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Abstract. X-ray computed tomography has established itself
as a crucial tool in the analysis of rock materials, provid-
ing the ability to visualise intricate 3D microstructures and
capture quantitative information about internal phenomena
such as structural damage, mineral reactions, and fluid–rock
interactions. The efficacy of this tool, however, depends sig-
nificantly on the precision of image segmentation, a process
that has seen varied results across different methodologies,
ranging from simple histogram thresholding to more com-
plex machine learning and deep-learning strategies. The ir-
regularity in these segmentation outcomes raises concerns
about the reproducibility of the results, a challenge that we
aim to address in this work.

In our study, we employ the mass balance of a metamor-
phic reaction as an internal standard to verify segmentation
accuracy and shed light on the advantages of deep-learning
approaches, particularly their capacity to efficiently process
expansive datasets. Our methodology utilises deep learning
to achieve accurate segmentation of time-resolved volumet-
ric images of the gypsum dehydration reaction, a process
that traditional segmentation techniques have struggled with
due to poor contrast between reactants and products. We
utilise a 2D U-net architecture for segmentation and intro-
duce machine-learning-obtained labelled data (specifically,
from random forest classification) as an innovative solution

to the limitations of training data obtained from imaging. The
deep-learning algorithm we developed has demonstrated re-
markable resilience, consistently segmenting volume phases
across all experiments. Furthermore, our trained neural net-
work exhibits impressively short run times on a standard
workstation equipped with a graphic processing unit (GPU).
To evaluate the precision of our workflow, we compared the
theoretical and measured molar evolution of gypsum to bas-
sanite during dehydration. The errors between the predicted
and segmented volumes in all time series experiments fell
within the 2 % confidence intervals of the theoretical curves,
affirming the accuracy of our methodology. We also com-
pared the results obtained by the proposed method with stan-
dard segmentation methods and found a significant improve-
ment in precision and accuracy of segmented volumes. This
makes the segmented computed tomography images suited
for extracting quantitative data, such as variations in mineral
growth rate and pore size during the reaction.

In this work, we introduce a distinctive approach by using
an internal standard to validate the accuracy of a segmenta-
tion model, demonstrating its potential as a robust and reli-
able method for image segmentation in this field. This ability
to measure the volumetric evolution during a reaction with
precision paves the way for advanced modelling and verifi-
cation of the physical properties of rock materials, particu-
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larly those involved in tectono-metamorphic processes. Our
work underscores the promise of deep-learning approaches
in elevating the quality and reproducibility of research in the
geosciences.

1 Introduction

Time-resolved (4D) operando experiments in computed mi-
crotomography (µCT) scanners have emerged as a promis-
ing way of studying solid-state reactions, offering unprece-
dented insight into mineral phases and volume changes. This
method is becoming a technique of choice for many geo-
science problems because it provides information about both
the spatial and temporal evolution of the microstructure of
a sample. This technique can achieve a range of spatial res-
olutions, with voxel sizes from millimetres to hundreds of
nanometres. Underpinning any usefulness of these new in-
sights is the accurate segmentation of individual phases into
three-dimensional (3D) representations across often large
datasets; once different phases are segmented and labelled,
they directly aid in a quantitative understanding of all types
of solid-state mineral reactions (metasomatic, diagenetic,
metamorphic, and physico-chemical alteration) (Fusseis et
al., 2014).

