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Abstract
The introduction of the quantum analogue of a Carnot engine based on a bath comprising of
particles with a small amount of coherence initiated an active line of research on the harnessing of
different quantum resources for the enhancement of thermal machines beyond the standard
reversible limit, with an emphasis on non-thermal baths containing quantum coherence. In our
work, we investigate the impact of coherence on the thermodynamic tasks of a collision model
which is composed of a system interacting, in the continuous time limit, with a series of coherent
ancillas of two baths at different temperatures. Our results show the advantages of utilising
coherence as a resource in the operation of the machine, and allows it: (a) to exhibit
unconventional behaviour such as the appearance of a hybrid refrigerator, capable of simultaneous
refrigeration and generation of work, and (b) to function as an engine or a refrigerator with
efficiencies larger than the Carnot bound. Moreover, we find an effective upper bound to the
efficiency of the thermal machine operating as an engine in the presence of a coherent reservoir.

1. Introduction

Due to the nanotechnological progress and the increasing interest in quantum systems, heat engines are no
longer limited to the size of steam engines from the industrial revolution [1]. Their miniaturisation is
currently leading to the emergence of thermal machines that harness quantum effects to operate. The
question of whether new thermodynamic characteristics may emerge from quantum features and aid
thermodynamic tasks has long been debated. Answering this challenge might bring genuine quantum
advantages in thermodynamics. This outlook fuelled a plethora of research papers on the use of quantum
properties, such as quantum correlations [2–16] and quantum coherence [17–34], in the design of quantum
engines. Their genuine quantum effects have been observed in recent experiments [35, 36].

In recent years, quantum resource theories have been established to study and characterise the
practicality of quantum coherence effects [37]. In the context of thermodynamics, coherence was shown to
be an essential ingredient for optimal charging of quantum batteries [38–45], it helps the transfer of energy
in photosynthetic complexes [46, 47] and leads to the emergence of interesting phenomena like heat flow
reversals without reversing the arrow of time [48]. Coherence has been investigated as a promising candidate
for designing thermal machines in which the working medium is a quantum system in contact with reservoirs
at different temperatures and as a resource for exploring the fundamental limit of their efficiencies [28, 49].
As a matter of fact, it is of great importance to consider scenarios where one can model and manipulate
non-equilibrium reservoirs. By employing them, one expects to overcome the standard thermodynamic
limits as proposed in the case of quantum measurement induced [50, 51], squeezed [27, 52–56] and coherent
[17, 24, 57–64] engineered reservoirs. Analysing the machine’s operation in both cases of thermal and
coherent reservoirs represents the most genuine way to explore novel aspects that may be induced by
coherence. For instance, it was reported in [65] that coherence injected in a finite sized reservoir interacting
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with a system can quantitatively modify the second law of thermodynamics and serves as a useful supply for
enhancing the output efficiency of heat engines functioning between two coherent reservoirs.

For conventional system-reservoir models with a large continuum of modes, injecting coherence may
become technically onerous [34]. A more versatile alternative that may lower these practical limitations is
offered by quantum collision models (CMs) [11, 66–74]. Because of the simplicity of their mechanism, they
are well-qualified to address the thermodynamics of coherent engineered reservoirs [75–77]. The basic
formulation of CMs consists of depicting the environment as a large ensemble of elementary components or
sub-units, often called ancillas, that interact sequentially with a system S. The system–ancilla joint dynamics
are described by collisions that may or may not preserve energy. The conditions for a memoryless Markovian
behaviour of the open quantum system evolution imply that the ancillas are initially prepared in a product
state (uncorrelated) and that every ancilla collides only once with S. In addition to being an interesting asset
to study non-thermal environments, this microscopic formalism is highly suited to model specific
experiments based on micromasers [78, 79], nuclear magnetic resonance (NMR) [80], superconducting
quantum computers [81–84] and all-optical settings [85–87].

Although there is an active line of ongoing research on quantum CMs, the different effects of exploiting
coherence in the quest of enhanced quantum thermal machines are little explored so far. On the other hand,
it was a motivation for a recent derivation of the thermodynamic behaviour of an autonomous quantum
thermal machine [88] that operates via collisions with a series of qubits which are initially prepared with
energetic coherence, as well as a basic setup of a system interacting with coherent environmental ancillas [77].

In this work, we study a thermal machine consisting of a single qubit as a working substance and two
reservoirs modelled by CMs. We carefully analyse the thermodynamics of the system’s evolution in the
presence of an infinitesimal amount of coherence in the reservoirs and consider the non-equilibrium steady
state of the system [89, 90]. We split the heat flows into a coherent contribution, arising because of the
quantum coherence in the baths, and an incoherent contribution corresponding to the typical dissipation
term. As a consequence of having non-resonant collisions, power can instead be divided into a term
originating from coherence and a term that stems from the collisions. Furthermore, consuming coherences
from the reservoirs allows the machine to perform thermodynamic tasks in classically forbidden regimes
with efficiencies beyond the Carnot bound of the corresponding thermal reservoirs without coherence. We
find the effective bound on the efficiency of the machine operating as an engine in the presence of quantum
coherence. For a cold coherent reservoir, the device is capable of simultaneous refrigeration and generation
of work, providing a kind of device dubbed hybrid refrigerator [58, 91].

