
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Generating and detecting bound entanglement in two-qutrits
using a family of indecomposable positive maps

Citation for published version:
Bhattacharya, B, Goswami, S, Mundra, R, Ganguly, N, Chakrabarty, I, Bhattacharya, S & Majumdar, AS
2021, 'Generating and detecting bound entanglement in two-qutrits using a family of indecomposable
positive maps', Journal of Physics Communications, vol. 5, no. 6, 065008, pp. 1-13.
https://doi.org/10.1088/2399-6528/AC0B01

Digital Object Identifier (DOI):
10.1088/2399-6528/AC0B01

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Journal of Physics Communications

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 11. May. 2024

https://doi.org/10.1088/2399-6528/AC0B01
https://doi.org/10.1088/2399-6528/AC0B01
https://www.research.ed.ac.uk/en/publications/57dc532e-4eab-4745-9fdb-a13d30c5c64d


Journal of Physics
Communications

            

PAPER • OPEN ACCESS

Generating and detecting bound entanglement in
two-qutrits using a family of indecomposable
positive maps
To cite this article: Bihalan Bhattacharya et al 2021 J. Phys. Commun. 5 065008

 

View the article online for updates and enhancements.

You may also like
Entanglement witnesses: construction,
analysis and classification
Dariusz Chruciski and Gniewomir Sarbicki

-

Logarithmic conformal field theory: beyond
an introduction
Thomas Creutzig and David Ridout

-

Restriction and induction of
indecomposable modules over the
Temperley–Lieb algebras
Jonathan Belletête, David Ridout and
Yvan Saint-Aubin

-

This content was downloaded from IP address 192.41.114.226 on 16/04/2024 at 23:01

https://doi.org/10.1088/2399-6528/ac0b01
/article/10.1088/1751-8113/47/48/483001
/article/10.1088/1751-8113/47/48/483001
/article/10.1088/1751-8113/46/49/494006
/article/10.1088/1751-8113/46/49/494006
/article/10.1088/1751-8121/aa993a
/article/10.1088/1751-8121/aa993a
/article/10.1088/1751-8121/aa993a


J. Phys. Commun. 5 (2021) 065008 https://doi.org/10.1088/2399-6528/ac0b01

PAPER

Generating and detecting bound entanglement in two-qutrits using a
family of indecomposable positive maps

Bihalan Bhattacharya1 , SuchetanaGoswami1,2,∗ , RounakMundra3, NirmanGanguly4,
Indranil Chakrabarty3, Samyadeb Bhattacharya3 andASMajumdar1

1 S.N. BoseNational Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 106, India
2 Centre forQuantumOptical Technologies, Centre ofNewTechnologies, University ofWarsaw, Banacha 2c, 02-097Warsaw, Poland
3 Center for Security Theory andAlgorithmic Research, International Institute of Information Technology, Gachibowli, Hyderabad, India
4 Department ofMathematics, Birla Institute of Technology and Science Pilani, HyderabadCampus, Telangana-500078, India
∗ Author towhomany correspondence should be addressed.

E-mail: bihalan@gmail.com, suchetana.goswami@gmail.com and samyadeb.b@iiit.ac.in

Keywords:Positivemap, Structural physical approximation, Detecting entanglement, Entanglement,WeaklyOptimal

Abstract
The problemof bound entanglement detection is a challenging aspect of quantum information theory
for higher dimensional systems.Here, we propose an indecomposable positivemap for two-qutrit
systems, which is shown to detect a class of positive partial transposed (PPT) states. A corresponding
witness operator is constructed and shown to beweakly optimal and locally implementable. Further,
we perform a structural physical approximation of the indecomposablemap tomake it a completely
positive one, andfind a newPPT-entangled state which is not detectable by certain other well-known
entanglement detection criteria.

1. Introduction

The entanglement of quantum states [1–4] plays themost crucial role in various information processing tasks
[5–8]. Thus the detection of entanglement in arbitray quantum system is considered to be one of themost
fundamental aspects of the subject. Themost effective way to detect entanglement theoretically, is via the usage
of positive but not completely positive (NCP)maps, of which themost famous and heavily utilized example is
given by the partial transposition (PT)map [9].