For the accurate quantification of the various phase com-
ponents and evolution of minerals from 4D µCT data, se-
mantic segmentation needs to be accomplished. Semantic
segmentation refers to labelling individual pixels of an image
to a corresponding classification. Image segmentation has
long played a pivotal role in the quantitative analysis of dig-
ital representations of geological materials, and now there is
a wealth of methods available (Reinhardt et al., 2022). How-
ever, not all segmentation workflows can effectively track a
process in space and time across different samples and ac-
quisition conditions, as is needed in the case of in situ or
operando time-resolved X-ray microtomography studies. For
instance, while standard histogram segmentation can be con-
sistently applied to a single time step, it may not be eas-
ily transferable between different samples undergoing solid-
state transformation (Andrew, 2018). More advanced ma-
chine learning techniques have been used successfully on
a range of geoscience problems and offer better portability
and applicability compared to histogram segmentation (e.g.
for solid-state reactions (Marti et al., 2021); crack detec-
tion (Cartwright-Taylor et al., 2022; Lee et al., 2022; Rein-
hardt et al., 2022); and one- and two-phase flow experiments
(Phillips et al., 2021)), but they also still fall short in achiev-
ing complete portability between various time steps. While
deep-learning methods show promising potential for tackling
the challenges in image segmentation of high-resolution time
series datasets, they still need refinement for optimal perfor-
mance.

Deep-learning algorithms are gaining popularity for
analysing microstructures in biological and medical sciences
(Renard et al., 2020) and in engineering materials (e.g.
Müller et al., 2021; Allen et al., 2022) and for the segmen-
tation of deforming and reacting porous rock materials (Da
Wang et al., 2021). However, regardless of their scientific do-
mains, most studies focus on two-component systems, void,
and solid-material classifications. In addition, some deep-
learning algorithms still rely on adaptive filtering and global
thresholding operations (Phan, 2021). This reliance on the
greyscale value can hinder the effectiveness of such algo-
rithms regardless of their complexity. This limitation be-
comes most apparent in data containing low-contrast phases,
where filtering processes to reduce noise or enhance fea-
ture visibility may alter or eliminate critical intensity vari-
ations necessary for accurate phase differentiation and seg-
mentation. In contrast, convolutional methods, grounded in
machine learning, advance beyond these constraints by in-
tegrating spatial and morphological information. This inte-
gration allows for a more robust and accurate segmenta-
tion, especially vital in µCT datasets, where spatial rela-
tionships and contextual nuances are key to discerning ac-
curate interpretations. Moreover, in time series datasets, as
the greyscale image inputs vary over time, the effectiveness
of histogram thresholding diminishes. This is because the
optimal threshold for one time step may not be applicable
for others, leading to inconsistent or inaccurate segmenta-
tions. Greater insight into microstructural changes can only
be gained through the full segmentation of all mineral com-
ponents based on greyscale and other characteristics, like for
example component morphology.

This outlines a clear need for deep-learning workflows to
be further explored and optimised so that they can be better
exploited in geosciences.

In this paper, we explore the use of supervised deep
learning to segment 4D synchrotron-based computed micro-
tomography (S-µCT) datasets of dehydrating Volterra Al-
abaster (Fig. 1). Supervised deep learning is a type of ma-
chine learning where the model is trained on a labelled
dataset. This means that each output produced by the model
is paired with the correct output, enabling the model to learn
by comparing its predictions to the actual outcomes. This
contrasts with unsupervised deep learning, where the model
attempts to identify patterns and relationships directly from
the input data without labelled outcomes (LeCun et al. ,
2015).

