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Abstract
The characterization and control of quantum effects in the performance of thermodynamic tasks
may open new avenues for small thermal machines working in the nanoscale. We study the impact
of coherence in the energy basis in the operation of a small thermal machine which can act either
as a heat engine or as a refrigerator. We show that input coherence may enhance the machine
performance and allow it to operate in otherwise forbidden regimes. Moreover, our results also
indicate that, in some cases, coherence may also be detrimental, rendering optimization of
particular models a crucial task for benefiting from coherence-induced enhancements.

1. Introduction

Thermodynamics was originally conceived in the XIX century to describe and eventually improve steam
engines [1, 2]. It has proven to be one of the most successful theories in physics, leading to a general
understanding of the physical properties of macroscopic systems, with multidisciplinary applications.
Recent decades have seen a growth of interest in the thermodynamics of microscopic systems [3, 4].
Progress in experimental techniques to manipulate quantum systems in the laboratory led us to even
envision a future in which thermal devices may exploit genuine quantum effects, namely, quantum
coherence [5–8] and quantum correlations [9–11]. These effects intrinsically set quantum thermodynamics
apart from its classical counterpart. Therefore clarifying their operational role and quantifying its impact
becomes a crucial challenge. Pursuing this goal, many contributions have already considered the role of
noise-induced (or degenerate) coherence [12–21], non-thermal properties such as squeezing [22–26] or
many-body correlations [27–30] on assisting thermodynamic tasks such as cooling and extracting work.

Since the introduction of the first operating prototype of a quantum heat engine by Scovil and
Schultz-Dubois [31], many models of quantum thermal machines have been put forward [32, 33]. For
example, quantum analogues of classical Carnot and Otto engines have been investigated [34, 35], paving
the way for first experimental implementations of quantum heat engines in the last years [36–39]. A
particularly appealing class of thermal machines are autonomous ones [33]. They consist on self-contained
models that avoid time-dependent Hamiltonians, since the later may implicitly require extra sources of
coherence not explicitly accounted for [40, 41]. This makes autonomous machines an ideal platform to
quantify the impact of coherence on the performance of thermodynamic tasks. Different models of
autonomous thermal machines using few quantum levels, qubits or harmonic oscillators have been
considered [42–45]. Proposals for their implementation include different platforms, like quantum dots [46,
47], circuit QED architectures [48] or atoms in optical cavities [49]. An autonomous quantum absorption
refrigerator has been recently realized in the laboratory with trapped ions [50].
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Figure 1. Coherent thermal machine model. An ensemble of qubits prepared in an arbitrary state ρq (left purple area) is put on a
tape moving from left to right to interact, once at a time, with the two machine qubits (center gears), after which they are
collected (green right area). The setup allows either free energy extraction on the output qubits in the tape, powered by a heat
current from hot to cold local baths (bottom red and blue areas), or refrigeration of the cold bath by consuming free energy of
the incoming tape qubits.

Our aim here is to quantify and optimize the impact of energetic coherence on the performance of an
autonomous thermal machine. By energetic coherence we refer to the coherence between non-degenerate
energy levels, also called asymmetry under time-translations [51, 52]. Energetic coherence is a resource of
particular relevance in quantum thermodynamics [53–56]. It constitutes an extra (independent) source of
free energy [57, 58], allowing state transformations that would be otherwise impossible [59–62], and has
direct consequences on the entropy balance leading to the second law [63, 64].

The model considered here has been recently introduced in reference [65], although employed for
different purposes. We consider one of the most prototypical quantum thermal machines, namely, a pair of
two-level systems (or qubits) coupled to thermal baths at different temperatures [35, 44]. The machine
works through the interaction with a stream of qubits (represented in a tape) via a sequence of
energy-preserving collisions (see figure 1). Employing a collisional framework [66–69] we relate heat an
entropy fluxes from the baths with the transformations in the tape qubits to quantitatively address the
performance of the machine. The presence of initial coherence in the tape qubits has a strong impact on the
performance of the machine, that admits coherence-enhanced situations when optimization over the
machine parameters is applied.

This paper has the following structure: in section 2 we describe the model and the dynamics for the
thermal machine. The operation of the machine in steady-state conditions and its thermodynamic
properties are explored in section 3. In section 4 we provide a description of the different modes of
operation of the machine, highlighting the role of initial coherence in the tape qubits. We then proceed to
the optimization of the power of the machine in different regimes in section 5, discussing the impact of
coherence in both the power and the efficiency of the machine. Finally in section 6, we present our main
conclusion and some perspectives for further research.

2. Coherent machine model

The setup we employ along this study follows the configuration introduced in reference [65] and is sketched
in figures 1 and 2. We consider a quantum thermal machine that consist of two qubits with energy spacing,
Ec and Eh respectively, and Hamiltonian Hm = Ec |1〉 〈1|c ⊗ 𝟙h + Eh 𝟙c ⊗ |1〉 〈1|h, where we assume for
concreteness Eh � Ec. The two machine qubits are weakly coupled to thermal reservoirs (or baths) with
different inverse temperatures (βc � βh) acting only locally on each qubit. We refer to the machine qubits
and baths as the ‘cold’ and ‘hot’ qubits or baths, respectively.

In addition, the machine sequentially interacts with a stream of qubits in a tape with fixed energy
spacing

Eq = Eh − Ec, (1)

and Hamiltonian Hq = Eq |1〉 〈1|q, where the subscript q stands for ‘qubits’. All the qubits in the tape are
assumed to start in the same generic initial state ρq, and interact with the machine, one by one, trough a
sequence of energy-preserving unitary maps of the form U = e−iHintτ (in interaction picture), where Hint is
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Figure 2. Representation of the machine as a four-level system interacting with an incoming qubit of the tape. The interaction
Hint with the resonance condition in equation (1), allows the coherent exchange of excitations between the two inner machine
levels and the tape qubit (green and orange arrows). The local reservoirs induce incoherent transitions on the machine levels with
energy spacing Ec and Eh as represented, respectively, by the blue and red arrows.

the following three-body Hamiltonian:

Hint = g (σ+
c σ−

h σ
+
q + σ−

c σ
+
h σ−

q ), (2)

where σ−
i ≡ |0〉 〈1|i denote the lowering operator of qubit i = c, h, q and σ+

i = (σ−
i )†. We remark that strict

energy conservation is enforced by the resonance condition (1), which implies [Hint, Hm + Hq] = 0 and
hence [U, Hm + Hq] = 0. Here it is also useful to define φ = gτ as the effective strength of the collision,
where τ denotes the interaction time. We are interested in the regime φ � 1, corresponding to weak and
fast collisions.