The paper is structured as follows: after introducing the coherent CM setup and its dynamics in section 2,
we lay out the different results in the case of harnessing coherence in the cold and the hot bath in section 3 as
well as its influence on the operational regimes of the machine and its efficiency at maximum power. Finally,
we provide some concluding remarks in section 4.

2. Model

2.1. Evolution
We consider a system described by a Hamiltonian HS and interacting with an environment modelled with
the CM. The environment consists of NB baths each containing an infinite ensemble of identically prepared
ancillas which interact sequentially with the system for a time τ and then are discarded, see figure 1. We
assume that there are no initial system–environment correlations. The reduced dynamics of the system after
one collision can be written as (ℏ= 1):

ρ ′
S = trE

{
e−iτHtotρS ⊗ ρEe

iτHtot
}

(1)

where ρS [ρ ′
S] is the state of the system before [after] the collision,

ρE =

NB⊗
i=1

ρE,i (2)

is the state of the environment and we do not assume any initial correlations between the baths, and

Htot =HS +HE +HSE, (3)

2
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Figure 1. Sketch of our setup: a qubit (centre, green) is coupled to two environments modelled with the collision model where the
arrow represents its Bloch vector. The ancillas in one of the two environments (bottom, red) are initially in a thermal state as
represented by a vertical Bloch vector. The ancillas of the other environment have initially some coherence in the energy
eigenbasis as represented by a tilted initial Bloch vector. After the collisions, the ancillas are modified as represented by a different
colour and Bloch vector.

is the total system–environment Hamiltonian. The total Hamiltonian of the environment is the sum of the
corresponding Hamiltonian HE,i for each bath:

HE =

NB∑
i=1

HE,i. (4)

We assume the system–environment interaction to be of the general form HSE =
∑NB

i=1HSEi and

HSEi =
∑
k

gi,k√
τ

(
S†i,kAi,k+ Si,kA

†
i,k

)
, (5)

where gi,k are the coupling constants between the system and the ancilla from bath i. The index k lists the
different system’s operators interacting with a corresponding ancilla. The operators Si,k and Ai,k pertain to
the system and ancilla’s Hilbert space, respectively. Moreover, we also assume the operators Ai,k to be
eigenoperators of the ancilla’s Hamiltonian, such that:

HE,i =
∑
k

ωi,kA
†
i,kAi,k. (6)

As we will see, the factor
√
τ in equation (5), though not necessary, ensures consistency when taking the

continuous limit τ → 0.
We now assume that the ancillas are prepared in a thermal state at temperature T i with a small coherence

term (βi = T−1
i ,kB = 1):

ρE,i = ρthE,i +
√
τϵiχE,i (7)

where ρthE,i = e−βiHE,i/tr
[
e−βiHE,i

]
and ϵi quantifies the ancilla’s quantum coherence.

In the continuous limit, τ → 0, following [77, 92], the evolution of the system’s reduced density matrix is
ruled by the following Markovian master equation:

ρ̇S =−i[HS +GS,ρS] +

NB∑
i=1

Di(ρS) (8)

where the effective Hamiltonian correction is given by

GS = trE (HSEρE) (9)

3
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=

NB∑
i=1

ϵi
∑
k

gi,k
{
S†i,k trE [χE,iAi,k] + h.c.

}
. (10)

The dissipators are defined by:

Di(ρS) =
∑
k

γ−
i,kL[Si,k,ρS] + γ+

i,kL[S
†
i,k,ρS] (11)

where the Lindbladian is defined as:

L[S,ρ] = 2SρS† −{S†S,ρ}. (12)

The dissipation rates γ−
i,k = g2i,k⟨Ai,kA

†
i,k⟩ and γ+

i,k = g2i,k⟨A
†
i,kAi,k⟩, where the averages ⟨·⟩ are taken over the

thermal part of the environmental state ρthE,i, fulfil the local detailed balance condition

γ+
i,k/γ

−
i,k = exp(−βiωi,k).

2.2. Thermodynamic quantities
Thermodynamic quantities can be calculated following [11, 77, 92]. We define work in the usual way as
arising from the time-dependence of the total Hamiltonian, see below. Other contributions to the change of
internal energy come from energy exchanges between the system and the environment and will be
collectively categorised as heat.

Therefore, the heat current flowing from bath i is obtained from the energy change of the corresponding
ancilla before and after the collision:

Q̇i =− lim
τ→0

1

τ
tr [HE,i∆ρ] , (13)

where we have defined the change in the total density matrix of the system plus environment:

∆ρ= e−iτHtotρS ⊗ ρEe
iτHtot − ρS ⊗ ρE. (14)

Expanding equation (13), and following the detailed derivation presented in appendix A, we may split the
heat flow from bath i into coherent and incoherent contributions:

Q̇i = Q̇i,coh + Q̇i,inc. (15)

The coherent contribution of the heat arises because of the initial coherence in the ancilla and reads:

Q̇i,coh =− lim
τ→0

i tr([GE,i,HE,i]ρE,i) , (16)

where, in analogy to the operator GS, we have defined

GE,i = trEi (HSEiρS) (17)

where trEi is the partial trace on the system and all the environments except the ith. The heat current’s
incoherent contribution depends on the typical double-commutator structure:

Q̇i,inc =
1

2
lim
τ→0

tr(τ [HSE, [HSE,HE,i]]ρS ⊗ ρE) . (18)

Notice, however, that the last expression does not necessarily reduce to the common expression involving the
system’s expectation value of the dissipator applied to the system’s Hamiltonian tr[Di(HS)ρS] unless the
ancillas are resonant with the system’s transition they are coupled to. In the next section, we will consider a
situation in which this resonant condition is not met.