It is well known that PT gives us a necessary and sufficient criterion, named the separability criterion to
detect entanglement only for 2×2 and 2×3 dimensional states [10]. It is seen that for these dimensions, all
entangled states have non positive partial transposition (NPPT). There are different prescribed protocols for
detection of two-qubit entanglement based on this criterion [11–15]. On the other hand, entanglement
detection in general is aNPhard problem [16]. In case of higher dimensional systems, there exists a class of states
which are entangled but having a positive partial transposition (PPT), and hence cannot be detected by the PPT
criterion.

The entanglement of PPT entangled states is not distillable [17]. The presence of bound entanglement in
such states has evokedmuch interest as to the possibilities of using or unlocking the entanglement in present in
them [18, 19]. Bipartite bound entanglement channels can exhibit superadditivity of quantum channel capacity
[20]. A further interesting and difficult task is to detect such bound entanglement [21, 22], andmethods have
been recently suggested to prepare and certify bound entangled states that are robust for experimental
verification [23]. The bound entanglement in PPT entangled states is inextricably linked to indecomposable
positivemaps.

The structure of positivemaps has been an area of interest tomathematicians for a long period of time, since
it is extremely hard to determine the positivity of amap even in low dimensions. Ever since the seminal works of
Peres andHorodecki [9, 24], it has been clear that suchmaps play an instrumental role in detection of quantum
entanglement. Considerable effort frombothmathematicians and physicists [25–43] have shed some light on
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the structural intricacies of positivemaps and their applications in physics. Applications of positivemaps in the
study of entanglement theory have catalysed the development of both domains.

Indecomposable positivemaps play a key role in generating entangled states in higher dimensions. The class
of positivemapswhich can be decomposed as an algebraic sumof two relatively simple convex sub classes of
positivemaps, viz., completely positive class and completely co-positive class is called decomposable. Since
transpositionmaps are completely co-positive in nature, quantum states having PPT can not be detected by
them.As a consequence, indecomposablemaps are important for detecting PPT entangled states. Therefore,
constructing non completely positivemaps for detecting PPT entangled states is of considerable importance in
entanglement theory.

As the PPT criterion fails to detect bound entanglement in higher dimensions, certain other criteria have
been proposed in the literature which can detect some PPT entangled states. These include the computable cross
normor realignment criterion (CCNR criterion) [44, 45], range criterion [46, 47], covariancematrix criterion
(CMC) [48, 49] and others. In the present workwe further explore the connection between the theory of positive
maps and entanglement.We introduce an indecomposable positivemap on the algebra of 3×3 complex
matrices to obtain a PPT entangled state of a two-qutrit system.Our proposed non-completely positivemap not
only detects a class of two-qutrit bound entangled states, but also introduce a newPPT entangled state which is
not detected by several of the previouslymentioned criteria.

Since non-complete positivemaps correspond to unphysical operations, it is impossible to implement them
in the laboratory.However, it is indeed possible to construct a physically implementable complete positivemap
froma given unphysicalmap using the notion of structural physical approximation (SPA) [50, 51]whichwe
employ in this work. The SPA technique has also been used for realization of the optimal singlet fraction [52]. On
the other hand, PPT entangled states have been constructed earlier from indecomposable positivemaps [32, 53].
Constructions of such states were done by exploiting the facial structures and various duality relations of the
cone of positivemaps.Herewe devise a differentmethod of contructing PPT entangled states via usage of the
structural physical approximation (SPA) [50, 51].

Three-level systems are of primary importance in laser physics, and possess features of interest from the
quantum information perspective, as well [54–57]. In practical quantum information procesing, detecting
entanglement of a given unknown system and its quantification is one of the important areas of research. The
theory of entanglement witnesses [58–63] provides a useful avenue to this end, and futher helps to identify
resources useful for various information processing tasks [64–68]. Here we formulate a weakly optimal [69]
indecomposable entanglement witness from the positivemap of our construction. This entanglement witness is
shown to detect the proposed two-qutrit bound entangled state, and is further shown to be implementable
through local operations.

The structure of the paper is the following. In section 2, we discuss some prerequisites of the theory applied
in the later sections. In section 3, we define a newone parameter family of indecomposable positivemaps and
show that it can detect a class of two-qutrit entangled states. In section 4we construct aweak optimal witness,
which for a particular choice of parameter, detects at least one class of bound entangled states. In section 5, we
employ the structural physical approximation to construct a new class of PPT entangled states.We conclude in
section 6with a summary of our results.