In the absence of the qubit tape, the two qubits of the machine do not interact between them at all. In
that case the contact with local thermal baths would produce the independent thermalization of each
machine qubit to the cold and hot temperatures, βc and βh, respectively. Even if in a product of thermal
states, it is nonetheless interesting to look at the machine as composed of four levels (see figure 2). Indeed
the independent thermalization, would result in an effective population of the two inner levels
{|10〉m, |01〉m} [70] (also called virtual qubit), which we denote as peq

10 and peq
01, showing a virtual inverse

temperature βv defined by the Gibbs ratio βvEq ≡ ln(peq
10/peq

01) [44]. It reads

βv =
βhEh − βcEc

Eh − Ec
. (3)

Depending on the values of Ec and Eh, the virtual temperature can be tuned to take different values, making
the machine suitable for the performance of thermodynamic tasks, such as power generation or
refrigeration, by connecting an external system to the inner transition |10〉m ↔ |01〉m [71, 72]. In particular,
for the choice Eh � Ec and βc � βh, we always have βv � βc, and obtain population inversion, βv � 0, if
and only if Eh/Ec � βc/βh. As we will see in the following sections, the virtual temperature βv plays an
important role in the characterization of the operational regimes of the autonomous thermal machine
considered here.

When introducing the interactions with the tape, the two qubits of the machine are allowed to exchange
heat between them and with the qubits in the tape, evolving through a nonequilibrium stationary state. We
assume that collisions occur at random times following Poissonian statistics with rate r. A monotonic
evolution towards stationarity is enforced by the Markovian character of the collisional model employed
here, where every collision uses a ‘fresh’ qubit in the tape in the same state:

ρq =

(
p0 c
c∗ p1

)
, (4)

with p0 + p1 = 1 and |c| � √
p0p1 ensuring a positive semi-definite density operator.

From the collisional model introduced here, we build a master equation in the GKLS form describing
the open evolution of the machine density operator, ρm, subjected to both the effects of the two thermal
reservoirs and the qubit’s tape (see appendix A and reference [65]). In the interaction picture, it reads:

ρ̇m = −i[V , ρm] + γ
q
↓D[σ+

c σ−
h ]ρm + γ

q
↑D[σ−

c σ
+
h ]ρm

+ Lc(ρm) + Lh(ρm) ≡ Ltot(ρm), (5)

3
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where the first line describes the effects of the collisions with the tape, and the second line the interaction
with cold and hot reservoirs, with:

Li(ρm) = γ i
↓D[σ−

i ]ρm + γ i
↑D[σ+

i ]ρm, (6)

the local thermal Lindbladian acting on qubit i = c, h of the machine, and D[L]· ≡ L · L† − 1
2{L†L, ·}

denoting the usual Lindblad dissipators [73, 74] with rates fulfilling local detailed balance γ i
↓ = γ i

↑eβiEi .
As can be appreciated in the first line of equation (5), the collisions with the tape qubits generate both

coherent (driving-like) contributions, as given by the operator V = rφ(σ+
c σ−

h c∗ + σ−
c σ

+
h c), and dissipative

terms analogous to the ones induced by the baths in equation (6), with rates γq
↑ = rφ2p1 and γq

↓ = rφ2p0.
These two contributions correspond, respectively, to coherent and incoherent transitions between the inner
levels |10〉m ↔ |01〉m of the machine (see figure 2), and depend explicitly on the initial state of the qubits in
the tape, ρq. As also noticed in references [65, 69], the coherent contribution appears only when the tape
qubits are initialized with non-zero coherence in the energy basis, |c| �= 0 in equation (4).

On the other hand, the local transitions induced by the baths on the machine qubits, can be written for
the case of bosonic reservoirs as γ i

↓ = Γi
0(Ni

th + 1) and γ i
↑ = Γi

0Ni
th, with Γi

0 the spontaneous emission rate

and Ni
th = (eβiEi − 1)−1 the average number of excitations in the bath at temperature β i with energy Ei [73,

74]. For the ease of simplicity, we assume in the following equal spontaneous emission rates, Γ0 ≡ Γc
0 = Γh

0 .
The relative weights of local thermal dissipation and collisional dynamics are then determined by the

interplay of the parameters r, φ and Γ0. More precisely, for rφ2  Γ0 the collisional tape qubits becomes the
dominant contribution of the dynamics, spoiling thermal effects induced by the baths. On the other hand,
the regime rφ2 � Γ0, corresponds to a weak impact of the tape qubits on the machine, where the
incoherent terms in the first line of equation (5) become negligible (but not necessarily first coherent term
proportional to rφ). In the following sections we consider both cases where rφ2 ∼ Γ0 and rφ2 � Γ0 with
still Γ0 < rφ.

The validity of the master equation (5) is warranted in the case of weak coupling to the local reservoirs,
Γ0 � Ei, as well as weak collisions φ � 1 occurring on a fast time-scale with respect to the relaxation
time-scales induced by the baths, Γ0 � 1/τ . It is indeed this later assumption that allows us to safely split
the machine dynamics into pieces coming from the collisions with the tape in one side, and from the local
thermal reservoirs in the other side (see appendix A).

3. Steady-state dynamics and thermodynamics

We focus on the operation of the machine in the stationary regime, namely, after which a sufficient number
of collisions with the tape have already taken place. The steady state of the machine in the long time run,
πm = limt→∞ ρm, can be obtained from equation (5) by imposing L(πm) = 0 (see appendix B) and is of the
form:

πm =

⎛
⎜⎜⎝
π00 0 0 0
0 π10 πc 0
0 π∗

c π01 0
0 0 0 π11

⎞
⎟⎟⎠ . (7)

Crucially, the initial coherence in the tape qubits is partially transferred to the machine in the steady state,
that acquires coherence in the non-degenerate subspace {|10〉m, |01〉m} of Hm. This is contrast to other
models that acquire steady-state coherence only in a degenerate, or nearly-degenerate subspace [12, 43].

Under steady-state conditions, the effect of the coherent machine on every incoming qubit of the tape is
equivalent and can be described through the following completely positive and trace preserving (CPTP)
map ρq →E(ρq), with:

E(ρq) = ρq − iφ[σ−
q π

∗
c + σ+

q πc, ρq] (8)

+ φ2π01D[σ−
q ]ρq + φ2π10D[σ+

q ]ρq,

where again coherent and incoherent contributions can be identified, in analogy to equation (5). Notice
that here, contrary to other models of collisional reservoirs [69, 75], we distinguish between the initial and
final states of the qubits in the tape, which are collected after interaction with the machine (see figure 1).