For this work we employ a 2D U-Net architecture (Ron-
neberger et al., 2015) and demonstrate its capability to ac-
curately segment the data into four phases: gypsum, bas-
sanite, celestite, and pores. This model dehydration reaction
has been monitored during experiments under different stress
and pore fluid pressure conditions (Gilgannon et al., 2023).
The data used encompass numerous challenges encountered
in volumetric image segmentation of complex materials, in-
cluding multiple heterogeneous material phases with feature
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Figure 1. Workflow used for image segmentation. (a) The first step involves manually labelling the different phases (i.e. gypsum, bassanite,
pores, celestite) over a few (13) slices in the volume and then applying a random forest (RF) pixel classification. (b) The second step of our
segmentation process involves using the output of the RF as ground truth and then running a 2D U-net deep-learning algorithm over the whole
selected volume. (c) In the third step we apply a series of post-segmentation routines to clean the dataset of possible segmentation errors.
(d) In the final step we quantitatively evaluate the overall performances of the trained deep-learning network by comparing the theoretical
and measured molar evolution of gypsum to bassanite during the dehydration.
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sizes ranging from hundreds of nanometres to micrometres,
low contrast between phases, and a relatively rapid evolu-
tion. We demonstrate that these factors make segmentation
using standard approaches difficult. We quantitatively com-
pare outputs of the deep-learning architecture to optimise its
use and for the first time show how the accuracy of segmen-
tations can be checked with an internal standard given by the
chemistry of the system. Ultimately, we find that the use of
a random forest classifier to produce the “ground truth” to
the training of the deep-learning architecture improves the
predictive abilities of the algorithm. While the random forest
algorithm initially can effectively segment features of inter-
est in our dataset, its capability for generalisation to new, un-
seen data is limited (Rezaee et al., 2018). The inclusion of the
deep-learning step enhances the generalisation capability of
our workflow. This provides significantly improved accuracy
and validity of the segmentation and labelling of the S-µCT
data during the solid-state reaction of gypsum to bassanite
and pore space. We believe that this work demonstrates the
potential of deep learning for volumetric image segmenta-
tion of complex materials. The method is generic and can be
applied to other geoscience problems.

2 Gypsum dehydration as an example of a complex
segmentation problem

2.1 The gypsum dehydration system and experimental
set-up

Gypsum dehydration is used as a model dehydration for
many prograde metamorphic reactions in collisional tectonic
settings. The physical boundary conditions make it amenable
for laboratory studies and thus a system of choice to investi-
gate complex geological problems in time-resolved µCT in
situ experiments.

Volterra alabaster is a rock that is mainly (> 90 %) com-
posed of gypsum (CaSO4 · 2H2O) and celestite (SrSO4), and
when the temperature is increased the gypsum dehydrates
to produce bassanite (CaSO4 ·

1
2 H2O), porosity, and water.

At the same time, celestite remains stable during gypsum
breakdown and is unaffected by the dehydration. The dehy-
dration of gypsum results in a 29 % reduction in solid mo-
lar volume and an 8 % excess volume of water. Experiments
were performed with the X-ray transparent triaxial rig Mjöl-
nir (Butler et al., 2020) at the TOMCAT beamline of the
Swiss Light Source (SLS) synchrotron. All of our experi-
ments were performed at the same confining pressure (Pc) of
20 MPa and a pore fluid pressure (Pf) varying between 1 and
5 MPa. The experiments followed the same temperature path,
with a maximum temperature of 124.5<T < 126.9 °C. We
systematically varied the differential stress in each experi-
ment to capture its effect (σdiff= 0; 16.1; 27.9 MPa; see Gil-
gannon et al., 2023). For the work presented in this paper,
we focus on data from two specific experiments, chosen as

“end-member” scenarios for their distinct evolving mineral
fabric during the dehydration process: (i) a sample, VA17,
where the principal stress is radial (with σdiff= 11.3 MPa),
and (ii) another sample, VA19, where the principal stress
is vertical (with σdiff= 16.1 MPa). Time-resolved (4D) syn-
chrotron computed microtomography datasets were acquired
during the experiments at SLS TOMCAT beamline using
a filtered white beam with an energy peak at 27 KeV. For
each S-µCT dataset, 1500 radiographs were collected over
180° rotation in 2–4 s. The resulting radiographs had a voxel
size of 2.753 µm, and the resulting 3D µCT datasets had
a size of 2016 voxel× 2016 voxel× 2016 voxel. The fre-
quency rate of the tomoscopy was set to 60 s, and the ex-
periments ran over 150–314 min, resulting in 2.5 TB of data
to be analysed. More details on the experiments can be found
in Gilgannon et al. (2023).

