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Abstract

The problem of bound entanglement detection is a challenging aspect of quantum information theory
for higher dimensional systems. Here, we propose an indecomposable positive map for two-qutrit
systems, which is shown to detect a class of positive partial transposed (PPT) states. A corresponding
witness operator is constructed and shown to be weakly optimal and locally implementable. Further,
we perform a structural physical approximation of the indecomposable map to make it a completely
positive one, and find a new PPT-entangled state which is not detectable by certain other well-known
entanglement detection criteria.

1. Introduction

The entanglement of quantum states [ 1-4] plays the most crucial role in various information processing tasks
[5-8]. Thus the detection of entanglement in arbitray quantum system is considered to be one of the most
fundamental aspects of the subject. The most effective way to detect entanglement theoretically, is via the usage
of positive but not completely positive (NCP) maps, of which the most famous and heavily utilized example is
given by the partial transposition (PT) map [9].

Itis well known that PT gives us a necessary and sufficient criterion, named the separability criterion to
detect entanglement onlyfor2 x 2and2 x 3 dimensional states [10]. It is seen that for these dimensions, all
entangled states have non positive partial transposition (NPPT). There are different prescribed protocols for
detection of two-qubit entanglement based on this criterion [11-15]. On the other hand, entanglement
detection in general is a NP hard problem [16]. In case of higher dimensional systems, there exists a class of states
which are entangled but having a positive partial transposition (PPT), and hence cannot be detected by the PPT
criterion.

The entanglement of PPT entangled states is not distillable [ 17]. The presence of bound entanglement in
such states has evoked much interest as to the possibilities of using or unlocking the entanglement in present in
them [18, 19]. Bipartite bound entanglement channels can exhibit superadditivity of quantum channel capacity
[20]. A further interesting and difficult task is to detect such bound entanglement [21, 22], and methods have
been recently suggested to prepare and certify bound entangled states that are robust for experimental
verification [23]. The bound entanglement in PPT entangled states is inextricably linked to indecomposable
positive maps.

The structure of positive maps has been an area of interest to mathematicians for a long period of time, since
itis extremely hard to determine the positivity of a map even in low dimensions. Ever since the seminal works of
Peres and Horodecki [9, 24], it has been clear that such maps play an instrumental role in detection of quantum
entanglement. Considerable effort from both mathematicians and physicists [25—43] have shed some light on
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the structural intricacies of positive maps and their applications in physics. Applications of positive maps in the
study of entanglement theory have catalysed the development of both domains.

Indecomposable positive maps play a key role in generating entangled states in higher dimensions. The class
of positive maps which can be decomposed as an algebraic sum of two relatively simple convex sub classes of
positive maps, viz., completely positive class and completely co-positive class is called decomposable. Since
transposition maps are completely co-positive in nature, quantum states having PPT can not be detected by
them. As a consequence, indecomposable maps are important for detecting PPT entangled states. Therefore,
constructing non completely positive maps for detecting PPT entangled states is of considerable importance in
entanglement theory.

As the PPT criterion fails to detect bound entanglement in higher dimensions, certain other criteria have
been proposed in the literature which can detect some PPT entangled states. These include the computable cross
norm or realignment criterion (CCNR criterion) [44, 45], range criterion [46, 47], covariance matrix criterion
(CMC) [48, 49] and others. In the present work we further explore the connection between the theory of positive
maps and entanglement. We introduce an indecomposable positive map on the algebra of 3 x 3 complex
matrices to obtain a PPT entangled state of a two-quitrit system. Our proposed non-completely positive map not
only detects a class of two-qutrit bound entangled states, but also introduce a new PPT entangled state which is
not detected by several of the previously mentioned criteria.

Since non-complete positive maps correspond to unphysical operations, it is impossible to implement them
in the laboratory. However, it is indeed possible to construct a physically implementable complete positive map
from a given unphysical map using the notion of structural physical approximation (SPA) [50, 51] which we
employ in this work. The SPA technique has also been used for realization of the optimal singlet fraction [52]. On
the other hand, PPT entangled states have been constructed earlier from indecomposable positive maps [32, 53].
Constructions of such states were done by exploiting the facial structures and various duality relations of the
cone of positive maps. Here we devise a different method of contructing PPT entangled states via usage of the
structural physical approximation (SPA) [50, 51].