The map E in equation (8) depends on the machine steady-state density operator elements π10, π01 and
πc, which are linked, at the same time, to the initial state ρq through the coefficients in equation (5).
Although this intricate dependence, we observe that this map turns out to be contractive, and shows a

4
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single fixed point, E(τv) = τv, with thermal Gibbs form at the virtual temperature:

τv =
e−βvHq

Zq
, (9)

where Zq = Tr[e−βvHq ], and βv is the virtual temperature in equation (3). Whenever the qubits in the tape
are prepared in the state (9) the machine is unable to perform any change on it. Later on we will see that
this state indeed corresponds to an equilibrium point.

With the help of equation (8), the master equation (5), and the expressions for the steady-state density
operator in equation (7), we can directly compute the steady-state energy and heat currents into the qubit’s
tape and from the baths to obtain:

Ėtape = r Tr[Hq

(
E(ρq) − ρq

)
] = Eq(Δ+ ζ),

Q̇c = Tr[HmL1(π)] = −Ec(Δ+ ζ),

Q̇h = Tr[HmL2(π)] = Eh(Δ+ ζ), (10)

[Δ and ζ are given below in equation (12)] which verify Ėtape = Q̇c + Q̇h owing to equation (1), that is, any
increase of energy in the tape qubits is due to input heat from hot and cold baths. Moreover, the currents
verify the relation:

Ėtape

Eq
= − Q̇c

Ec
=

Q̇h

Eh
, (11)

implying that the proportionality of the steady-state currents flowing through the machine only depends on
the energy spacings Eq, Ec, and Eh.

In the above expressions (10) we conveniently introduced the two following key quantities

Δ ≡ rφ2
(
π01p0 − π10p1

)
, ζ ≡ irφ

(
π∗

c c − πcc∗
)

, (12)

which capture the incoherent (Δ) and coherent components (ζ) of the energy currents. The quantity ζ � 0
is real and positive, and becomes zero whenever the initial state of the qubits in the tape is diagonal in the
energy basis, c = 0 in equation (4). Instead Δ can be either positive or negative, and both quantities vanish
Δ = ζ = 0 when ρq = τ v, implying zero currents in equation (10).

The change in the entropy of the tape due to the interaction with the machine in the steady state can be
calculated from equation (8) using perturbation theory (see appendix B for details) and is given by:

Ṡtape = −r
(
Tr[E(ρq) ln E(ρq)] − Tr[ρq ln ρq]

)
(13)

= (λ+ − λ−) ln

(
λ−
λ+

)(
rφ2|πc|2 +

Δ(p1 − p0) − N|c|2
(p1 − p0)2 + 4|c|2

)
,

where N ≡ rφ2(π01 + π10) and we denoted the eigenvalues of ρq by λ± ≡ (1 ±
√

(p1 − p0)2 + 4|c|2)/2.
Using the energy and entropy currents, we can now define the nonequilibrium free energy current of the
qubits in the tape with respect to temperature Tc,

Ḟtape ≡ Ėtape − kBTcṠtape. (14)

The nonequilibrium free energy characterizes the maximum extractable work from nonequilibrium states
by using local unitary operations and contact with a thermal bath (see e.g. references [76–78]) at the cold
temperature Tc [79]. Here it plays a prominent role for quantifying the tape qubits as a resource.
Importantly, the free energy in equation (14) takes into account both thermal populations and coherence in
the qubits, and can be split into two components by using the relative entropy of coherence [57, 61, 69] (see
appendix B for details). In reference [65], it has been shown that this model is able to amplify the relative
entropy of coherence of the incoming qubits for an adequate choice of the parameters. Here we instead
focus on the ability of this machine to perform thermodynamic tasks that may be enhanced or assisted by
coherence.

From equations (10) and (13), we are now in a position to state the second law of thermodynamics in
steady-state conditions as the positivity of the total entropy production rate [80, 81]:

Ṡtot = Ṡtape − βcQ̇c − βhQ̇h � 0, (15)

where βiQ̇i are the entropy fluxes associated to the heat currents from/to reservoir i and Ṡtape is entropy flux
associated to exchange of energy between the machine and the qubits in the tape, Ėtape. Reversibility

5
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conditions associated to a zero entropy production rate in equation (15) are verified when the tape qubits
are initialized in the thermal state at the virtual temperature (9).

Making use of energy conservation to eliminate one of the two heat currents in (15), and identifying the
nonequilibrium free energy in equation (14), we can rewrite equation (15) in the two following equivalent
forms:

η ≡ Ḟtape

Q̇h
� 1 − βh

βc
, (16)

ε ≡ Q̇c

−Ḟtape
� βc

βc − βh
, (17)

where η stands for the efficiency of a heat engine increasing the free energy of the tape qubits Ḟtape using the
heat current from the hot bath Q̇h as a resource, and ε is the so-called coefficient of performance (COP) of a
refrigerator extracting heat from the cold reservoir Q̇c by consuming free-energy of the input qubits on the
tape. Remarkably, the second-law inequality (15) bounds both quantities, respectively, by Carnot efficiency
ηC ≡ 1 − βh/βc [1] and reversible COP, εC ≡ βc/(βc − βh) [32]. The bounds are reached, similarly to
other models of (incoherent) autonomous thermal machines, at the equilibrium point (ρq = τ v), where
every energy and entropy currents become zero. Similar notions of nonequilibrium free-energy efficiencies
have been also proposed in the context of squeezed thermal reservoirs [82], molecular machines [83],
dissipative chemistry [84] and multiterminal mesoscopic conductors [85].

4. Regimes of operation

Equations (16) and (17) suggest that the thermal machine introduced here may act either as a heat engine
or as a power-driven refrigerator, where the free energy current to (from) the qubit tape plays the role of the
output (input) work. This idea can be made more precise by exploring the joint behavior of the heat
currents from the thermal reservoirs Q̇c and Q̇h and the free energy changes of the qubits in the tape, Ḟtape.
We use different parameters of the thermal machine and initial states of the tape qubits, ρq. The following
three regimes of operation are found:

(a) Free-energy heat engine (HE): the thermal machine performs a continuous increase in the free energy
of the qubits of the tape, Ḟtape � 0, using the natural heat current from the hot bath, Q̇h � 0, which is
partially dumped into the cold bath, Q̇c � 0.