The total power that needs to be injected or extracted from the system is

Ẇ= lim
τ→0

1

τ
tr [(HS +HE)∆ρ] . (19)

Notice that if we define the rate of change of the internal energy:

U̇S = lim
τ→0

1

τ
tr [HS∆ρ] , (20)

4
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then the first law of thermodynamics is automatically satisfied:

U̇S = Ẇ+

NB∑
i=1

Q̇i. (21)

The total power can be split into a coherent and a collisional contribution:

Ẇ= Ẇcoh + Ẇcoll. (22)

The coherent contribution for the power arises only when the ancilla has some initial coherence and its
expression reads:

Ẇcoh = i lim
τ→0

tr([HSE,HS +HE]ρS ⊗ ρE) . (23)

The power due to the collision

Ẇcol =−1

2
lim
τ→0

tr(τ [HSE, [HSE,HS +HE]]ρS ⊗ ρE) , (24)

arises for local (but not global) master equations when the system–environment coupling does not satisfy
local energy conservation, in other words, when [HSE,HS +HE] ̸= 0 [93].

The splitting of heat and work considered here is in line with other studies on quantum thermodynamics
with non-equilibrium reservoirs, see for instance [77]. However, we remark that this splitting is different,
although physically equivalent, to the one considered in [77] in which the condition [HSE,HS +HE] = 0 was
assumed. As a consequence, the term that we dub Q̇i,coh was interpreted there as a power term arising from
coherence while the power terms we dub Ẇcoh and Ẇcoll were identically zero.

In this paper, all terms arising from the energy change of the environment have been identified as heat
terms, coherent and incoherent. The remaining terms in the energy balance arise from the time-dependence
of the total Hamiltonian have been identified as power contributions which include a term Ẇcoh only arising
because of the ancilla’s coherence and a term Ẇcol only arising because of the ‘locality’ of the master equation
as discussed in [92].

If the system’s Hamiltonian is explicitly time-dependent there will also be an associated power term
proportional to ∂HS/∂t. We will not consider this additional term in this work. We are assuming the sign
convention such that power or heat currents are positive when energy flows into the system. Depending on
the signs of these quantities the device exhibits different functionings as discussed in the next section.

2.3. Entropic quantities
We now pass to discuss the change in entropic quantities and the second law of thermodynamics. During a
collision, the ancillas may lose or gain quantum coherence related to the off-diagonal entries of their density
matrices in their energy eigenbasis. By using the definition of the relative entropy of coherence [37, 94]

C(ρ) = S(ρd)− S(ρ), (25)

where S(ρ) =− trρ logρ is the von Neumann entropy and ρd is the diagonal part of ρ in a given basis, we can
measure the rate of change in relative entropy of coherence of the ancillas before and after the collision:

Ċ(ρ) = lim
τ→0

C(ρ ′)−C(ρ)
τ

. (26)

Using perturbation theory and taking the limit of τ → 0, we find the following relation between the relative
entropy, coherent heat flow and change in relative entropy of coherence of an ancilla

Ṡ(ρ ′
E,i||ρE,i) = βiQ̇i,coh + Ċ(ρE,i), (27)

where we have defined the relative entropy as S(ρ ′||ρ) = Tr[ρ ′ logρ ′]−Tr[ρ ′ logρ]. This relation extends the
result found in [77] to a more general scenario: there the relative entropy was related to the coherent power
and not to the coherent heat. Since the relative entropy in equation (27) cannot be negative, we obtain a
lower bound for the coherent heat flow from each bath, which can be interpreted as a modified local second
law of thermodynamics

βiQ̇i,coh ⩾−Ċ(ρE,i). (28)

5
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While the previous expression concerns each bath individually, we can also obtain a modified second law
for the whole environment. Because the initial state of the ancilla’s, ρE, is a product state, we may write the
total relative entropy of the bath as

S(ρ ′
E||ρE) = I(ρ ′

E)+
∑
i

S(ρ ′
E,i||ρE,i) (29)

where we have defined the state of the environment after each collision

ρ ′
E = TrS[ρ

′] (30)

and the total mutual information as

I(ρ ′
E) =

NB∑
i=1

S(ρ ′
E,i)− S(ρ ′

E), (31)

while I(ρE) = 0. We thus find:

Ṡ(ρ ′
E||ρE) = İ(ρ ′

E)+

NB∑
i=1

Ṡ(ρ ′
E,i||ρE,i) (32)

= İ(ρ ′
E)+

NB∑
i=1

βiQ̇i,coh + Ċ(ρE,i)⩾ 0, (33)

which represents a global modified second law.
Classes of modified versions of the second law of thermodynamics stemming from coherence in a system

interacting with a large environment have been investigated in the literature, see e.g. [95–97] whereas, for
coherent reservoirs, they remain not widely explored [74, 77]. Our modified second law demonstrates that
the coherent heat contribution is constrained by the loss of coherence in the auxiliary’s state and that clearly
shows that coherence is a resource to be harnessed to perform thermodynamic tasks in non-equilibrium
processes. Ma et al [65], obtained similar results but for a generic finite size reservoir with coherence.