Three-level systems are of primary importance in laser physics, and possess features of interest from the
quantum information perspective, as well [54—57]. In practical quantum information procesing, detecting
entanglement of a given unknown system and its quantification is one of the important areas of research. The
theory of entanglement witnesses [58—63] provides a useful avenue to this end, and futher helps to identify
resources useful for various information processing tasks [64—68]. Here we formulate a weakly optimal [69]
indecomposable entanglement witness from the positive map of our construction. This entanglement witness is
shown to detect the proposed two-qutrit bound entangled state, and is further shown to be implementable
through local operations.

The structure of the paper is the following. In section 2, we discuss some prerequisites of the theory applied
in the later sections. In section 3, we define a new one parameter family of indecomposable positive maps and
show that it can detect a class of two-qutrit entangled states. In section 4 we construct a weak optimal witness,
which for a particular choice of parameter, detects at least one class of bound entangled states. In section 5, we
employ the structural physical approximation to construct a new class of PPT entangled states. We conclude in
section 6 with a summary of our results.

2. Preliminaries

In this section we shall discuss some preliminary details of positive maps. One can find detailed discussions on
positive maps in [70, 71]. We consider Hilbert space of finite dimension, and shall deal with positive maps
between algebra of matrices. The seminal results by Stormer [72] and Woronowicz [73] showed that if H; and
'H, be two Hilbert spaces, then all positive maps acting on the set of bounded operators on H; into the set of all
bounded operators acting on H, are decomposable if product of the dimension of H; and H, is upper bounded
by 6. The first example of indecomposable map was provided by M.D.Choi [74], popularly known as Choi map.
A new family of indecomposable map was considered by Hall [75] and Bruer [76]. Later this map was generalised
to a class of positive maps by Chruchinski and Kossakowski [77] and discussed the indecomposability and
atomicity of the part of the class. On the other hand, as discussed earlier, the theory of positive maps has a deep
connection with quantum inseparability which instigates a new insight into the subject [9, 24, 78, 79].

Here, we concentrate on the bipartite scenarios and recapitulate a few notions on separability and positive
maps form the literature. As mentioned in the previous paragraph, if a bipartite state
(Pap = X p,3|i> (jl ® |k)(I})is aseparable one, then itis PPT [80, 81], where the partial transposition (with
respect to the second subsystem) is given by, ps = 3° ikl plZ|i> (jl ® |k)(I|. In this case, a state p can be concluded
as a separable one if and only if for any positive map A, we have (1 ® A)p > 0. Though there are a few examples
of such maps [82—89] which can detect PPT entanglement, they are far from exhaustive.
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Let C¢ be the complex Hilbert spaces of dimension d. Let B(C?) denote the space of all operators acting on
C4. B(CY) is endowed with Hilbert-Schmidt inner product defined by <X, ¥ > =Tr[X'Y]for any two
members X, Y € B(C?). The sub collection of B(C¥) consisting of hermitian, positive semidefinite operators
having unit trace is known as the set of density operators acting on C.

Recall that operators acting on finite dimensional spaces are bounded and can be represented as matrices
with respect to some basis. Let Ml; and M be the algebraofd x dandk x kmatrices respectively, over the field
of complex numbers. A linear map A: M; — M, is said to be positive if A(X) > © for any positive semi-
definite X € M, where © denotes the zero operator. A linear map is said to be k-positive if the map
I ® A: M ® My — My ® M, is positive for some k € N. Alinear map is said to be completely positive if it is
k-positive for all k € N. Similarly alinear map A is said to be k-copositive if [, ® (AoT) is positive for some
k € Nand completely co-positive if AoT is completely positive, where T stands for the transposition map.

Given any linear map A: M; — M, in connection with the celebrated Choi-Jamiolkowski isomorphism
we can construct a matrix Cy, known as Choi matrix, livingin M; ® M. Choi matrix can be obtained via the
rule, Cy = T ® A(|¢") (¢7]), where [¢7) = %Zf;ol|ii> is the maximally entangled state in C¢ @ C¢ and
{1i)4~"} stands for standard computational basis for C?. A linear map A is completely positive iff its Choi matrix
Cy is positive semi-definite. It is to be noted that if a linear map is positive but not completely positive, then there
exists some density operator p whose image is not positive. Such an operator p can not be a separable one. Hence,
positive but not completely positive maps can be used to detect entangled density operators.