(b) Refrigerator (R): a heat current from the cold bath is extracted Q̇c � 0 by consuming free energy of the
tape qubits, Ḟtape < 0, while heat in transferred into the hot bath Q̇h < 0. This configuration can be
also seen as a free-energy driven heat pump.

(c) Dissipator (D): an input free-energy current from the tape qubits Ḟtape < 0 is, together with a heat
current from the hot bath, Q̇h > 0 dumped into the cold bath, Q̇c < 0. In this regime no particularly
useful thermodynamic tasks is performed.

The simplicity of the model allows us to obtain analytically the boundaries among steady-state regimes
of operation in the absence of initial coherence in the tape. Taking c = 0 in equation (4) immediately yields
ζ = 0 in equation (10). Moreover we obtain a purely classical free energy, Ḟtot = EqΔ(1 − βq/βc), where
βq ≡ log(p0/p1)/Eq represents the temperature of the incoming qubits in the tape. As a consequence, the
regimes of operation in this case are solely determined by the interplay between βq, the virtual temperature
βv, and the temperature of the cold bath βc. We recall that here βv � βc by construction. The refrigerator
regime R is obtained when the qubits in the tape have initial temperatures higher than the virtual one
(absorption refrigerator), or equivalently, when they show a higher population inversion (power-driven
refrigerator), βq � βv � βc. This implies Δ � 0 in equation (10), leading to Q̇c � 0, Q̇h � 0 and Ėtape � 0.
On the other hand, when the largest temperature (or largest negative temperature) is the virtual
temperature, βv � βq � βc, the energetic currents change sign, Δ � 0, and the machine is able to pump

free energy into the tape, Ḟtape � 0, hence obtaining the heat engine regime HE. Finally, for temperatures of
the tape qubits lower than the cold bath, βv � βc � βq, while we still have energy pumping into the tape

(since Δ > 0), the entropy flux associated to that energy current, Ṡtape in equation (13) becomes so high
that produces a loss of free energy in the tape, Ḟtape � 0, spoiling work extraction and leading to the
(useless) dissipator regime D.

A more complex situation arises when the input atoms have a non-zero initial coherence, c �= 0 in
equation (4). In that case an explicit analytical solution for the regimes boundaries is not available and we
need to rely on numerical evaluation of the currents. In figures 3 and 4 we show, for different representative

6
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Figure 3. (a) Achievable regimes of operation as a function on the initial tape qubits excited population p1 and off-diagonal
element c, for the case of a relatively large temperature gradient, βh = 0.05βc. (b) Corresponding free energy changes in the tape
qubits, in units of rφ2Eq. The dashed line represent Ḟtape = 0 and the purple and blue dots in both plots indicate the thermal
states τ v and τ c, respectively. Parameters: Ec = 0.5Eq, Eh = 1.5Eq, βc = 1.2/Eq, r = 2/Eq, φ = 0.02 and Γ0 = 0.0025/Eq.

Figure 4. (a) Regimes of operation as a function of the initial tape qubits excited population p1 and off-diagonal element c, for
the case of a relatively small temperature gradient, βh = 0.5βc. (b) Cooling power associated to the regimes in (a) in units of
Γ0Ec. The dashed line represent Q̇c = 0. Again purple and blue dots mark thermal states τ v and τ c, respectively. Parameters:
Ec = 0.8Eq, Eh = 1.5Eq, βc = 1.2/Eq, r = 2/Eq, φ = 0.04 and Γ0 = 0.0025/Eq.

sets of parameters, the regimes of operation achieved by the machine as a function of the tape qubits initial
state, ρq. There we represent a cross section of the incoming qubit’s Bloch sphere (in interaction picture)
and, since the results only depend on |c|, we took c to be a real number without loss of generality.

The inclusion of coherence in the tape can greatly modify the regimes of operation with respect to the
incoherent case (vertical dotted line at c = 0). The parameters in figure 3(a) corresponds to a relatively big
temperature gradient in the baths, βh = 0.05βc, which favours a broad heat engine regime (green area) with
respect to refrigeration (blue area) and the dissipator (red area). We also take a small value of the effective
coupling of the tape qubits φ = 0.02 (rφ2 < Γ0). In figure 3(b) we show the corresponding free energy
changes in the tape qubits, Ḟtape, in units of Eqrφ2. Remarkably, we observe that the output free energy
current can be enhanced up to 6 times with respect to its maximum incoherent value (Ḟtape � 0.1Eqrφ2) for
values of the initial coherence in the tape qubits |c| � 0.4 and p1 � 0.5.

On the other hand, figure 4(a) corresponds to a smaller temperature gradient between the baths,
βh = 0.5βc leading to a wider R regime (blue area), at expenses of the dissipator D (red area) and heat
engine HE regimes (tiny green area). We also consider a higher effective coupling, φ = 0.04, leading to a
stronger impact of the tape qubits on the machine dynamics than the thermal reservoirs. Since the fuel used
for cooling is provided by the free energy from the tape, a higher impact of the later (rφ2 > Γ0) helps to

7
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Figure 5. Entropy production rate as a function of the tape qubits population p1 for different values of the off-diagonal element
absolute vale |c| (see legend). The dashed line corresponds to the incoherent case. Parameters: Ec = 0.6Eq, Eh = 1.6Eq,
βc = 1.2/Eq, βh = 0.05βc, r = 2.5/Eq, φ = 0.08 and Γ0 = 0.0025/Eq.

improve the cooling power. The heat current from the cold reservoir Q̇c (or cooling power) is plotted in
figure 4(b) in units of EcΓ0. In this case we observe no enhancement in the cooling power by using initial
coherence in the tape qubits. However, enhancements can be found for other sets of parameters (see e.g.
figure 7). In any case, we observe a large region of parameters (south hemisphere of the Bloch sphere) where
refrigeration becomes possible owing to the input coherence. In this region we therefore find a
coherence-powered refrigerator. In all plots the blue and purple dots represent respectively the thermal
states of the qubits with respect to βc, that is, τc ≡ e−βcHq/Zc, and βv, that is, τ v in equation (9).

We notice that since the coherent component of the currents in equation (10) is non-negative, ζ � 0, an
enhancement in the heat and energy currents with respect to the incoherent case may be expected.
However, we remark that figures 3 and 4 show not only the possibility of coherence-induced enhancements
in some regimes, but also that, due to the non-monotonic behavior of the currents with c, some
thermodynamic operations become enabled by means of coherence in otherwise impossible situations and,
for other cases, coherence maybe detrimental.