2. Preliminaries

In this sectionwe shall discuss some preliminary details of positivemaps.One canfind detailed discussions on
positivemaps in [70, 71].We considerHilbert space offinite dimension, and shall deal with positivemaps
between algebra ofmatrices. The seminal results by Stormer [72] andWoronowicz [73] showed that if1 and
2 be twoHilbert spaces, then all positivemaps acting on the set of bounded operators on1 into the set of all
bounded operators acting on2 are decomposable if product of the dimension of1 and2 is upper bounded
by 6. Thefirst example of indecomposablemapwas provided byM.D.Choi [74], popularly known as Choimap.
A new family of indecomposablemapwas considered byHall [75] andBruer [76]. Later thismapwas generalised
to a class of positivemaps byChruchinski andKossakowski [77] and discussed the indecomposability and
atomicity of the part of the class. On the other hand, as discussed earlier, the theory of positivemaps has a deep
connectionwith quantum inseparability which instigates a new insight into the subject [9, 24, 78, 79].

Here, we concentrate on the bipartite scenarios and recapitulate a few notions on separability and positive
maps form the literature. Asmentioned in the previous paragraph, if a bipartite state
( ∣ ∣ ∣ ∣r = å ñá Ä ñáp i j k lAB ijkl kl

ij ) is a separable one, then it is PPT [80, 81], where the partial transposition (with

respect to the second subsystem) is given by, ∣ ∣ ∣ ∣r = å ñá Ä ñáp i j k lT
ijkl lk

ijB . In this case, a state ρ can be concluded

as a separable one if and only if for any positivemapΛ, we have ( )rÄ L  0. Though there are a few examples
of suchmaps [82–89]which can detect PPT entanglement, they are far from exhaustive.

2
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Let d be the complexHilbert spaces of dimension d. Let ( ) d denote the space of all operators acting on
d. ( ) d is endowedwithHilbert-Schmidt inner product defined by [ ]†< > =X Y Tr X Y, for any two
members ( )Î  X Y, d . The sub collection of ( ) d consisting of hermitian, positive semidefinite operators
having unit trace is known as the set of density operators acting on d.

Recall that operators acting onfinite dimensional spaces are bounded and can be represented asmatrices
with respect to some basis. Letd andk be the algebra of d×d and k×kmatrices respectively, over the field
of complex numbers. A linearmap L  : d d is said to be positive if ( )L QX for any positive semi-
definite Î X d, whereΘ denotes the zero operator. A linearmap is said to be k-positive if themap

Ä L Ä  Ä    :k k d k d is positive for some Î k . A linearmap is said to be completely positive if it is
k-positive for all Î k . Similarly a linearmapΛ is said to be k-copositive if ( ◦ )Ä L Tk is positive for some

Î k and completely co-positive if ◦L T is completely positive, whereT stands for the transpositionmap.
Given any linearmap L  : d d, in connectionwith the celebrated Choi-Jamiolkowski isomorphism

we can construct amatrix L , known asChoimatrix, living in Ä d d. Choimatrix can be obtained via the

rule, (∣ ∣)f f= Ä L ñáL
+ +  , where ∣ ∣f ñ = å ñ+

=
- ii

d i
d1

0
1 is themaximally entangled state in Ä d d and

{∣ }ñ -i d
0

1 stands for standard computational basis for d. A linearmapΛ is completely positive iff its Choimatrix

L is positive semi-definite. It is to be noted that if a linearmap is positive but not completely positive, then there
exists some density operator ρwhose image is not positive. Such an operator ρ can not be a separable one.Hence,
positive but not completely positivemaps can be used to detect entangled density operators.

Another important notion of positivemaps is their decomposability. A positivemapΛ is known to be
decomposable if it can be expressed as ◦L = L + L T1 2 where L1 and L2 are completely positivemaps andT
denotes the action of transposition. Otherwise, it is said to be indecomposable. It is to be noted that
decomposablemaps can not detect PPT entangled density operators. Recall that a density operatorσ is said to be
PPT if ( )sÄ Q T . Therefore, indecomposablemapsmust detect at least one PPT entangled density
operator.Moreover, a positive linearmap is called atomic if it can not be expressed as a sumof 2-positive and
2-copositivemap. An atomic linearmap is by definition indecomposable.

Additionally, a linearmap is said to be trace preserving if [ ( )] [ ]L = " Î Tr X Tr X X d. A linearmap is
said to be hermiticity preserving if ( ) ( )† †L = L " Î X X X d. Given a linearmap L  : d d, its dual
map †L  : d d is defined by the relation ( ) ( )†áL ñ = á L ñX Y X Y, , for any operator Î X Y, d. AmapΛ is

positive iff its dualmap †L is also positive. Using the above properties of positivemaps, in the next sectionwe
shall introduce a new class of indecomposable positivemaps.