The results of this section are quite general and only depend on a few assumptions, chiefly no initial
system–environment correlations or within the environment. In the next section we showcase them for the
specific case of a one-qubit system coupled to two environments at different temperatures.

3. Results

We now specialise our problem to that of a single qubit in contact with two baths (NB = 2). We assume the
qubit’s Hamiltonian to be:

HS = Bσz
S. (34)

We also assume the ancillas to be qubits such that their Hamiltonians read:

HE,i = Biσ
z
E,i, i= 1,2. (35)

Notice that the ancillas are not resonant with the qubit. This causes extra terms to appear in the power and
heat expressions proportional to the non vanishing gap [98]. The system–environment interaction
Hamiltonian is assumed of the rotating-wave type with Si = σ−

S and Ai = σ−
E,i (where we have therefore

dropped the index k as there is only one value). For the state of the ancilla before the collision we choose:

χE,i = cosϕiσ
x
E,i+ sinϕiσ

y
E,i (36)

where the angle ϕi can be interpreted as the azimuth of the ancilla’s Bloch vector.
Under these assumptions, the master equation for the system’s qubit becomes:

ρ̇S =−i[HS +GS,ρS] + γ(n1 + n2 + 2)L[σ−
S ,ρS]

+ γ(n1 + n2)L[σ+
S ,ρS] (37)

where the effective Hamiltonian correction is:

GS =
√
2γ

∑
i=1,2

ϵi
√
2ni + 1

(
cosϕiσ

x
S + sinϕiσ

y
S

)
(38)

6
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Table 1. Functionings for T1 < T2.

Ẇ< 0, Q̇1 < 0, Q̇2 > 0 Engine
Ẇ< 0, Q̇1 > 0, Q̇2 < 0 Hybrid refrigerator
Ẇ> 0, Q̇1 < 0, Q̇2 > 0 Accelerator
Ẇ> 0, Q̇1 > 0, Q̇2 < 0 Refrigerator

and we have assumed equal rates γ for the two baths such that g2E,i = 2γ(2ni + 1), where
ni = [exp(2βiB)− 1]−1 is the thermal occupation in each ancilla. Notice that in the absence of environmental
coherence (ϵi = 0), the master equation would simply correspond to that of a qubit in contact with a single
effective bath with an average thermal occupation n= (n1 + n2)/2 and in the long-time limit will equilibrate
with this average thermal occupation.

The steady state of the system’s qubit can be found by solving the equation ρ̇S = 0 and its analytical
expression is reported in appendix B. This shows that the steady state density matrix elements are affected by
the presence of coherence, resulting in terms proportional to ϵ1 and ϵ2.

We now pass to the thermodynamic quantities, heat currents and power. To this end, to simplify the
results we assume coherence only in one bath and set ϵ2 = 0. The case with coherence in both baths does not
lead to additional qualitatively different scenarios considered here as proven in appendix D.

Detailed expressions for the coherent, incoherent and collisions contributions to heat and work for any
state of the system can be found in appendix C. Substituting the expressions for the steady state, found
in appendix B, in equations (13)–(19), we obtain for the heat currents and power (totalling their coherent,
incoherent and collisional contributions):

Q̇1 = B1V(ϵ1) (39)

Q̇2 =−B2V(ϵ1) (40)

Ẇ= (B2 −B1)V(ϵ1) (41)

where the common factor is given by:

V(ϵ1) = 2γ
B2(n1 − n2)+ γ(1+ n1 + n2)

[
(n1 − n2)(1+ n1 + n2)γ+(2n1 + 1)ϵ21

]
(1+ n1 + n2) [B2 +(1+ n1 + n2)2γ2 +(2n1 + 1)γϵ21]

. (42)

The fact that the thermodynamic quantities contain a common factor is a consequence of the
system–environment exchange interaction Hamiltonian that we have assumed and which was found in
related models, e.g. in [11, 92, 98]. An immediate consequence is that the ratios of these quantities, linked to
the efficiency and coefficient of performance (COP), only depend on the ratios of the ancillas magnetic fields
yielding Otto-like expressions. For instance, we obtain the efficiency

η =− Ẇ

Q̇in

= 1− min{B1,B2}
max{B1,B2}

, (43)

where the input heat Q̇in is the sum of all positive heat contributions.
Notice that the factor V(ϵ1) contains explicitly the strength of coherence ϵ1 but not its phase. In the case

of two baths with coherence, only their relative phase would appear in the expression, see appendix D. The
factor V(ϵ1) also contains the system’s magnetic field B and would appear also in the absence of bath
coherence [98]. In this case, this field plays the role of an effective detuning which increases the magnitude of
the heat currents and power but does not alter their signs and therefore the type of operating machine.

In the next two subsections we illustrate our results for the case in which the cold environment produces
coherent ancillas (T1 < T2) and the opposite case in which the hot environment is coherent (T2 < T1).