Another important notion of positive maps is their decomposability. A positive map A is known to be
decomposable if it can be expressed as A = A; + AyoT where A; and A; are completely positive mapsand T
denotes the action of transposition. Otherwise, it is said to be indecomposable. It is to be noted that
decomposable maps can not detect PPT entangled density operators. Recall that a density operator o is said to be
PPTif(I ® T)o > ©.Therefore, indecomposable maps must detect at least one PPT entangled density
operator. Moreover, a positive linear map is called atomic if it can not be expressed as a sum of 2-positive and
2-copositive map. An atomic linear map is by definition indecomposable.

Additionally, alinear map is said to be trace preserving if Tr [A(X)] = Tr[X] VX € M. Alinear map is
said to be hermiticity preserving if A(X)' = A(XT) VX € M. Givenalinear map A: My — My, its dual
map A': M; — M, is defined by the relation (Af(X), Y) = (X, A(Y)) foranyoperator X, Y € M. Amap A is
positive iff its dual map A’ is also positive. Using the above properties of positive maps, in the next section we
shall introduce a new class of indecomposable positive maps.

3. One parameter family of indecomposable positive maps

We now introduce a one parameter family of positive maps containing a clear indecomposable subfamily. For
this purpose, we start with the following definition.

Definition 1. Let M denote the algebra of 3 x 3 matrices over the field of complex numbers C. We define a one
parameter class of linear trace preserving maps A,: M; — M; by,

a(x + %2) —X12 — QX3
%2 + X33
1 — MCEERERAE S _
Aa(X) = —— i o o2 (1)
a3 X11
— QX3 —%3  OX33+ —
where
X1 X2 X3
X=|%1 % %3|eM;and ac(0,1]. @)
X31 X32 X33

Theorem 1. A,, is a positive map on M forall 0 < a < 1.

Proof. To prove that the linear map is positive, it is sufficient to show that if acted upon any arbitrary pure state
|¢) = (¢, b, &3)T, the map will give only positive semidefinite output. Here ¢, ¢,, ¢; are arbitrary complex
numbers with the constraint |¢,|* + |§,|* + |#5]*> = 1. Here we have
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ol + 168 —46F  —ad
6,2 + [0
Ado) o) = i —e T 9% 3)
@ 2
_ad's, o8 alogf + %

To prove that the matrix A, (|¢) (¢|) is positive, we need to show that all of its principal minors are positive. The
Ist order principal minors are the diagonal elements, which are positive for any « > 0. The three 2nd order
principal minors are

LY | atal +16P) — 663
M, = 2 2 5
1 a + % 7¢;|<¢2 |¢2| : |¢3|
V| @0l + 18P — asié}
M, = T « , ol |
a+ ) | —agfpsale,l + —
2 2
Oy |¢,| Z 6 5,
M; = : |- )
at o) | Zg,otalop + %

We note that M, simplifies to ——=(|,[* + (¢, |¢5]* + |¢,*|p5*). Therefore M, is non negative as

(1+a2)2(|¢1|4 + |10, + 16,*|¢5* @®) which is a non negative

quantity, and Mj; simplifies to —— (1 n 2)2 (|¢3|4 pe Lo Pl + a—2|¢1|2 |¢3|2) which is again a non negative
quantityas o € (0, 1].
The remaining principal minor is the determinant of the matrix A,(|¢) {(¢|), which is given by

(1+ 2)2
a € (0, 1]. Similarly, M, simphﬁes to

ot . .
(1+—[|¢2I2|¢3I4 4 1LGE | 16104 ]
(1+—[ (610167 + 206 PRe@50,) — 16716210, |

Since Re(¢j¢3)2 < |¢2|2|¢3|2, YV ¢, and ¢;, wehave
|<l53|2|2¢1|4 n |¢1|2|j7z|4 y
@

(07

D> (1 - [|¢2| 651 + %)|¢1|2|¢2|2|¢3|2]

S, 2)3 o151 + 105 1o1l* + 1017 1e,l" — 31116, 15T,

forall & < 1.Here Re(-) means the real part of a complex number. It is straightforward to check that the
quantity

U1l + 165 1811* + 1617 19,l" — 3161716, 1¢5°1 = 0,

forall ¢, ¢,, ¢ with the constraint|¢p,|> + |p,|* + |¢s*> = 1. Therefore, the map A, (-) is positive for all
0<a<l O

Itis our aim to find whether the map A, is useful to detect entangled states positive under partial
transposition. For this purpose, we prove the following corollary.