2.2 Challenges of segmenting dehydrating gypsum
during operando X-ray microtomographies

It is clear from Fig. 2 that microstructural changes during
the experiment can be readily identified by the human eye.
However, it is also apparent from the evolving histograms in
Fig. 2a that accurate segmentation of the four phases of inter-
est (i.e. gypsum, bassanite, pores, and celestite) cannot rely
on simple histogram thresholding segmentation, as the opti-
mal threshold varies across different time steps. Each 4D S-
µCT dataset is extensive, containing more than 100 scans,
each ranging from ∼ 5 to ∼ 15 GB of reconstructed data, de-
pending on the scanning parameters. As the histograms of
individual scans are clearly different for different time steps
(Fig. 2a), an automated segmentation of the evolving vol-
umes based on a single histogram would yield inaccurate
results, necessitating manual segmentation and the explicit
selection of thresholds for each tomogram and for each ex-
periment. This laborious process inhibits the efficient anal-
ysis of large 4D datasets but also misses basic standards for
reproducibility. This is further complicated by the fact that all
S-µCT images have a symmetrical vertical gradient in noise
through the sample, first decaying and then increasing, which
renders the application of a single set of thresholds even to
a single S-µCT dataset problematic. Additionally, the homo-
geneity of the unreacted starting material intensifies artefacts
such as rings, which are problematic to handle for segmen-
tation algorithms that are based solely on greyscale thresh-
olds. As noted above, the human eye can distinguish differ-
ent phases in the data, and this suggests that a learning-based
approach to semantic segmentation would be applicable to
the dataset. It is becoming evident that we may also require
information beyond greyscale values, such as the geometry
of the feature of interest, for successful segmentation.
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Figure 2. Variation in greyscale intensity values with reaction progress. (a) Greyscale histograms of a series of tomographic slices captured
at different stages during the reaction. Each line represents the histogram of an individual slice in the tomographic scan, illustrating the
changes in greyscale intensity value distribution across the time steps. This variation complicates the use of greyscale thresholding as input
for the deep-learning model. Panels (b–e) display the slices corresponding to the histograms in (a), depicting the reaction progression from
an early stage (b) to the final product (e).

2.3 A segmentation workflow with internal standards

To accurately segment large datasets of dehydrating gypsum
samples, we used deep-learning algorithms, which have en-
tered the field of volumetric image segmentation through the
implementation of convolutional neural networks (CNNs).
For this work, we used a specific implementation of 2D U-
Net available in the Dragonfly™ software. This imple-
mentation has performed well on µCT images from fibre-
reinforced ceramic composites (Badran et al., 2020). Our
dehydrating gypsum datasets are comparable in terms of
greyscale value contrast and the number of distinguishable
material phases. Dragonfly runs locally on a workstation and
allows for the creation of training data and training of a CNN
segmentation model. Once the CNN is trained, the model can
be generalised and offers the advantage of being flexible and
straightforward to apply on similar datasets.

To train the network, we selected 13 of the 2016 horizontal
(XY ) virtual slices from the synchrotron CT scan of sample
VA19 time step 40 as “input” images. This specific time-step
was chosen because it has sufficient volume of each phase
we aim to segment; in images derived from either early or
late steps of the experiment, the volume of at least one of the
phases would be insufficient to achieve automatic segmen-
tation. We tested the role of ground truth data (i.e. the cor-
rect segmentation of an image) in achieving the best results
by comparing a histogram thresholding segmentation with a
random forest classifier.