3.One parameter family of indecomposable positivemaps

Wenow introduce a one parameter family of positivemaps containing a clear indecomposable subfamily. For
this purpose, we start with the following definition.

Definition 1. Let3 denote the algebra of 3×3matrices over the field of complex numbers .We define a one
parameter class of linear trace preservingmaps L a  : 3 3 by,

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

( )

( )

( )
a

a a

a
a a

a

L =
+

+ - -

-
+

-

- - +

a

a

X

x x x x

x
x x

x

x x x
x

1
1

1

11 22 12 13

21
22 33

32

31 23 33
11

where

⎡

⎣
⎢

⎤

⎦
⎥ ( ] ( )a= Î ÎX

x x x
x x x
x x x

and 0, 1 . 2
11 12 13

21 22 23

31 32 33

3

Theorem1. La is a positivemap on3 for all a< 0 1.

Proof.Toprove that the linearmap is positive, it is sufficient to show that if acted upon any arbitrary pure state
∣ ( )f f f fñ = , , T

1 2 3 , themapwill give only positive semidefinite output.Here f f f, ,1 2 3 are arbitrary complex
numbers with the constraint ∣ ∣ ∣ ∣ ∣ ∣f f f+ + = 11

2
2

2
3

2 . Herewe have

3
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⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

(∣ ∣)

(∣ ∣ ∣ ∣ )
∣ ∣ ∣ ∣

∣ ∣
∣ ∣

( )f f
a

a f f f f af f

f f
f f

a
f f

af f f f a f
f
a

L ñá =
+

+ - -

-
+

-

- - +
a

1
3

1

1
2

2
2

1 2 1 3

1 2
2

2
3

2

2 3

1 3 2 3 3
2 1

2

* *

* *

* *

Toprove that thematrix (∣ ∣)f fL ñáa is positive, we need to show that all of its principalminors are positive. The
1st order principalminors are the diagonal elements, which are positive for any a > 0. The three 2nd order
principalminors are

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

(∣ ∣ ∣ ∣ )
∣ ∣ ∣ ∣

(∣ ∣ ∣ ∣ )

∣ ∣
∣ ∣

∣ ∣ ∣ ∣

∣ ∣
∣ ∣

( )

a

a f f f f

f f
f f

a

a

a f f af f

af f a f
f
a

a

f f
a

f f

f f a f
f
a

=
+

+ -

-
+

=
+

+ -

- +

=
+

+
-

- +

a

a

a

M

M

M

1
,

1
,

1
. 4

1 1

2
1

2
2

2
1 2

1 2
2

2
3

2

2 1

2
1

2
2

2
1 3

1 3 3
2 1

2

3 1

2 2
2

3
2

2 3

2 3 3
2 1

2

*

*

*

*

*

*

Wenote thatM1 simplifies to (∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ )
( )

f f f f f+ +a
a+1 2

4
1

2
3

2
2

2
3

2
2

2 2 . ThereforeM1 is non negative as

( ]a Î 0, 1 . Similarly,M2 simplifies to (∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ )
( )

f f f f f a+ +a
a+1 1

4
1

2
2

2
2

2
3

2 2
2

2 2 which is a non negative

quantity, andM3 simplifies to ( )∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
( )

f f f f f+ +a
a a a+1 3

4 1
1

2
2

2 1
1

2
3

2
2

2 2 2 2 which is again a non negative

quantity as ( ]a Î 0, 1 .
The remaining principalminor is the determinant of thematrix (∣ ∣)f fL ñáa , which is given by

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣

⎤
⎦

( )
∣ ∣ ∣ ∣

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

( )
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( ) ) ∣ ∣ ∣ ∣ ∣ ∣

a
a

f f
f f

a
f f

a
a
a

f f f f f f
a

f f f

=
+

+ +

-
+

+ -

D

Re

1

1
2 2

1
,

4

2 3 2
2

3
4 3

2
1

4

2
1

2
2

4

2

4

2 3 1
2

2
2

3
2

1
2

2 3
2

2 1
2

2
2

3
2*

Since ( ) ∣ ∣ ∣ ∣f f f f f f"Re , and2 3
2

2
2

3
2

2 3* , we have

⎡
⎣⎢

⎤
⎦⎥( )