3.1. Coherence in the cold bath
We start by assuming that the coldest bath has some initial coherence; therefore we assume that T1 < T2. In
this case, depending on the choice of the coherence strength ϵ1 and the magnetic fields B1 and B2, the setup
can operate as different types of thermal machines, as summarised in table 1.

Looking at equations (39)–(42) we see that Ẇ, but not Q̇1 and Q̇2, changes sign when

B1 = B2, (44)

7



New J. Phys. 24 (2022) 113053 K Hammam et al

Figure 2. Coherence in the cold bath: (a) operational diagram for the different functionings of the thermal machine. Colour

coding is as follows: R≡ refrigerator, HR≡ hybrid refrigerator, A≡ accelerator, E≡ engine. In the area denoted as R
′
, the device

works as a refrigerator with a COP larger than the Carnot value. The vertical dashed line indicates the condition n1 = n2; the
vertical dotted-dashed line corresponds to the condition B1 = B2; the curved solid line corresponds to the condition in
equation (45). Heat currents and power for (b) B1 = 0.9, (c) B1 = 1.1, (d) B1 = 1.4. Other parameters: B= 1,B2 = 1.2,
T1 = 2.5,T2 = 3,γ = 1.

Figure 3. Plot of the coherent contribution Q̇1,coh (solid line) and incoherent contribution Q̇i,inc (dashed line) heat flow from

bath 1 against ϵ1. The change in relative entropy of coherence Ċ(ρE,1) for bath 1, multiplied by−T1 (dotted line) is also plotted
against ϵ1 to verify that the bound in equation (28) holds. Parameters are as in figure 2(b).

while all quantities, Ẇ, Q̇1,and Q̇2, become zero when V(ϵ1) cancels which occur, in the presence of
coherence, when

ϵ∗1 =

√
n2 − n1

√
B2 +(1+ n1 + n2)2γ2√

(1+ 2n1)(1+ n1 + n2)γ
. (45)

The two conditions (44) and (45) determine the functioning diagram reported in figure 2(a). There, we see
that all four regimes illustrated in table 1 appear for certain values of the parameters. In the panels (b)–(d) of
figure 2 we plot the thermodynamic quantities Ẇ, Q̇1,and Q̇2 along three cuts of the functioning diagram.
The crossing points that appear in panels (c) and (d) of figure 2 correspond to effective Carnot points
determined by equation (45) where all thermodynamic quantities go to zero and change sign.

Figure 3 shows how both the coherent and incoherent heat flows from bath 1 vary with ϵ1. We see that at
ϵ1 ≈ 0.2, the contribution to the overall heat flow (from bath 1) due to coherence surpasses the incoherent
heat flow. The rate of change of coherence Ċ(ρE,1) is also plotted in figure 3 providing evidence that the
bound in equation (28) holds.

8



New J. Phys. 24 (2022) 113053 K Hammam et al

Figure 4. Cooling power Q̇1 against the COP for the device operating as a refrigerator. We compare the cases with no coherence
(solid, ϵ1 = 0) and with coherence (dashed, ϵ1 = 0.6). Parameters as in figure 2 with 0< B1 < B2.

We now pass to discuss the efficiency and COP of the thermal devices. As discussed in the previous
section, these quantities are given by the Otto values:

η = 1− B1

B2
, (46)

when operating as an engine and

COP=
B1

B2 −B1
, (47)

when operating as a refrigerator. In absence of coherence and for thermal baths, these quantities are smaller
or equal than the corresponding Carnot values:

ηC = 1− T1

T2
, (48)

COPC =
T1

T2 −T1
, (49)

with equality obtained only when the heat currents and power drop to zero. This is because, in absence of
coherence (ϵ1 = 0), the condition COP> COPC is equivalent to the condition n1 < n2 that corresponds to
the functioning of the device as an engine. However, in the presence of coherence, we see in figure 2 that the
refrigerator regime survives in a classically ‘forbidden’ area for which n1 < n2. In this area, labelled R

′
in the

diagram, the COP is indeed larger than the Carnot value COPC as evidenced in figure 4, where we plot the
cooling power Q̇1 against the COP. We find that in the region R

′
where COP> COPC, the cooling power is

nonzero, in contrast to the Carnot point where power is strictly null. Moreover, figure 4 shows that the COP
at maximum cooling power is larger in the presence of coherence. The COP is not bounded and diverges at
the transition between the functioning as a refrigerator and as a hybrid refrigerator for B1 → B2.

Regarding the efficiency of the system as an engine, applying the same considerations as before, we find
that the condition η > ηC would correspond to n2 < n1. In figure 2(a), however, we observe that the system
never operates as an engine for n2 < n1, even in the presence of coherence.

Two more functionings appear in figure 2(a): the accelerator and the hybrid refrigerator. For the
accelerator, heat flows in the spontaneous direction (hot to cold) but this process is accelerated by positive
work injected into the system and transformed into heat that is dissipated in the cold environment. The
hybrid refrigerator instead does the opposite: it extracts heat from the coldest bath, converts part of it into
work which can be extracted and dumps the rest into the hot bath. This apparently paradoxical functioning
is made possible necessarily by the presence of quantum coherence in the cold bath which acts as an extra
source of work.