Corollary 1. A, is a non completely positive indecomposable map for each o € (0, 1].

Proof. To prove the corollary, we first have to show that the given positive map is not completely positive. For
this purpose, using Choi’s theorem, it is sufficient to show that I ® A, (|®) (®]) is not positive. Here, | D) is the
maximally entangled two qutrit state.

Let us consider the corresponding Choi matrix first. We take the maximally entangled state for two qutrit
systemas |P) = %(|00> + |11) + |22)) where,

4
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Figure 1. Variation of Minors D, with respect to map parameter .

1 0 0
|0> = [ :|) |1> = [1]’ |2> = [0] (5)
0 0 1

The one sided action of the map on the maximally entangled state gives rise to the Choi matrix,

2

Y 0 0 R — 0 0 B
3 + 3a? 3 4+ 302 3 + 302
0 0 0 0 0 0 0 0 0
0 0 # 0 0 0 0 0 0
3 + 302
2
0 0 a 0 0 0 0
3 + 302
1
Crh=|-——2% 0 o 0 S — 0 0 0 0 . (®
3 4+ 302 3 + 3a?
0 0 0 0 0 0 B
3 + 3a?
0 0 0 0 0 0 0 0 0
1
0 0 0 0 B
3 + 3a? 3 + 3a?
2 2
@ 0 0 0 0 0 0 e
| 3+ 3a? 3+ 3a? |
The least eigenvalue of C  is X = 1_67 m.We see that it is a negative quantity within the above parameter

range o € (0, 1]. Hence, it is proven that the given map is not completely positive.

In the most straightforward way to prove that the map is indecomposable, we have to now show that it can
detect at least one entangled state which is positive under partial transposition. Such a class of two qutrit
entangled states [90] is the following

100010001

x 0 0000O0O0
00 1 0 00O0O0O

X
1
1 000 —-00000
Ty = — X (7)

314+x+xHf1 00 0100 01
000 0O0xO0O0O0
000 0O0O0x 00
06000 0O0O0O 1 0

X
1000T1O00O0O0T1

with x being any non zero positive real number. Applying the proposed map, we have
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H®A(L(Tx):
alx+ 1) 0 0 0 —1 0 0 0 —«
x+ -
0 x 0 0 0 0 0 0
a
0 o 242 0 0 0 0 0 0
X «
1
0 0 0 a(1+—) 0 0 0 0 0
X
N —1 0 0 0 x+1 0 0 0 0
31 + x +x7H @ !
0 0 0 0 0 xo+ — 0 -1 0
ax
0 0 0 0 0 0 a(x+l) 0 0
X
141
0 0 0 0 0 —1 0 £
—a 0 0 0 0 0 0 0o Xia
«

Here, N = 1/(a + 1/«) is the normalization factor. One of the principal minors of the matrix I ® A, (7y) is
given by

a(l +x) —1 —a
_q 1+ x 0 x
D, =N a =N[x2 + x)(a + —) — a(l + x)].
X (0%
- 0 a+ —
@

Itis clear that forany o € (0, 1]the function f(x) = x(2 + x)(a + % — a(1 + x)isacontinuous function
and lim,_,of (x) = —a < 0.So D,, < 0 forsomesmall x > 0and hence A, is indecomposable. O

The negativity of D, for alarge range of parameters also can be seen from figure 1 where we plot D, with
respect to x for some particular values of a.. The following cases may be considered a examples.

Case 1: Considering o = i, wesee that D, < 0,if x < 0.154.

Case 2: Considering o = %, weseethat D < 0,if x < 0.269.

Case 3: Let us now consider o = 1.1In this case we can see that D, < 0,if x < J2 -1,
Therefore, it the one parameter class of maps contains indecomposable positive maps.
Let us now illustrate the dual map corresponding to the positive map introduced in the definition 1.