Choosing the best training neural network architecture and
tuning the network (hyper-)parameters – i.e. those settings of
the model that are set prior to training and remain constant
during the training process – requires time and some knowl-
edge of neural network architecture. However, once the best
configuration is set up, the application of the model is nearly
effortless. Network (hyper-)parameters that need to be cho-
sen include (i) a “patch size”, in the training stage the im-
ages are split into a set of smaller 2D square patches that
capture the features of interest in the image; (ii) a “stride ra-
tio”, which defines the position of the neighbouring patches
(at a value of 1.0, there will be no overlap between patches,
and they will be extracted sequentially one after another; at
a value of 0.5, there will be a 50 % overlap); (iii) a “batch
size”, which defines the number of patches evaluated in each
batch prior to updating the network model; (iv) the number
of epochs, an epoch indicates a training iteration, involving
a pass over all batches of the training set; and (v) a selec-
tion of a loss function to evaluate how far the output of the
CNN model deviates from the ground truth and an optimisa-
tion algorithm to find optimal weights for the coefficients of
the CNN.

We trained the different networks by varying the (hyper-
)parameter settings to see which setting results in a measur-
able improvement to model performance. For all the tested
strategies, we randomly choose 20 % of the segmented data
to serve as a “validation set” that is otherwise not used dur-
ing training. A loss function was used to evaluate the training
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progress. The U-Net deep-learning architecture was trained
for a maximum of 100 epochs, stopping when no further im-
provement of loss was observed.

To demonstrate the accuracy of the segmentations, we de-
vised an additional quality check consisting of comparing the
output volumes of phases to their predicted values given by
the mass balance of the reaction (see Sect. 3.7). This internal
standard allows us to objectively assess the effectiveness of
the application of deep learning to time series datasets that
contain low-contrast phases.

3 Influence of training data

3.1 Input data for the deep-learning convolutional
neural network

Convolutional neural networks (CNNs) are a special class of
deep-learning algorithms where one or more layers of the
network perform convolution operations (Fig. 1). The spe-
cific convolution kernels are not programmed but are learned
from the input data by the deep-learning engine to extract rel-
evant features of an image that become useful discriminators
in segmenting complex pixel classes – in our case mineral
phases – in the images. The CNN architecture (Fig. 1b) can
be thought of as a formula of linear weights applied to the
image pixel intensities, often combined through multiple net-
work layers in a nonlinear fashion. The coefficients encoded
in the neural network itself are learned from training data that
couples example “input” images (i.e. the raw un-segmented
image) with example “output” images (i.e. ground truth).
The iterative process of learning the weights that can reliably
transform input into output images is termed “training” and
is the most computationally demanding phase of the deep-
learning cycle. In order for a deep-learning model to perform
the segmentation of the different classes contained within the
image, it requires a set of data that are typically created by
manually annotating each pixel in the image with its corre-
sponding semantic label (Fig. 1a). This set of labelled pixels
forms the so-called “ground truth”. Ground truth is an es-
sential part of training deep-learning models as it represents
the target to learn towards and should ensure that the model
is learning to segment images in a meaningful way. In our
case, the ground truth images are a selection of image slices
that have been previously segmented to assign each pixel to
a specific mineral or pore phase. The trained model can then
automatically segment not only the remaining unsegmented
image slices within a single µCT volume but also unseen
data – i.e. other volumes within the same time series of the
training set and image volumes obtained during other exper-
imental time series.

To establish the ground truth set for initial image classifi-
cation, we initially considered methods with differing infor-
mational depths. One such method is histogram thresholding,
which relies on basic greyscale values and typically results

in low-information-level outcomes. However, this approach
alone proved inadequate for our purpose, as it often led to
gradients with diffuse phase boundaries, underscoring the
need for more sophisticated classification methods. In con-
trast, ground truth classified using a machine learning algo-
rithm provides discrete transitions between phases and bet-
ter information about features like phase morphology. Before
finding the best workflow to segment our image volumes, we
tested several combinations of ground truth input and CNN
parameters until the quality of output images on unseen data
was adequate, with reasonable training time (Fig. C1 and text
in Appendix C).