Summarising, when coherence is present in the cold bath, there is a region of parameters for which the
system operating as a refrigerator has a larger, in principle unbounded, COP than the Carnot value. However,
when the system operates as an engine, its efficiency is always smaller than the Carnot efficiency. As we will
see in the next section, this situation will be reversed when the coherence is in the hot bath.
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Table 2. Functionings for T1 > T2.

Ẇ< 0, Q̇1 > 0, Q̇2 < 0 Engine
Ẇ> 0, Q̇1 > 0, Q̇2 < 0 Accelerator
Ẇ> 0, Q̇1 < 0, Q̇2 > 0 Refrigerator

Figure 5. Coherence in the hot bath: (a) operational diagram for the different functionings of the thermal machine. Colour

coding is as in figure 2. In the area denoted as E
′
, the device works as an engine with an efficiency larger than the Carnot value

The vertical solid line indicates the condition n1 = n2. Heat currents and power for (b) B2 = 0.8, (c) B2 = 1.1, (d) B2 = 1.3.
Other parameters: B= 1,B1 = 1.2,T1 = 3,T2 = 2.5,γ = 1.

3.2. Coherence in the hot bath
We now consider the case where the coherence is in the hot bath. We thus assume T1 > T2. The conditions
for the different operating regimes can be found by looking again at the signs of equations (39)–(41) as we
did in the previous section and are reported in table 2. Notice that the signs of Q̇1 and Q̇2 are reversed
compared to table 1.

Equations (44) and (45) are still valid and give us the conditions at which the power is zero. Using these
equations we find the functioning diagram shown in figure 5(a). In contrast to the case where the coherence
is in the cold bath, we see that the device never operates as a hybrid refrigerator. Moreover, a coherence
ϵ1 > ϵ∗1 allows the system to operate as an engine even when B2 < B1, where in absence of coherence a
refrigerator would be expected. In this forbidden zone, the efficiency of the corresponding engine is larger
than the Carnot value as shown in figure 6.

In figure 6(a), we show the power output Ẇ against the efficiency when the system behaves as an engine.
In absence of coherence, ϵ1 = 0, the maximum achievable efficiency is the Carnot value ηC (equation (48))
where however the power is zero. The value of the efficiency at maximum power is obtained at the
Curzon–Ahlborn value:

ηCA = 1−
√

T1

T2
. (50)

On the other hand, in the presence of coherence ϵ1 ̸= 0, the efficiency is much larger and surpasses both the
Carnot value (at non zero power) and the Curzon–Ahlborn value. Figure 6(b), shows that the efficiency at
maximum power ηMP grows quadratically for very small ϵ1 and linearly for larger values. For a given ϵ1, the
maximum value of the efficiency ηmax is obtained for the value of B2 at the transition, in the diagram of
figure 5(a), between the functioning as an engine and that as a refrigerator. The value of B2 can be obtained
by solving the equation:

ϵ1 = ϵ∗1 (51)

where ϵ∗1 is defined in equation (45). The value of ηmax, plotted in figure 6(b), is not universal, depending on
all parameters, but represents an effective Carnot bound on the functioning of the machine as an engine.
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Figure 6. (a) Power versus efficiency when the system is operating as an engine with the magnetic field 0.93< B2 < 1.2. The solid
(dashed) line is the case with ϵ1 = 0 (ϵ1 = 0.1). The vertical dotted line corresponds to the Carnot value ηC (see equation (48))
and the dot-dashed line corresponds to the Curzon–Ahlborn value ηCA (see equation (50)). (b) Maximum efficiency ηmax (solid)
and efficiency at maximum power ηMP (dashed) as a function of the coherence in the hot bath. The two horizontal lines
correspond to ηCA (solid) and ηC (dotted). Other parameters as in figure 5.

4. Summary and conclusions

In this paper, we have demonstrated the role of non-thermal bath effects in non-equilibrium processes. We
provide a thermodynamic analysis of a microscopic CM wherein a single qubit is interacting repeatedly with
two local reservoirs at different temperatures, which consist of a collection of initially prepared ancillas with
an infinitesimally small amount of coherence.

A key insight is that the system–ancilla interaction does not satisfy local energy conservation, thus
generating coherent and incoherent contributions in the heat flow and coherent and collisional terms in the
power. In the continuous time limit, we have shown that the loss or gain of coherence in the state of the
ancillas is given by a modified second law of thermodynamics which is described by a lower bound for the
coherent heat current from one of the baths.

We have shown coherence to be a tuning parameter alongside the magnetic field of the baths for
characterising the different operational regimes of the machine. Since including coherence in both baths can
be reduced to the case with coherence in only one bath, to simplify the analysis, we studied the latter case. We
found that injecting some amount of coherence into the cold bath allows the refrigerator to survive the
classically forbidden regime. This implies that its COP surpasses the Carnot limit of the corresponding
equilibrium reservoirs without coherence. In addition, coherence can result in advantageous effects such as
the appearance of a hybrid refrigerator that simultaneously produces work and refrigerates the cold reservoir.
In contrast, when the hot bath contains coherence and the cold reservoir is an equilibrium bath, the machine
never operates as a hybrid refrigerator. In the case of the heat engine regime, coherence acts as fuel that drives
the efficiency beyond the Carnot value corresponding to incoherent baths. Similarly, coherence leads to
efficiency at maximum power much larger than the classical Curzon–Ahlborn value.