∣ ∣ ∣ ∣
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

( )∣ ∣ ∣ ∣ ∣ ∣

( )
[∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ]

a
a

f f
f f

a
f f

a a
f f f

a
a

f f f f f f f f f

+
+ + - -

+
+ + -





D
1

4
1

1
3 ,

4

2 3 2
2

3
4 3

2
1

4

2
1

2
2

4

2 2 1
2

2
2

3
2

4

2 3 2
2

3
4

3
2

1
4

1
2

2
4

1
2

2
2

3
2

for all a  1. Here (·)Re means the real part of a complex number. It is straightforward to check that the
quantity

[∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ]f f f f f f f f f+ + - 3 0,2
2

3
4

3
2

1
4

1
2

2
4

1
2

2
2

3
2

for all f f f, ,1 2 3 with the constraint ∣ ∣ ∣ ∣ ∣ ∣f f f+ + = 11
2

2
2

3
2 . Therefore, themap (·)La is positive for all

a< 0 1. ,

It is our aim tofindwhether themap La is useful to detect entangled states positive under partial
transposition. For this purpose, we prove the following corollary.

Corollary 1. La is a non completely positive indecomposablemap for each ( ]a Î 0, 1 .

Proof.Toprove the corollary, wefirst have to show that the given positivemap is not completely positive. For
this purpose, using Choi’s theorem, it is sufficient to show that (∣ ∣)Ä L FñáFa is not positive. Here, ∣Fñ is the
maximally entangled two qutrit state.

Let us consider the correspondingChoimatrix first.We take themaximally entangled state for two qutrit
system as ∣ (∣ ∣ ∣ )Fñ = ñ + ñ + ñ00 11 221

3
where,

4
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⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥∣ ∣ ∣ ( )ñ = ñ = ñ =0

1
0
0

, 1
0
1
0

, 2
0
0
1

. 5

The one sided action of themap on themaximally entangled state gives rise to theChoimatrix,

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

( )

a
a

a
a

a
a

a
a

a
a
a a

a
a

a
a a

a
a

a
a

=

+
-

+
-

+

+

+

-
+ +

-
+

-
+ +

-
+ +

La

3 3
0 0 0

3 3
0 0 0

3 3
0 0 0 0 0 0 0 0 0

0 0
1

3 3
0 0 0 0 0 0

0 0 0
3 3

0 0 0 0 0

3 3
0 0 0

1

3 3
0 0 0 0

0 0 0 0 0 0 0
3 3

0

0 0 0 0 0 0 0 0 0

0 0 0 0 0
3 3

0
1

3 3
0

3 3
0 0 0 0 0 0 0

3 3

. 6

2

2 2

2

2

2

2

2

2 2

2

2 2

2

2

2

2

The least eigenvalue of La is l¢ = a
a

- +
+

1 1 4

6 6

2

2 .We see that it is a negative quantity within the above parameter

range ( ]a Î 0, 1 . Hence, it is proven that the givenmap is not completely positive.
In themost straightforwardway to prove that themap is indecomposable, we have to now show that it can

detect at least one entangled statewhich is positive under partial transposition. Such a class of two qutrit
entangled states [90] is the following

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

( )
( )t =

+ + -x x

x

x

x

x
x

x

1

3 1

1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0

0 0
1

0 0 0 0 0 0

0 0 0
1

0 0 0 0 0

1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
1

0

1 0 0 0 1 0 0 0 1

7x 1

with x being any non zero positive real number. Applying the proposedmap, we have

Figure 1.Variation ofMinors tD x with respect tomap parameterα.
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N

x x

x

x

x

x
x

x
x

x
x

x

3 1

1 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0
1

0 0 0 0 0 0

0 0 0 1
1

0 0 0 0 0

1 0 0 0
1

0 0 0 0

0 0 0 0 0
1

0 1 0

0 0 0 0 0 0
1

0 0

0 0 0 0 0 1 0
1

0

0 0 0 0 0 0 0

x

x

x

1

1

1

Here, ( )a a= +N 1 1 is the normalization factor. One of the principalminors of thematrix ( )tÄ La x is
given by

( )

[ ( )( ) ( )]

a a

a
a a

a

a
a

a=

+ - -

-
+

- +

= + + - +tD N

x
x

x
N x x

x
x

1 1

1
1

0

0

2 1 .x

It is clear that for any ( ]a Î 0, 1 the function ( )( ) ( ) ( )a a= + + - +
a

f x x x x2 1x is a continuous function

and ( )⟶ a= - <f xlim 0x 0 . So <tD 0
x

for some small >x 0 and hence La is indecomposable. ,

The negativity of tD
x
for a large range of parameters also can be seen from figure 1wherewe plot tD

x
with

respect to x for some particular values ofα. The following casesmay be considered a examples.
Case 1:Considering a = 1

4
, we see that <tD 0

x
, if <x 0.154.