Corollary 2. The following map

a(x + x33) —x2 — a3
. 1 X X2 + X1 X
_ —%1 EEm— —X33
Aa(X) - 1 (% (8)
a + o X2
— QX3 —%3  ax3;3+ —
«a

is also positive and indecomposable in therange 0 < a < 1.

Proof. The proof of positivity follows similarly to that of Theorem 1. For the proof of indecomposability, we can
construct the matrix I ® AZ (1), to find that it will have at least one negative eigenvalue for (irrespective of the
value of o)

V2 -1
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4. Entanglement witness and Weak optimality

Since positive maps are not physically realizable, it is our next goal to construct an entanglement witness class
[62], in order to set the experimental viability of our findings on a firm footing. Moreover, we also prove that at
least one of our constructed witnesses is weakly optimal.

Any positive but not completely positive map gives rise to an entanglement witness. For a given map Ap its
corresponding Choi matrix Cr serves as a witness for some entangled state. An entanglement witness WV is said
to be weakly optimal [69] if there exists some pure product state |[y) ® |&) such that

(MN@2(8Wv) @ [6) = 0.

An entanglement witness can always be constructed from a positive map. We give one such example in the
following.

We know that for two positive semi-definite matrices A and B, the inequality Tr[AB] > 0 always holds.
Based on this fact, we have Tr[| D) (P|I ® Al (0)] > 0, for all separable states o and for at least one entangled
state, the trace inequality will acquire negative value. Following the trace rule Tr [CD] = Tr[DC]for any pair of
matrices C and D, we get

Tr[|®) (BT ® Al(p)] = Tr[l @ Au(|®) (D) p] = 0

for any separable state pof 3 x 3 dimension. This can of course be extended to arbitrary d x 3 dimensional
systems.

We can thus consider the one parameter family of positive maps A, with the corresponding Choi matrix
Ca, = T ® Ay (|®)(®]), to be an one parameter family of entanglement witnesses. Now, for o = 1, we can

1
choose |y) = |6) = %ll]suchthat
1

MN@MCaly) @ Iy) = 0.

This weakly optimal witness can also be implemented locally. The witness can be expressed as a linear sum of

100
two qutrit local observables. We consider the 3 x 3 identity matrix G; = [0 10 ], along with 8 Gell-Mann

001
010 0 —1 0 1 0 O 001 00 —i
matricesG,=[1 0 0,Gs=|i 0 0}Gi=]|0 -1 0|,Gs=]|0 0 0[,Gs=[0 0 O |
000 0 0 O 0 0 O 1 00 1 0 O

000 00 O 10 O
G; = [0 01 ], Gg = lO 0 z], Gy = 13 [0 1 0 ]as 9local observables as they are Hermitian. We
010 01 O 00 —2
denotethemas G;, i = 1.....9.
We note thatfor a = 1,

Ca :—G1®G1——G2®G2+ G3®G3+ G4®G4—

1
Gi®G

4\/5 4 9

——G5®G5—|——G6®G6——G7®G7—EG8®G8

4\/—G9®G4+ G9®G9
This witness is of course indecomposable, because the corresponding positive map is proven to be
indecomposable. To further establish this fact, we apply the witness C, on 7, (7) to find

3 —x

TriCym) = ——— > 9
o) = e e ©

Itis thus clear that the witness detects entanglement of the two-qutrit PPT entangled state 7, for x > 3.

5. Structural physical approximation and a new class of states with PPT entanglement

The structural physical approximation (SPA) [50, 51] of a positive map is a convex mixture of a depolarizing map

with the given map, so that the resulting map is complete positive. Amap A g Mg — M is said to be

depolarizing if Adep(X) _ Tr;x)

I for X € M. Mathematically, SPA maps are the points of intersection of the
line joining the given map with the depolarizing map and the set of all complete positive maps. Operationally,
SPA of a positive map is obtained by adding some disturbance to the positive map.