The simplicity of our model provides a general insight into the advantages of employing coherent
reservoirs in the performance of thermodynamic tasks. Our findings can be further explored in systems of
higher dimensionality, including quantum harmonic oscillators. Implementing our proposal in current
experiments could face critical technical challenges such as scaling, decoherence and manufacturing errors.
Nonetheless, the first proof-of-principle demonstrations have already shown great potential for future
thermodynamic applications [81, 83, 84].
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Appendix A. Derivation of the general expressions of heat and work

The heat flow from bath i is defined as the energy change in the bath’s ancilla during a collision

Q̇i =− lim
τ→0

1

τ
tr
[
HE,i∆ρ

]
, (A.1)

where

∆ρ= e−iτHtotρS ⊗ ρEe
iτHtot − ρS ⊗ ρE. (A.2)

We may write

e−iτHtotρS ⊗ ρEe
iτHtot = ρS ⊗ ρE − iτ [Htot,ρS ⊗ ρE]−

τ 2

2
[HSE, [HSE,ρS ⊗ ρE]] +O

(
τ 2
)

(A.3)

therefore,

∆ρ=−iτ [Htot,ρS ⊗ ρE]−
τ 2

2
[HSE, [HSE,ρS ⊗ ρE]] +O

(
τ 2
)
. (A.4)

In the following we will ignore terms of order τ 2 and higher, as they will tend to zero when dividing by τ and
taking the limit as τ → 0. Plugging equation (A.4) into (A.1), we find

Q̇i = i lim
τ→0

tr
[
HE,i [Htot,ρS ⊗ ρE]

]
+

1

2
lim
τ→0

tr
[
τHE,i [HSE, [HSE,ρS ⊗ ρE]]

]
. (A.5)

The first term represents the coherent heat flow, defined in equation (16):

Q̇i,coh = i lim
τ→0

tr
[
HE,i [Htot,ρS ⊗ ρE]

]
(A.6)

= i lim
τ→0

tr
[
[HE,i,HSEi ]ρS ⊗ ρE

]
(A.7)

=−i lim
τ→0

tr
[
[GE,i,HE,i]ρE,i

]
, (A.8)

where GE,i is defined in equation (17).
The second expression in equation (A.5) therefore gives rise to the incoherent heat flow

Q̇i,inc =
1

2
lim
τ→0

tr
[
τHE,i [HSE, [HSE,ρS ⊗ ρE]]

]
(A.9)

=
1

2
lim
τ→0

tr
[
τ [HSE, [HSE,HE,i]]ρS ⊗ ρE

]
. (A.10)

Now let us pass to work. The power is defined as

Ẇ=

⟨
∂Htot

∂t

⟩
= lim

τ→0

1

τ
tr
[
(HS +HE)∆ρ

]
. (A.11)

Plugging in equation (A.4), we find

Ẇ=−i lim
τ→0

tr
[
(HS +HE) [Htot,ρS ⊗ ρE]

]
(A.12)

− 1

2
lim
τ→0

tr
[
τ(HS +HE) [HSE, [HSE,ρS ⊗ ρE]]

]
. (A.13)

The expression in equation (A.12) gives rise to coherent power

Ẇcoh =−i lim
τ→0

tr
[
(HS +HE) [HSE,ρS ⊗ ρE]

]
(A.14)

= i lim
τ→0

tr
[
[HSE,HS +HE]ρS ⊗ ρE

]
. (A.15)

The collisional power then arises from the second term in equation (A.13)

Ẇcol =−1

2
lim
τ→0

tr
[
τ(HS +HE) [HSE, [HSE,ρS ⊗ ρE]]

]
(A.16)

=−1

2
lim
τ→0

tr
[
τ [HSE, [HSE,HS +HE]]ρS ⊗ ρE

]
. (A.17)
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Appendix B. Steady state solution

In this section, we show the explicit expression of the system’s steady state when the system is subject to the
master equation (37). We write the density matrix ρS in the basis of eigenstates of σz

S as:

ρS =

(
ρ11 ρ12
ρ21 ρ22

)
. (B.1)

In this representation, the entries of the steady state density matrix read:

ρ11 =
1

R

{
4B2n+ γeff(1+ 2n)2(2ϵ2eff + nγeff)

}
, (B.2)

ρ22 = 1− ρ11, (B.3)

ρ21 =
iϵeffeiϕ

√
2γeff(2n+ 1)

R
{2iB+(2n+ 1)γeff} , (B.4)

R= (2n+ 1)
[
4B2 + γeff(2n+ 1)(4ϵ2eff +(2n+ 1)γeff)

]
, (B.5)

where we have introduced the effective decay rate γeff = 2γ and an effective coherence strength, expressed in
complex polar form:

ϵeffe
iϕ =

ϵ1eiϕ1
√
1+ 2n1 + ϵ2eiϕ2

√
1+ 2n2√

2
√
1+ 2n

, (B.6)

with ϵeff and ϕ, real parameters, denoting its magnitude and phase, respectively.