Case 2:Considering a = 1

2
, we see that <tD 0

x
, if <x 0.269.

Case 3: Let us now consider a = 1. In this casewe can see that <tD 0
x

, if < -x 2 1.
Therefore, it the one parameter class ofmaps contains indecomposable positivemaps.
Let us now illustrate the dualmap corresponding to the positivemap introduced in the definition 1.

Corollary 2.The followingmap

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

( )

( )

( )†

a

a a

a
a a

a

L =
+

+ - -

-
+

-

- - +

a

a

X

x x x x

x
x x

x

x x x
x

1
8

1

11 33 12 13

21
22 11

32

31 23 33
22

is also positive and indecomposable in the range a< 0 1.

Proof.The proof of positivity follows similarly to that of Theorem1. For the proof of indecomposability, we can
construct thematrix ( )† tÄ La x , tofind that it will have at least one negative eigenvalue for (irrespective of the
value ofα)

>
-

x
1

2 1
.

,
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4. Entanglementwitness andWeak optimality

Since positivemaps are not physically realizable, it is our next goal to construct an entanglementwitness class
[62], in order to set the experimental viability of ourfindings on afirm footing.Moreover, we also prove that at
least one of our constructedwitnesses is weakly optimal.

Any positive but not completely positivemap gives rise to an entanglement witness. For a givenmap LG its
correspondingChoimatrix G serves as awitness for some entangled state. An entanglement witness is said
to beweakly optimal [69] if there exists some pure product state ∣ ∣g dñ Ä ñ such that

∣ ∣ ∣ ∣g d g dá Äá ñ Ä ñ = 0.

An entanglement witness can always be constructed from a positivemap.We give one such example in the
following.

We know that for two positive semi-definitematricesA andB, the inequality [ ] Tr AB 0 always holds.
Based on this fact, we have [∣ ∣ ( )]† sFñáF Ä La Tr 0, for all separable statesσ and for at least one entangled
state, the trace inequality will acquire negative value. Following the trace rule [ ] [ ]=Tr CD Tr DC for any pair of
matrices C Dand , we get

[∣ ∣ ( )] [ (∣ ∣) ]† r rFñáF Ä L = Ä L FñáFa a  Tr Tr 0,

for any separable state ρ of 3×3 dimension. This can of course be extended to arbitrary ´d 3 dimensional
systems.

We can thus consider the one parameter family of positivemaps Lawith the correspondingChoimatrix
(∣ ∣)= Ä L FñáFaLa  , to be an one parameter family of entanglement witnesses. Now, for a = 1, we can

choose
⎡

⎣
⎢

⎤

⎦
⎥∣ ∣g dñ = ñ =

1

3

1
1
1

such that

∣ ∣ ∣ ∣g g g gá Äá ñ Ä ñ =La 0.

This weakly optimal witness can also be implemented locally. Thewitness can be expressed as a linear sumof

two qutrit local observables.We consider the 3×3 identitymatrix
⎡

⎣
⎢

⎤

⎦
⎥=G

1 0 0
0 1 0
0 0 1

1 , alongwith 8Gell-Mann

matrices
⎡

⎣
⎢

⎤

⎦
⎥=G

0 1 0
1 0 0
0 0 0

2 ,
⎡

⎣
⎢

⎤

⎦
⎥=

-
G

i
i
0 0

0 0
0 0 0

3 ,
⎡

⎣
⎢

⎤

⎦
⎥= -G

1 0 0
0 1 0
0 0 0

4 ,
⎡

⎣
⎢

⎤

⎦
⎥=G

0 0 1
0 0 0
1 0 0

5 ,
⎡

⎣
⎢

⎤

⎦
⎥=

-
G

i0 0
0 0 0
1 0 0

6 ,

⎡

⎣
⎢

⎤

⎦
⎥=G

0 0 0
0 0 1
0 1 0

7 ,
⎡

⎣
⎢

⎤

⎦
⎥= -G i

i

0 0 0
0 0
0 0

8 ,
⎡

⎣
⎢

⎤

⎦
⎥=

-
G

1 0 0
0 1 0
0 0 2

9
1

3
as 9local observables as they areHermitian.We

denote them as =G i, 1 ..... 9i .
We note that for a = 1,

= Ä - Ä + Ä + Ä - Ä

- Ä + Ä - Ä - Ä

+ Ä + Ä

L G G G G G G G G G G

G G G G G G G G

G G G G

1

3

1

6

1

6

1

12

1

4 3
1

6

1

6

1

6

1

6
1

4 3

1

12
.