An important observation at this point is that, by employing initial coherence in the tape qubits, the
distance of ρq from the equilibrium state τ v increases in general, forcing the machine to work in further
from equilibrium conditions. In other words, increasing the heat and energy currents comes at the price of
increasing dissipation, which may eventually spoil the efficiency in the enhanced regimes. It is hence of
primary interest to take into account the level of irreversibility of the machine operation, and, ultimately,
compare the enhancements in power with respect to the efficiency achieved in each regime. While we will
explore in detail the trade-off between power and efficiency in the next section, here we concentrate on the
impact of coherence in dissipation as measured by the entropy production rate in equation (15). In figure 5
we show, for a particular choice of parameters, Ṡtot as a function of p1 for different values of |c|. We find a
moderate increase in dissipation when increasing |c| in the region close to the equilibrium point, at
p1 � 0.65. However, as |c| gets close to its maximum value cmax ≡ √

p0p1, the entropy production starts
growing exponentially. This is more apparent when we get closer to the maximum and minimum values of
p1, corresponding to small values of cmax.

Finally, it is also worth pointing out that here we used the free energy in equation (14) to provide a
notion of useful work performed by the thermal machine, since it naturally follows from the formulation of
the second law in equations (15) and (16). However, this interpretation is not the only one possible. For
example one may be interested in alternative notions of work, applicable when assuming extra restrictions
in the setup, see e.g. references [61, 86]. One interesting alternative is given by the so-called ergotropy,
defined as the maximum extractable work from a quantum state by only using unitary operations
performing a cyclical variation of Hamiltonian parameters [87]. The ergotropy is strictly upper-bounded by
the free energy for any temperature [11], and, like the nonequilibrium free energy, can be split into
coherent and thermal components [88]. In appendix C we show that similar results as those reported here
are obtained when replacing the free energy changes in the tape qubits (equation (14)) by the change in
their ergotropy, as induced by the machine operation.

8
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Figure 6. (a)–(c) Maximum free energy production Ḟmax
tape in rφ2Eq units for temperature scales βcEq = {1, 2, 10} respectively

and (d)–(f) efficiency at maximum power divided by Carnot efficiency, ηmp/ηC, for the same temperatures, as a function of the
tape qubits initial state parameters p1 and |c|. The red dots indicate the absolute maximum of Ḟmax

tape . In the white region inside the
semi-circumference the HE regime is not achievable within the range of values used for the optimization, Em ∈ [Eq, 20Eq].
Parameters: βh = 0.05βc, r = 2/Eq, φ = 0.02 and Γ0 = 0.0025/Eq.

5. Optimizing the performance

The results presented in the previous section raise the question of up to what extent coherence can be
employed to improve the two more useful regimes in our configuration, namely, free energy generation in
the qubits of the tape or cooling the cold reservoir. More precisely, given fixed thermal resources as
determined by the temperatures of the baths βc and βh, and fixing also the coupling-dependent parameters
Γ0, r and φ, we ask ourselves: what is the optimal design of the machine (Ec and Eh) and the optimal initial
states of the qubits in the tape (ρq) maximizing the free energy production (cooling power)? Is it possible to
reach such maximum power regime at a reasonable efficiency (COP)? May energetic coherence lead to an
absolute enhancement for fixed resources?

In order to address these questions we set the temperature scale of the setup by enforcing different
values of the cold bath temperature kBTc = {1.0Eq, 0.5Eq, 0.1Eq} and use as a free parameter in the
optimization the largest energy spacing in the machine Hilbert space, Em ≡ Ec + Eh. We also fix the bath
relaxation rates as Γ0 = 0.0025/Eq, and the parameters r = 2/Eq and φ = 0.02, such that the action of the
tape qubits in the machine is weak compared to the thermal reservoirs, rφ2 � Γ0. This implies a weak
back-reaction of the tape qubits on the machine, favoring the coherent exchange of energy between
machine and tape. Hence we expect a higher impact of coherence in this regime of parameters.

5.1. Maximization of the free energy
We numerically maximize the free energy current in the tape qubits by varying the the largest energy gap in
the machine, Em ≡ Ec + Eh in the interval [Eq, 20Eq], for fixed Eq. We denote the optimal value of the free
energy current by Ḟmax

tape . Since here we are interested in the performance of the machine as a heat engine, we
consider a relatively big temperature gradient βc = 0.05βh, leading to a value for Carnot efficiency
ηC = 0.95.

We show the results for the optimized free energy production Ḟmax
tot as a function of the initial state of

the tape qubits in figure 6(a)–(c). Since all results are symmetric with respect to the axis c = 0, we only
show half of the Bloch sphere section. The three plots correspond to the three choices of βc as stated above,
i.e. moderate, low, and extremely-low temperatures, respectively. In all three cases, we obtain a clear
maximum at values of p1 around 0.5 and initial coherence |c| between 0.3 and 0.37 (see red dots). This is an
important feature, which indicates that the heat engine achieves maximum power when it is assisted by
energetic coherence in the tape qubits. The free energy generation Ḟmax

tape is enhanced with respect to its
maximum value without coherence (|c| = 0) about 4.76 times in figures 6(a), 6.1 times in figures 6(b) and
3.34 times in figure 6(c). The corresponding values of Em optimizing free energy generation are,
respectively, 7.3Eq, 3.9Eq, and 1.7Eq, and vary only very slightly within the yellowish areas in figure 6. We
also notice that optimization over Em allows broadening the set of initial states ρq for which the HE regime
is obtained. More precisely, the regions close to the north and south poles of the Bloch sphere for which
operations R and D are achieved [see figure 3] eventually become HE by allowing larger values of Em. The
white areas close to the south pole in figures 6(a) and (b) correspond to parameters for which the HE
regime can only be achieved by increasing Em over the maximum value 20Eq considered in the optimization
procedure. On the other hand, for very low temperatures (figure 6(c)) the HE regime is achieved for values
Em < 2.7Eq within the whole Bloch sphere.