Appendix C. Thermodynamic quantities: detailed expressions

Here we report the expressions for the coherent and incoherent heat currents as well as those for the power.
Splitting the heat flow into its coherent and incoherent parts as in equations (16) and (18) we find

Q̇1,coh = iϵ1B1

√
2γ(1+ 2n1)(e

iϕρ12 − e−iϕρ21), (C.1)

Q̇1,inc =−4B1γ [ρ11 + n1(ρ11 − ρ22)] , (C.2)

for the first ancilla, initially coherent, and

Q̇2,coh = 0,

Q̇2,inc =−4B2γ [ρ11 + n2(ρ11 − ρ22)] (C.3)

for the second ancilla, initially in an incoherent thermal state.
We find the coherent and collisional parts of the power to be

Ẇcoh = 2ϵ1i(B−B1)
√
2γ(1+ 2n1)(e

iϕρ12 − e−iϕρ21), (C.4)

Ẇcol =−4γ {[(B−B1)(1+ n1)+ (B−B2)(1+ n2)]ρ11 (C.5)

− [(B−B1)n1 +(B−B2)n2]ρ22} .

Steady state expressions can be directly obtained by replacing the stationary solutions equations (B.2)–(B.4)
in the relevant expressions for heat and power.

The rate of change of the relative entropy of coherence in the first ancilla is

Ċ(ρE,1) =−β1B1ϵ
2
1γ

2(1+ 2n1)
{[
1+ 2n21 + 4n1(1+ n2)+ 2n2(2+ n2)

]
×
[
B2 + γ2(1+ n1 + n2)

2
]
+ 2ϵ2γ(1+ 2n1)(1+ n1 + n2)

2
}

(C.6)

/
{
(1+ n1 + n2)

2
[
B2 + γ2(1+ n1 + n2)

2 + ϵ2γ(1+ 2n1)
]2}

,

which is always negative and in the second ancilla is

Ċ(ρE,2) =
β2B2ϵ

2
1γ

2(1+ 2n1)[B2 + γ2(1+ n1 + n2)2]

(1+ n1 + n2)2 [B2 + γ2(1+ n1 + n2)2 + ϵ2γ(1+ 2n1)]
2 (C.7)

which is always positive.
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Appendix D. Quantum coherence in both baths

In this appendix we analyse what happens in the case in which coherence is present in both baths. We are
going to show that the expressions of the heat currents and power can be also obtained with coherence only
in one of the two baths and with an effective amplitude.

We consider the master equation (37) for both ϵ1 ̸= 0 and ϵ2 ̸= 0. After finding the corresponding steady
state we obtain the following energy flows

Q̇1 = B1V
(2)(ϵ1,ϕ1, ϵ2,ϕ2), (D.1)

Q̇2 =−B2V
(2)(ϵ1,ϕ1, ϵ2,ϕ2), (D.2)

Ẇ= (B2 −B1)V
(2)(ϵ1,ϕ1, ϵ2,ϕ2), (D.3)

which are similar to those in equations (39)–(41) but now the common factor depends on all the parameters,
ϵ1,ϕ1, ϵ2, and ϕ2:

V(2)(ϵ1,ϕ1, ϵ2,ϕ2) = 2γ
{
B2(n1 − n2)+ γ(1+ n1 + n2)

×
[
γn1(1+ n1)− γn2(1+ n2)+ ϵ21(1+ 2n1)− ϵ22(1+ 2n2)

]
+ 2Bϵ1ϵ2

√
(1+ 2n1)(1+ 2n2) sin(ϕ1 −ϕ2)

}
/
{
(1+ n1 + n2)

[
B2 + γ2(1+ n1 + n2)

2 + γϵ21(1+ 2n1)+ γϵ22(1+ 2n2)
]

+ 2γϵ1ϵ2
√
(1+ 2n1)(1+ 2n2)cos(ϕ1 −ϕ2)

}
. (D.4)

Let us now consider the corresponding expressions for heat currents and power when coherence is only
in one bath, equations (39)–(41). These are all proportional to a common factor V(ϵ1), reported in
equation (42), that only depends on the coherence amplitude ϵ1 and not its phase ϕ1. If we now choose
ϵ1 = A1/A2 where

A2
1 =

(
B2 + γ2(1+ n1 + n2)

2
)[

γ(1+ 2n1)(1+ 2n2)(ϵ1 − ϵ2)(ϵ1 + ϵ2) (D.5)

+ 2ϵ1ϵ2
√
(1+ 2n1)(1+ 2n2)

(
γ(n2 − n1)cos(ϕ1 −ϕ2)+B sin(ϕ1 −ϕ2)

)]
,

A2
2 = γ(1+ 2n1)

[
(1+ 2n2)

(
B2 + γ2(1+ n1 + n2)

2 + 2γ(1+ n1 + n2)ϵ
2
2)
)

(D.6)

+ 2ϵ1ϵ2
√
(1+ 2n1)(1+ 2n2)

(
γ(1+ n1 + n2)cos(ϕ1 −ϕ2)−B sin(ϕ1 −ϕ2)

)]
,

then the common factor for the case with coherence in the two baths is equal to the common factor for the
case with coherence in only one bath:

V(A1/A2) = V(2)(ϵ1,ϕ1, ϵ2,ϕ2). (D.7)

As a consequence all thermodynamic quantities that arise in the case with coherence in both baths can be
also reproduced with coherence only in a single bath.
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