1 1 2 2 3 3 4 4 4 9

5 5 6 6 7 7 8 8

9 4 9 9

1

Thiswitness is of course indecomposable, because the corresponding positivemap is proven to be
indecomposable. To further establish this fact, we apply thewitness L 1

on tx (7) tofind

[ ]
( )

( )t =
-
+ +

LTr
x

x x

3

18 1
. 9x 21

It is thus clear that thewitness detects entanglement of the two-qutrit PPT entangled state tx for >x 3.

5. Structural physical approximation and a new class of stateswith PPT entanglement

The structural physical approximation (SPA) [50, 51] of a positivemap is a convexmixture of a depolarizingmap
with the givenmap, so that the resultingmap is complete positive. Amap L  :dep d d is said to be

depolarizing if ( ) ( )L = Xdep
Tr X

d
for Î X d.Mathematically, SPAmaps are the points of intersection of the

line joining the givenmapwith the depolarizingmap and the set of all complete positivemaps.Operationally,
SPA of a positivemap is obtained by adding somedisturbance to the positivemap.
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An algorithm tofind the optimal SPAmap for a given positivemap has been prescribed in [50].We shall now
formulate the SPA corresponding to the one parameter family ofmaps La and show that it gives rise to a class of
PPT entangled states.We have earlier considered theChoimatrix La of the family ofmaps and found the least

eigenvalue of La to be l¢ = a
a

- +
+

1 1 4

6 6

2

2 whenwe take ( ]a Î 0, 1 . It is a negative quantity within the above

parameter range. Defining [ ]l l= - ¢max 0, , and following the prescription of [50], the optimal SPAmap
corresponding to themap La is given by

( )L = L + - L¢a ap p1opt
dep* *

where =
l b

l b

¢

¢ +
aL

-

L
-p

dd

dd 1

1

1* , ( )L =
¢
dep

Tr

d

. , and bL¢ = LL
-1 is the re-scaling of the originalmap.Here = ¢ =d d 3,

the input and output dimension of themap La, and as a consequence of trace preservation, the value of
b =La 1. Therefore, the optimal SPAmap L a  :opt

3 3 is given by

ð10Þ

Wenote that the SPAmap is also trace preserving. To checkwhether the SPA is completely positive, we compute
the correspondingChoimatrix. TheChoimatrix is found to be

ð11Þ

Wenext compute the eigenvalues of the 9×9Choimatrix La
 opt and observe that theChoimatrix is positive

semi-definite for thewhole range ofα as all of its eigenvalues are non negative for thewhole range ofα. This
signifies that the SPAmap is complete positive.Moreover, it is to be noted that the Choimatrix is a valid density
matrix as La

 opt isHermitian, positive semi-definite and of trace 1 for ( ]a Î 0, 1 . Hence, we obtain a one
parameter family of two qutrit states.

ð12Þ

The partial transposition of La
 opt is given byWe compute its eigenvalues and plot themwith respect toα in

figure 2.We note that among the nine eigenvalues, one eigenvalue is negative in the interval ( )a Î 0, 1 , and
other eight eigenvalues are all positive for ( )a Î 0, 1 . Hence, the class of states for this interval of values ofα is
NPPT, and therefore, it is entangled. Interestingly, for the parameter value a = 1, all the eigenvalues of the
partially transposedmatrix are non negative, and hence, the state La

 opt is PPT for a = 1.