9



New J. Phys. 23 (2021) 043024 K Hammam et al

Figure 7. (a)–(c) Maximum cooling power Q̇max
c in Γ0Eq units and (d)–(f) COP at maximum power divided by the reversible

COP, η/ηC, for temperature scales βcEq = {1, 2, 10}, as a function of the tape qubits initial state parameters p1 and |c|. The red
dots indicate the absolute maximum of Q̇max

c . White areas inside the semi-circumference denote parameters regions for which
the refrigerator regime R cannot be achieved. Parameters: βh = 0.5βc, r = 2.5/Eq, φ = 0.08 and Γ0 = 0.0025/Eq.

In figures 6(d)–(f) we show the efficiency at maximum free energy power divided by Carnot’s efficiency
ηC for the three values of the cold bath temperature, βc. For moderate temperatures (figure 6(d)) we
observe a general detrimental role of coherence. The efficiency peaks at p1 = 0.9 and |c| = 0, for which
η � 0.47ηC and quickly drops to values around η = 0.2ηC in the region where maximum free energy power
is obtained (see figure 6(a)). The situation radically changes for smaller temperatures of the cold bath
(figures 6(e) and (f)), where a second peak in the efficiency emerges at p1 ∼ 0.5 and |c| ∼ 0.3 leading to
efficiencies around 0.35ηC − 0.42ηC in the region of maximum free energy generation in figures 6(b) and
(c). These efficiencies are comparable to the ones reached for the first peak (η � 0.44ηC at p1 � 0.88 and
|c| = 0). This second peak broadens when further decreasing the temperature (increasing βc) (see
figure 6(f)) reaching high values for the efficiency around η � 0.78ηC at maximum free energy output, to
be compared to η � 0.75ηC, the maximum available efficiency at maximum power without using coherence
in the tape (reached for p1 � 0.73). This is a remarkable feature, showing that the use and control of
coherence at low temperatures plays a crucial role in developing power, and can be used to enhance the
performance (both power and efficiency at maximum power) of thermal machines.

5.2. Maximization of cooling power
As a second case of interest, we consider the maximization of the cooling power, Q̇c, that is, the heat current
extracted from the cold reservoir by the machine. As before, optimization is performed by varying the
largest energy gap in the machine, Em ∈ [Eq, 20Eq] for fixed Eq, and the three temperatures scales
βcEq = {1, 2, 10}. On the contrary, in this case we consider a relatively small temperature gradient
βc = 0.5βh, favoring cooling regimes R with respect to HE ones (see e.g. figure 4). The reversible
(maximum) COP value associated to this temperature ratio is εC = 1 in all three cases.

In figures 7(a)–(c) we show the maximum cooling power Q̇max
c in units of Γ0Eq as a function of the

initial state ρq for the three different values of βc. White areas in the bottom represent regions of parameters
where cooling cannot be achieved, no matter the value of Em. The optimal values of Em lie in between Eq

and 4.5Eq in any case, being smaller for lower temperatures of the cold bath. Similarly to the previous case,
our results indicate that cooling can be optimized by allowing the initial states of the tape qubits to have
non-zero coherence. This can be indeed appreciated in figures 7(b) and (c), where the maximum cooling
power is achieved in the right part of the semi-cross sections of the tape qubits Bloch sphere. In particular
the maximum of Q̇max

c is achieved at points (p1 � 0.6, |c| � 0.49) for βc = 2 and at (p1 � 0.55, |c| � 0.50)
for βc = 10, enhancing optimal incoherent cooling by 1.5 and 2.4 times, respectively. On the other hand, we
confirm that allowing a non-zero coherence in the tape, allows reaching refrigeration in situations where it
would be otherwise impossible, that is, for p1 � 0.38 in figure 7(a), and for p1 � 0.26 in figure 7(b).

Figures 7(d)–(f) show the COP of the fridge ε at maximum cooling power, divided by the reversible
(Carnot) value εC, corresponding to figures 7(a)–(c). In this case maximum values of the COP are obtained
for |c| = 0 in all cases of moderate, low and very low temperatures. The overall maxima are located
respectively at p1 � 0.54, p1 � 0.51 and p1 � 0.27, generating a high-COP area around them. As
temperature decreases the values the COP become lower and more homogeneous over the whole Bloch
sphere semi-cross section. Here we observe that the areas corresponding to maximum values of the cooling
power Q̇max

c and maximum COP do not overlap between them. This means that, contrary to the free
energy generation case, coherence-enhanced cooling is not accompanied by an improved efficiency.
Therefore, in this case the customary trade-off between power and efficiency extends to the initial state ρq

optimization.
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6. Conclusions

We have shown that, using energetic coherence, thermodynamic tasks can be enabled and/or enhanced by
autonomous thermal machines. In particular we considered a setup where thermal and coherent resources
mix up in a beneficial way. We explored both situations where the tape of qubits is operated by the machine
to obtain a useful output (free energy), as well as cases in which the qubits in the tape are used as a fuel to
power standard thermodynamic tasks, like refrigeration of a cold reservoir. The relative simplicity of the
model allowed us to quantitatively assess the impact of the initial state of the qubits in the tape, ρq, and in
particular its initial coherence c, in these two main situations.

Our results indicate that coherence can notably enhance the power of the machine in some regimes of
operation, and that coherence can be used to enable machine operation in otherwise impossible situations.
These enhancements are not obtained for every value of the initial coherence c in general, but it needs to be
properly selected. Allowing optimization over the machine design results in broader regions of parameters
where coherence plays a beneficial role. We have shown that these improvements are the result of a
nonequilibrium effect, with a non-zero associated entropy production. Our results go beyond
weakly-coherent models [69], linear-response regime [89] or weak-dissipation engines [90], paving the way
for understanding energetic-coherence-enhanced performance in autonomous thermal machines.

The optimization procedure employed here shows that energetic coherence is essential in order to
maximize the machine output free energy and cooling power. Furthermore, we observed that in the first
case, coherence also enhances the efficiency at optimal operation for sufficiently low temperatures. These
promising results may be further explored in experimental one-atom maser configurations [91–93] and
extended to other autonomous configurations beyond the case of qubits considered here. For example, it
would be interesting to consider situations where the tape of qubits is replaced by other physical systems,
like e.g. harmonic oscillators, also in view of possible experimental implementations in trapped ion setups
[39] or circuit QED architectures [94].
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Appendix A. Derivation of the dynamics

We obtain the master equation (5) in section 2 for the thermal machine by explicitly modelling its
interaction with the thermal baths and with the qubits in the tape. In particular we consider bosonic baths
with Hamiltonian H(i)

B =
∑

kΩ
(i)
k a(i)†

k a(i)
k for i = c, h and where the index k labels the bath’s field modes with

frequencies Ω(i)
k , and a(i)†

k (ak) being their usual creation (annihilation) operators. We assume a weak
coupling between the baths and the corresponding machine qubits, in the rotating wave approximation:

HmB =
∑
i=c,h

∑
k

g(i)
k (σia

(i)†
k + σ†

i a(i)
k ) (A1)

with g(i)
k � Ei the coupling strength of the ith qubit to each of the k modes of the bath i, with spectral

densities Ji(Ω) =
∑

k(g(i)
k )2δ(Ω− Ω(i)

k )/Ω(i)
k .

