2}0≤k≤3, i.e. the computation is Clifford.
3. The graph, flow of this computation and the angles of all vertices beyond the first layer of the gadget

are independent of the final desired state of the qubits.
This final condition restrains a lot the possible types of computations that can be performed in this step

but [23] proposes a scheme which seems to satisfy them. We recall it here for completeness. The MBQC
pattern is given by the following graph and angles.

π/2 π/2

Arbitrary input ρ Output qubit

0 0 0 0

00

|±i〉 or |±〉 input

The qubit which must be transformed is denoted ρ (upper left qubit) and the lower left qubit’s state is
chosen depending on whether the upper qubit should be turned into a dummy or not. We refer to [23] for
details. In order to be correct, it requires an additional correction step after this computation. The correction
depends on the state of the second input qubit and the measurement outcome of the last qubit in the lower
line.

2nd qubit input Outcome Correction Effect
|+i〉 0 Y I
|+i〉 1 Y I
|−i〉 0 I I
|−i〉 1 I I
|+〉 0 X H
|+〉 1 Z H
|−〉 0 Z H
|−〉 1 X H

Unfortunately, this correction depends on the final state. More precisely, by flipping the value reported as
measurement outcome, the Server can apply an Y operation on dummy qubits and leave the rest unaffected.
This flips selectively the state of dummies only, even if the server does not know that the qubit being prepared
is in fact a dummy. We show in the next section how this breaks the verifiability of the protocol. The main
take-away is that any correction applied after the computation does not also depend on the final state.

A potential patch was constructed using a more compact setup which seemingly satisfies all conditions.
The graph that is used consists of a three vertex line for each final qubit. The first qubit in the line is

34



measured either with an angle π/2 for dummy vertices or 0 for other positions. The second vertex will
always be measured with an angle of π/2. This is presented below in Figure 3.

(a) Measurement pattern for rotated qubits. (b) Measurement pattern for dummy qubits.

Fig. 3: DBQC measurement pattern applied to each qubit in the verifiable graph. The vertices surrounded
with squares are inputs, round vertices are measured, diamond vertices are outputs. Blue vertices correspond
to a measurement angle of π/2 while white vertices are measured with angle 0.

In the first case, the operation that is applied is HZ(π/2)HZ(π/2) = X(π/2)Z(π/2), which has the effect
of transforming the state |+〉 first into

∣∣+π/2〉 with the Z-rotation and then into |0〉 via the X-rotation. Note
that this does not correspond to a Hadamard gate since it transforms |−〉 into −i |1〉, but it is sufficient for
our purposes. In the second case, the operation correspond to X(π/2), which has no effect when applied to
a |+〉 state up to a global phase. Since all qubits are rotated |+〉 states, the rotation of the last qubit in the
three vertex line graph re-encodes the state if the final state is not a dummy. This yields the full set of states
required by the SDQC protocol.

Note that once again, the conditions appear to be satisfied. Also, there are no post-processing steps
beyond the standard MBQC flow corrections. However, here the input states do not span the full 8 rotated
states, but are always considered as |+〉 states and they are re-encrypted via the rotation of the last qubit.
By applying Z on the input before the computation and the output after the computation, it is also possible
to selectively flip dummies only: the two Zs will cancel out for rotated qubits, but the second Z will have no
effect on dummies while the first Z will flip the dummy.

Attack from Selective Dummy Flipping. We describe here an attack on the VBQC scheme of [27], assuming
that the Adversary can flip the value of dummy qubits (without affecting the computation and traps). We
assume for this section knowledge about the Dotted-Triple Graph construction of [27]. Consider a line graph
of two qubits and its transformation in a Dotted-Triple Graph. This graph contains two primary locations
with three qubits and one added location with nine qubits.