We are interested tofindwhether the state L opt
1
is entangled. Itmay be noted that sincewe are dealingwith a

two-qutrit system, the partial transposition criterion is no longer sufficient for entanglement detection.We
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hence adopt the covariancematrix criterion [48, 49] for entanglement detection.We can consider the 3 by 3
identitymatrix alongwith the 8Gell-Mannmatrices as orthogonal local observables as they are orthogonal and
Hermitian.We take theChoi state La

 opt and obtain its two reduced densitymatrices La
A

opt and La
B

opt respectively.
The covariancematrix criterion [48, 49] states that for separable states,

∣∣ ∣∣ ( [( ) ])( [( ) ]) ( )- -L La a
 C Tr Tr1 1 12A B

1
2 2

opt opt

where ∣∣ ∣∣. 1 stands for the trace norm and the components of theCmatrix are given by

( )= á Ä ñ - á ñá ñC H H H H 13ij i
A

j
B

i
A

j
B

andHi
A andHj

B denote local orthogonal observables on two sides.We evaluate theCmatrix using the state La
 opt

and its reduced densitymatrices, andfind that the LHS of equation (12) is strictly greater than theRHS for the
values ofα in ( ]0, 1 . The result has been illustrated infigure 3. This certifies the presence of entanglement in the
state La

 opt for ( ]a Î 0, 1 . Therefore, the state corresponding to the value of the parameter a = 1, i.e., L opt
1
is

PPT-entangled. So, the SPAmap La
opt can generate a two-qutrit PPT entangled state L opt

1
.

Itmay be further noted that the state La
 opt is NPPT for the values of the parameterα in ( )0, 1 and therefore, it

is entangled. For the parameter value a = 1 the state is PPT and its entanglement can be detected via the
covariancematrix criterion.Moreover, from figure 3 it is clear that the covariancematrix criterion can also
detect the the entanglement in the range ( )0, 1 where the state isNPPT.

Finally, let us checkwhether the PPT entangled state L opt
1
can be detected by some other existing positive

maps. PPT entangled states are considered as aweak formof entanglement that is usually very hard to detect. As
discussed earlier, indecomposablemaps are necessary to detect PPT entangled states. The celebratedChoimap

Figure 2.The eigenvalues of the partially transposedmatrix
La
T

opt are plottedwith respect toα. There are eight eigenvalues in the plot

since two of the nine eigenvalues are equal in ( ]0, 1 .

Figure 3. LHS andRHSof equation (12) are plotted versusα.
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f  :choi 3 3 [74], one of thefirst examples of indecomposablemaps in the literature, is defined as

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

( ) ( )f =
+ - -

- + -
- - +

X
x x x x

x x x x
x x x x

14Choi

11 22 12 13

21 22 11 23

31 32 33 22

where

⎡

⎣
⎢

⎤

⎦
⎥= Î X

x x x
x x x
x x x

.
11 12 13

21 22 23

31 32 33

3

ApositivemapΛ is said to detect an entangled stateκ if and only if ( )kÄ L Q  , whereΘ stands for zero
operator. It can be checked that ( ) ( ]f aÄ Q " ÎLa

  0, 1Choi
opt . Hence, theChoimap cannot detect the

above PPT entangled state.
Recently,Miller andOlkiewicz [40] introduced another indecomposablemap fMO on3 given by,

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

( )

( )

( ) ( )f =

+

+X

x x x

x x x

x x x

1

2
0

1

2

0
1

2

1

2
1

2

1

2

15MO

11 22 13

11 22 32

31 23 33

where

⎡

⎣
⎢

⎤

⎦
⎥= Î X

x x x
x x x
x x x

.
11 12 13

21 22 23

31 32 33

3

It can be again checked that ( ) ( ]f aÄ Q " ÎLa
  0, 1MO

opt . Hence the abovemap also cannot detect the
PPT entangled state L opt

1
.

6. Conclusions

Bound entangled states are hard tofind and detect. In this work, we have constructed a one parameter family of
indecomposable positivemaps in three dimensional Hilbert space. Thesemaps are shown to detect
entanglement in a certain class of two-qutrit PPT entangled states. Through our proposed non-completely
positive indecomposablemapwe are additionally able tofind a new class of entangled states amongwhich there
exists a PPT entangled state.We have further constructed aweak optimal entanglement witness fromone of
thesemaps and have given its representation in terms of local observables. This presents theway to physically
implement this witness towards detection of the two-qutrit bound entangled state.

Moreover, we have also considered the structural physical approximation [50, 51]of the proposed positive
map. This leads to a large class ofNPPT entangled states, butmore interestingly, we have found a unique bound
entangled state which cannot be detected by various other well-knownnon-completely positivemaps [40, 74].
PPT entangled states have been constructed earlier from indecomposable positivemaps using geometrical
methods [32, 53]. In the present analysis we have devised a new procedure of contructing PPT entangled states
employing the structural physical approximation. To conclude, this workmotivates further investigations of
positivemaps and their applications in entanglement theory in higher dimensions.
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