In the absence of interactions with the tape qubits, each machine qubit is independently coupled to a
local thermal bath. The reduced dynamics of the machine can then be easily obtained using the
Born–Markov and secular approximations [73, 74]:

ρ̇m(t) =
∑
i=c,h

γ i
↓D[σ−

i ]ρm + γ i
↑D[σ+

i ]ρm ≡ L0(ρm), (A2)
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where γ i
↓ = Γi

0(1 + Ni
th), γ i

↑ = Γi
0Ni

th are the rates of emission and absorption processes induced by the
thermal baths. Here we assumed an Ohmic behavior of the of the baths around the respective qubit
frequencies and no modes at the frequency of the complementary qubit, leading to Ji(Ej) � (Γi

0/2π)δi j.
Then, we consider the successive interactions (or collisions) of the machine with a series of qubits in the

tape, one at a time. Crucially we assume that the interactions last a very short time τ , which we assume to
be smaller than the timescales of the machine’s relaxation dynamics, τ � 1/Γi

0 for i = c, h. In this way, the
collisions occur almost instantaneously and can be described by a unitary (energy-preserving) operator
acting over the machine and the tape qubits, while the presence of the baths during the collisions becomes
negligible. For a collision occurring at time t we have U(t + τ , t) = e−iHintτ . Therefore, after the collision the
joint state of machine and qubit tape (in interaction picture) is given by:

ρ(t + τ) = U(t + τ , t) ρ(t) U†(t + τ , t), (A3)

where ρ(t) = ρm(t) ⊗ ρq is the joint state before interaction, corresponding to an (uncorrelated) product
state of the machine at time t and a ‘fresh’ qubit in the tape. Notice that we assume all tape qubits to have
the same phase when they interact with the machine.

The reduced evolution of the machine is given by a CPTP map, obtained after partial tracing of the
qubit degrees of freedom in equation (A3). Using the expression of Hint in equation (2) and expanding up
to second order in φ = gτ � 1, we obtain:

ρm(t + τ) ≡ Ξ(ρm) = Trq[ρ(t + τ)] (A4)

= ρm(t) − iφ[σ−
c σ

+
h c∗ + σ+

c σ−
h c, ρm(t)]

+ φ2p1D[σ−
c σ

+
h ]ρm(t) + φ2p0D[σ+

c σ+
h ]ρm(t).

Finally we need to combine the dynamics induced by the baths in equation (A2) with the instantaneous
collisions as described by equation (A4). For this purpose, we assume that the collisions occur at random
times following Poissonian statistics with rate r. The state of the machine at time t after n collisions can then
be explicitly computed as:

ρ(n)
m (t) =

∫ t

0
dsw(t − s)eL0(t−s)Ξ(ρ(n−1)

m (s)), (A5)

where ρ(n−1)
m (s) is the state of the system after n − 1 collisions at time s, and w(Δt) = re−rΔt is the so-called

waiting-time distribution corresponding to Poisson statistics, which captures the probability that a collision
does not happen in the interval Δt. The last term inside the integral describes a collision at time s through
the CPTP map Ξ, and the second exponential term describes the evolution of the machine up to the next
collision, i.e. the interval of time when the tape is stopped and only the thermal baths act on the machine.
Taking the time-derivative of equation (A5), summing over n, and replacing the expressions for the
Liouvillian L0 in equation (A2) and the CPTP map Ξ in equation (A4), we recover the master equation (5)
in section 2.

Appendix B. Steady-state operation

The collision of the machine with the tape results in driving the machine to a nonequilibrium steady state
πm in the long time run. To obtain it, we separate the master equation (5) into a set of coupled differential
equations for the relevant populations and coherences of ρm, which can be expressed in matrix form as
Ṗ = M · P, with the vector PT ≡ (�00, �01, �10, �11, �v, �∗v) containing the elements �ij = 〈ij|ρm|ij〉m and
�v = 〈10|ρm|01〉m of ρm, and the dynamical matrix:

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−(γc
↑ + γh

↑ ) γc
↓ γh

↓ 0 0 0
γc
↑ −γq

↑ − (γc
↓ + γh

↑ ) −γq
↓ γh

↓ −irφc∗ ircφ

γh
↑ γ

q
↑ −γ

q
↓ − (γh

↓ + γc
↑) γc

↓ irφc∗ −ircφ
0 γh

↑ γc
↑ −(γh

↓ + γc
↓) 0 0

0 −ircφ ircφ 0 D 0
0 irc∗φ −irc∗φ 0 0 D

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (B1)

where D = −(γq
↑ + γ

q
↓ ) − 1

2 (γc
↓ + γh

↓ + γc
↑ + γh

↑ ). The steady-state elements of the density operator in
equation (7) are calculated by solving the kernel of the dynamical matrix M above, that is, imposing
M · Π = 0, and obtaining ΠT = (π00,π01,π10,π11,πv,π∗

v ). Notice that in the vectors P and Π, we excluded
all other non-diagonal elements of ρm, since they are only subjected to exponential decay (decoherence),
and are hence zero in the steady state regime. On the other hand, the CPTP map describing the operation of

12



New J. Phys. 23 (2021) 043024 K Hammam et al

the machine on the tape qubits in the steady state, is obtained, similarly to equation (A4), by tracing out the
machine degrees of freedom in equation (A3), that is, E(ρq) ≡ Trm[ρ(t + τ)]. Expanding up to second
order in φ we recover straightforwardly equation (8).