7



10P Publishing

J. Phys. Commun. 5(2021) 065008 B Bhattacharya et al

An algorithm to find the optimal SPA map for a given positive map has been prescribed in [50]. We shall now
formulate the SPA corresponding to the one parameter family of maps A, and show that it gives rise to a class of
PPT entangled states. We have earlier considered the Choi matrix Cj of the family of maps and found the least

1—+1+40?
6+ 6a?
parameter range. Defining A = max[0, — X], and following the prescription of [50], the optimal SPA map

corresponding to the map A,, is given by

eigenvalue of Cy tobe N = when we take o € (0, 1]. Itis a negative quantity within the above

AP = p*Ngep + (1 — pHA),

Ad'By )
Md'By' +17
the input and output dimension of the map A, and as a consequence of trace preservation, the value of
Ba, = 1. Therefore, the optimal SPA map A®": M — M is given by

where p* = Aoy = ?]I, and N = (3, 'A is the re-scaling of the original map. Here d = d’ = 3,

x33( VAaZ+T-1)+x11 (20%+ VAaZ+1-1 )15 (202 + VAaZ+1-1) 2xp 221302
202+3VaaZ+1-1 —202-3Vda2+1+1 —202-3Vda2+1+1
AP X) = 2y i1 (VA 1=1 (g +x33)( VAaZ+1+1) Qi 10
@ Z202-3 VaaZ+1+1 20243 Vaa2+1-1 ~202-3Vaa2+1+1 ( )
20302 2y —xp+x33 (202 = 1)+x11 (Va2 +1+1) +(xnp+x33) VAaZ+1
—202-3VdaZ+1+1 —202-3VdaZ+1+1 202+3 VdaZ+1-1

We note that the SPA map is also trace preserving. To check whether the SPA is completely positive, we compute
the corresponding Choi matrix. The Choi matrix is found to be

202eNia2 411 0 0 0 0 0 0 2
Lo ) 5
602+9Vda2 +1-3 o 3 —602-9 Vda2+1+3
e
0 — Vo4l 0 0 0 0 0 0 0
6a2+9V4a2 +1-3
0 0 el 0 0 0 0 0 0
602+9 V4a2+1-3
] 0 0 0 0 0 o o
— 20 Vda2 4141
opt = —_— 0 0 0 — 5 0 0 0 o
C/\u “6a2-9VaaZ 143 60249 Va2 +1-3
Vaa2 411 20
0 0 0 0 0 el 0 T 0
6a2+9 Va2 +1-3 —6a2-9 Va2 143 11
Vao241-1
] 0 0 0 0 0 — 0 0
60249 Va2 +1-3
2a Vda2 4141
0 0 0 0 0 — 0 — o
-602-9V4a2+1+3 60249 Va2 +1-3
202
—_—l 0 0 0 0 0 0 0
~6a2-9 V4aZ+1+43 60249 Va2 +1-3

We next compute the eigenvalues of the 9 x 9 Choi matrix C» and observe that the Choi matrix is positive
semi-definite for the whole range of « as all of its eigenvalues are non negative for the whole range of a. This
signifies that the SPA map is complete positive. Moreover, it is to be noted that the Choi matrix is a valid density
matrix as C» is Hermitian, positive semi-definite and of trace 1 for a € (0, 1]. Hence, we obtaina one
parameter family of two qutrit states.

2Tyl % . 0 o 0 0 0 0 0
0 e L 0 0 o 0 0
0 0 hovas 0 0 ST 0 0
0 0 J 0 e 0 0
0 0 = 0 0 0 el 0 0 (12)
0 0 0 0 0 0 0 el 0

The partial transposition of C o is given byWe compute its eigenvalues and plot them with respect to cvin
figure 2. We note that among the nine eigenvalues, one eigenvalue is negative in the interval a € (0, 1),and
other eight eigenvalues are all positive for o € (0, 1) . Hence, the class of states for this interval of values of cvis
NPPT, and therefore, it is entangled. Interestingly, for the parameter value a = 1, all the eigenvalues of the
partially transposed matrix are non negative, and hence, the state C y o is PPT for - = L.

Weare interested to find whether the state C yo is entangled. It may be noted that since we are dealing with a
two-qutrit system, the partial transposition criterion is no longer sufficient for entanglement detection. We
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Eigenvalues

Figure 2. The eigenvalues of the partially transposed matrix C X,,p, are plotted with respect to a.. There are eight eigenvalues in the plot
(&3

since two of the nine eigenvalues are equal in (0, 1].