Through the application of CZ gates to construct the graph, flipping the value of a dummy is equivalent
to applying Z on all adjacent qubits. For a given qubit in the graph, the global effect is I if an even number
of adjacent dummies are flipped, and Z if an odd number of adjacent dummies are flipped. As we wish to
disrupt the computation but not affect traps, the key to our attack is to use the difference in the number of
dummies in the neighbourhood of traps and computation qubits. Traps are only linked to dummies while a
computation qubit will always have at least one other computation qubit among its neighbours. As shown
in Figure 4 below, we selectively flip added vertices so that each primary vertex is linked to exactly two
attacked added vertices.

In that case, since the primary trap qubits are only linked to dummies, the attack does not trigger either
trap (if one of the middle qubits that is attacked is a trap, the effect of the attack on this trap is I as
explained above). However, the attack may either affect two dummies linked to the primary computation
qubits, in which case there is no attack since the effects cancel out, or one added dummy and the added
computation qubit. Then, the effect on the added computation qubit is I but the attacked dummies will apply
a Z operation on primary computation qubits on both sides of the link. If we assume fixed (but unknown)
attack positions, whether this attack succeeds in modifying the computation depends only on the colouring
that is used, while never triggering any trap. The probability of success is equal to 2/3: the attack succeeds

35



Fig. 4: Example of attack layout where each top and bottom primary qubit is attached to exactly two attacked
added qubits. Qubits that have been chosen for the attack are circled in blue.

if the computational added qubit is chosen for the attack, there are 6 possible choices of attack configuration
and each added qubit is left untouched by 2 out of the 6 attack configurations. We give in Figure 5 two
possible colourings, ones in which the attack has no effect one the computation while the other corrupts it.

(a) Z attack on both primary computational qubits
due to odd number of attacked added dummies.

(b) No attack on either primary computational qubit
due to even number of attacked added dummies.

Fig. 5: Two colourings of the previous graph (computational qubits are green, traps are white and dummies
are red) for the same attacked qubits but a different effect on primary computational qubits. Attacked qubits
are circled in blue, which translates to an X effect on dummies (yellow-filled circle) and no effect on added
computational qubits (empty circle). The primary trap qubits are never affected by the attack since they are
always attached to an even number of attacked added dummies.

Extension and Take-away. Essentially, allowing an attack to depend on the nature of the qubits introduces
new attacks compared to those that are possible in the plain VBQC Protocol. We have shown above that
even a simple attack of this type is sufficient to break verifiability.

This attack is not specific to the construction of [27] and can also be applied to the robust SDQC Protocol
of [28]. There, a trap is also always linked to dummies but computation qubits are never linked to dummies
(the test and computation graphs are separated as in the current work). Applying the selective flip and apply
a Z on all neighbours will corrupt the computation but leave traps unaffected.

36



There are two main ingredients to these attacks: (i) the possibility for the server to selectively attack qubits
depending on whether they are dummies or rotated qubits, and (ii) the difference in the neighbourhoods of
computation and trap qubits in terms of dummies. Regarding the first point, the sufficient conditions above
are very restrictive as to what types of computations can be performed to generate a wider range of states.
Together with the result from Section 5.2, this is a strong indication that starting from a Collaborative RSP
for a restricted set of states and expanding it is hard to construct securely. As for the second point, if it is
possible to construct an SDQC protocol in which the effect of flipping any number of dummies is the same on
the tests and computations, then this attack would have no effect beyond what the SDQC protocol already
protects. The current paper provides a solution to this problem by removing dummies altogether in the case
of classical inputs and outputs. Other directions can be explored as well in order to construct a protocol
which resits these attacks and handles quantum inputs and outputs.

We note that at no point do we break the theorem from [23] proving the sufficient conditions for construct-
ing an MBQC gadget for blindly generating an SDQC resource state up to state-independent deviations.
However, it shows that the following conditions were implicitly assumed in the proof: (i) the starting states
should span the full range of rotated |+θ〉 states, and (ii) any post-processing should be independent of the
final state.

37


	Asymmetric Quantum Secure Multi-Party Computation With Weak Clients Against Dishonest Majority