The changes in energy and entropy of the tape qubits due to the collisions, as given in equations (10)
and (13) in section 3, are calculated using the explicit expression of the map E(ρq) in equation (8). The only
less straightforward point is the computation of the rate of entropy change in equation (13), for which we
expand the eigenvalues and eigenstates of E(ρq), to second order in φ as λ′

k = λk + φλ(1)
k + φ2λ(2)

k , where λk

and |λk〉q denote the eigenvalues and eigenstates of ρq. The first and second-order contributions to the
eigenvalues (and eigenstates) are computed by using perturbation theory for the density operator [65]. The
entropy changes in the tape are then approximated, up to second order in φ, by:

Ṡtape = −r
∑

k

(λ′
k ln λ′

k − λk ln λk)

� −rφ2
∑

k

λ(2)
k ln λk, (B2)

where we used λ(1)
k = 0 and for the second-order contribution we have:

λ(2)
k = π01〈λk|D[σ−

q ]ρq|λk〉+ π10〈λk|D[σ+
q ]ρq|λk〉 −

∑
l �=k

(λl − λk)|〈λl|σ−
q π

∗
c + σ+

q πc|λk〉|2. (B3)

By plugging (B3) into (B2), and operating we obtain the expression for the entropy changes in the tape
given in equation (13) of section 3.

Finally, we recall that the non-equilibrium free energy changes of the tape qubits Ḟtape in equation (14)
can be divided into thermal and coherent parts [65]. This split is performed by introducing the dephased
states in the energy basis, ρ̄q =

∑
jΠjρqΠj, with Πj = {|0〉〈0|q, |1〉〈1|q} the projectors of the spectral

decomposition of Hq.
By considering the dephased states of input and output tape qubits, we can calculate the part of the

qubit entropy changes only due to the populations, obtaining ˙̄Stape = (Δ+ ζ) ln(p0/p1). The associated

(classical) free energy changes are then defined as ˙̄Ftape ≡ Ėtape − ˙̄Stape. The free energy split then reads
[57, 63, 65]:

Ḟtape = ˙̄Ftape + Ċtape, (B4)

where Ċtape =
˙̄S − Ṡ is the change in relative entropy of coherence, C(ρ) = S(ρ‖ρ̄) = S(ρ̄) − S(ρ) � 0,

which is non-negative, monotonic and constitutes a proper measure of coherence [51, 52]. We notice that
whenever the initial state of the qubits in the tape is diagonal in the energy basis (c = 0), we have Ċtape = 0,
and the free energy reduces to its classical contribution.

Appendix C. Ergotropy generation

The results provided in section 4 for the generation of free energy in the tape qubits, can be complemented
by considering ergotropy as an alternative quantifier for the power of the machine. In this way, the
operation of the machine would be to increase or decrease the ergotropy of the tape qubits. The name
ergotropy was coined in reference [87] to quantify the maximum work extractable from a generic quantum
state σ by using unitary transformations U describing the cyclic variation of a parameter controlling the
system Hamiltonian H:

W(σ) = Tr[Hσ] − min
U

Tr[HUσU†]

=
∑

j k

λjEk(|〈λj|Ek〉|2 − δj k), (C1)

where λ1 � λ2 � . . . denote the ordered eigenvalues of σ and E1 � E2 � . . . the eigenvalues of H. In the
case of qubits, the optimal unitary U corresponds to a rotation in the Bloch sphere that transforms the
initial state σ into a thermal Gibbs state τβ ≡ e−βH/Z with β determined by the entropy of the initial state
σ.

Applying the definition equation (C1) to the input and output states of the tape qubits, and calculating
their difference, we obtain:

Ẇ tape = Ėtape − rφ2λ(2)
− Eq, (C2)
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Figure 8. (a) Regimes of operation using ergotropy to characterize work in a cross section of the tape qubits Bloch sphere.
Ergotropy vanishes along the dashed line at c = 0 in the south hemisphere. (b) Ergotropy changes in the tape qubits, in units of
rφ2Eq. The dashed line represent Ẇ tape = 0 and the purple dot is the thermal state τ v. Other parameters are as in figure 3:
βh = 0.05βc, Ec = 0.5Eq, Eh = 1.5Eq, βc = 1.2/Eq, r = 2/Eq, φ = 0.02 and Γ0 = 0.0025/Eq.

where we used that the optimal unitary transforms the eigenstate of ρq corresponding to highest (lowest)

eigenvalue, λ+ � λ−, to the ground (excited) states [similarly for E(ρq)], and used λ′
− − λ− = φ2λ(2)

− .

Introducing into equation (C2) the expression for λ(2)
− as given by equation (B3), and operating we obtain

Ẇ tape = Ėtape − Eq(λ+ − λ−) ·
(

rφ2|πc|2 +
Δ(p1 − p0) − N|c|2
(p1 − p0)2 + 4|c|2

)
. (C3)

Using equation (C3), we can redefine the regimes of operation of the device reported in section 4 by
replacing free-energy changes in the tape qubits, Ḟtape, by the corresponding ergotropy changes, Ẇ tape. In
figure 8(a), we show the regions of the Bloch sphere corresponding to such new operational regimes for
same parameters as in figure 3 of section 4. By comparing the two figures, we notice that, as expected, the
refrigerator regime (characterized by Q̇c > 0) appears in the same region, while we observe differences for
the shape of HE (Ẇ > 0) and D (Ẇ < 0) regions. In particular the HE regime broadens, including the
whole south hemisphere. This indicates the existence of situations where the ergotropy of the tape qubits
increases while their free energy decreases. While the opposite situation is not observed, there are,
nevertheless, cases for which the free energy increases more than the ergotropy. For example, along the line
c = 0, the ergotropy changes vanishes in the south hemisphere while Ḟtape is still positive.

In figure 8(b) we plot the values of Ẇ tape in units of rφ2Eq. Similarly to the case of free energy changes,
we observe that highest values are reached for non-zero initial coherence of the tape qubits. More precisely,
the maximum value of Ẇ tape is reached for |c| ∼ 0.4 and p �, being 3 times greater than the best
incoherent case (reached at p1 = and c = 0). Therefore, allowing initial coherence in the tape qubits
enhances the output ergotropy current when maintaining all other resources constant. This confirms that
input coherence plays a crucial role for the optimization of the performance of the machine, also from the
point of view of ergotropy generation.
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[60] Ćwikliński P, Studziński M, Horodecki M and Oppenheim J 2015 Limitations on the evolution of quantum coherences: towards

fully quantum second laws of thermodynamics Phys. Rev. Lett. 115 210403
[61] Lostaglio M, Korzekwa K, Jennings D and Rudolph T 2015 Quantum coherence, time-translation symmetry, and

thermodynamics Phys. Rev. X 5 021001
[62] Uzdin R 2016 Coherence-induced reversibility and collective operation of quantum heat machines via coherence recycling Phys.

Rev. Appl. 6 024004
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