1.5

1.0

RHS of Covariance matrix criterion

0.5]

0.2 0.4 0.6 0.8 1.0

Figure 3. LHS and RHS of equation (12) are plotted versus o

hence adopt the covariance matrix criterion [48, 49] for entanglement detection. We can consider the 3 by 3
identity matrix along with the 8 Gell-Mann matrices as orthogonal local observables as they are orthogonal and
Hermitian. We take the Choi state Cy» and obtain its two reduced density matrices Cﬁgpr and Cﬁzpr respectively.
The covariance matrix criterion [48, 49] states that for separable states,

IICIh < (1 = TriChe DA — TrI(Chy)?D) (12)

where ||.||; stands for the trace norm and the components of the C matrix are given by
Cj = (H ® H}') — (H) (H}) (13)

and H and H; denote local orthogonal observables on two sides. We evaluate the C matrix using the state C A
and its reduced density matrices, and find that the LHS of equation (12) is strictly greater than the RHS for the
values of in (0, 1]. The result has been illustrated in figure 3. This certifies the presence of entanglement in the
state C A? for a € (0, 1]. Therefore, the state corresponding to the value of the parameter « = 1,i.e., C A% is
PPT-entangled. So, the SPA map A’ can generate a two-qutrit PPT entangled state C yorr.

It may be further noted that the state C yo is NPPT for the values of the parameter avin (0, 1) and therefore, it
is entangled. For the parameter value o = 1 the state is PPT and its entanglement can be detected via the
covariance matrix criterion. Moreover, from figure 3 it is clear that the covariance matrix criterion can also
detect the the entanglement in the range (0, 1) where the state is NPPT.

Finally, let us check whether the PPT entangled state C \» can be detected by some other existing positive
maps. PPT entangled states are considered as a weak form of entanglement that is usually very hard to detect. As
discussed earlier, indecomposable maps are necessary to detect PPT entangled states. The celebrated Choi map

9
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Oenoir Mz — M3 [74], one of the first examples of indecomposable maps in the literature, is defined as

X1+ X2 X —X13
Denoi(X) = —%1 Xt X1 —X%3 (14)
—X31 —X33 X33+ X2

where

X1 X122 X13
X=|%1 % %|¢c M,

X31 X32 X33

A positive map A is said to detect an entangled state r ifand only if I ® A(k) # O, where © stands for zero
operator. It can be checked that I ® ¢, (Cpy) > ©  Va € (0, 1]. Hence, the Choi map cannot detect the
above PPT entangled state.

Recently, Miller and Olkiewicz [40] introduced another indecomposable map ¢, on Mj given by,

[ 1 1
E(xll + x2) 0 fxw
1 1
o X) = 0 E(xll + x2) fx” (15)
A 1, X
NG 31 NG 23 33 |

where

X1 X12 Xi3
X=\|% % X3|¢€Ms,

X31 X32 X33

It can be again checked that [ @ ¢;5(Cy») > ©  Va € (0, 1]. Hence the above map also cannot detect the
PPT entangled state C .

6. Conclusions

Bound entangled states are hard to find and detect. In this work, we have constructed a one parameter family of
indecomposable positive maps in three dimensional Hilbert space. These maps are shown to detect
entanglement in a certain class of two-qutrit PPT entangled states. Through our proposed non-completely
positive indecomposable map we are additionally able to find a new class of entangled states among which there
exists a PPT entangled state. We have further constructed a weak optimal entanglement witness from one of
these maps and have given its representation in terms of local observables. This presents the way to physically
implement this witness towards detection of the two-qutrit bound entangled state.

Moreover, we have also considered the structural physical approximation [50, 51]of the proposed positive
map. This leads to alarge class of NPPT entangled states, but more interestingly, we have found a unique bound
entangled state which cannot be detected by various other well-known non-completely positive maps [40, 74].
PPT entangled states have been constructed earlier from indecomposable positive maps using geometrical
methods [32, 53]. In the present analysis we have devised a new procedure of contructing PPT entangled states
employing the structural physical approximation. To conclude, this work motivates further investigations of
positive maps and their applications in entanglement theory in higher dimensions.
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