3.2 Histogram thresholding as training data

Figure 3a shows an example of data containing the four
phases as segmented by different networks trained with dif-
ferent ground truth data. The corresponding colour-coded
threshold values for the four phases are shown in Fig. 3b.
Figure 3c shows the output produced by a neural network
trained using a ground truth set of images labelled solely
by manual histogram thresholding. This input failed to reli-
ably classify the bassanite needles, it often failed to segment
pores, and it failed to accurately segment celestite, often con-
fusing it for bassanite. This can be improved upon by using
manual histogram thresholding with the application of data
augmentations within the neural network model (Fig. 3d).
The training data were subjected to data augmentation based
on the basic image manipulations (i.e. flip horizontally, flip
vertically, rotate, shear, and scale). Specifically, we octupled
the input data (i.e. generating eight variations of each origi-
nal image) in order to increase its initial size, rendering the
neural network more robust, while at the same time com-
pensating for deliberately using a small input dataset. This
strategy allowed us to increase the network’s ability to gen-
eralise while decreasing the potential danger of overfitting
(Shorten and Khoshgoftaar, 2019). By tuning the different
CNN (hyper-)parameters and including augmented data, we
improved the overall performance of the network (Fig. 3d).
However, the final segmentation still lacked accuracy: it can
be seen that errors remained, for example the celestite was
still identified as bassanite (Fig. 3d). More importantly, this
deep neural network model struggled when it was applied to
new and more complex datasets: such as in the early and final
stages of the reaction (where one of the two main phases was
scarce or absent).

3.3 Random forest classifier as training data

In contrast, the use of ground truth data classified with a ran-
dom forest classifier plus data augmentation performed ex-
ceptionally well and visually captured more of the features
of the microstructure correctly (Fig. 3e).

A random forest classifier (Fig. 1) comprises numerous
decision trees, each contributing a vote toward the class pre-
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Figure 3. Challenges of the segmentation. (a) Portion of a cross-sectional slice of the raw µCT image showing the relative low contrast
between gypsum and bassanite. (b) Threshold values for the four phases present in the image. Two main phases – gypsum and bassanite – are
difficult to split up accurately into two classes by the deep-learning algorithm with (c) no data augmentation but are better segmented when
using data augmentation (d) but still showing evident artefacts in the segmentation. Both cases (in c and d) struggle at separating the celestite
phase, which is wrongly classified as bassanite. (e) The segmentation results using a random forest classifier as input into the deep-learning
algorithm.

diction for every voxel (more details on the random forest
classifier are available in the Appendix). The class receiv-
ing the most votes is allocated to the respective voxel. Filters
are applied to the input images, generating filtered images
that serve as features (Reinhardt et al., 2022). These features
enable the classifier to differentiate between phases in the
dataset. In this work, the random forest classifier was pre-
set with morphological filters, a 3× 3 neighbour filter, and a
Gaussian filter to perform identification of the phases in the
training set. Using a random forest classifier for setting up the
ground truth dataset also enabled training the deep-learning
model based on the shape of the objects. This offered a sig-
nificant progress from manual thresholding segmentation.

3.4 Optimising the deep-learning models

Model parameters can be optimised to improve the deep-
learning network. We systematically monitored the perfor-
mance of each tested deep-learning model during both train-
ing and testing. The results of this systematic testing are vi-

sualised in Fig. 4 and synthesised in Table 1. The quantitative
comparison of types of ground truth data and the variations
of model (hyper-)parameters provides a solid base for dis-
cussing the advantages of the workflow that is presented here
and how it is transferable to other geoscience data.

For an objective quantitative comparison of different deep-
learning network models, we tracked the performance of
each model during training using a loss function to measure
the error between the neural network’s prediction and the
corresponding ground truth; the error was then used to up-
date the model parameters. Figure 4a shows that with ground
truth data derived from random forest classification we ob-
tained the lowest validation errors for all tested networks.
Compared to other models, the random forest model reached
low values of loss already after five epochs. After this mini-
mum, the error kept oscillating within the neighbourhood of
its lowest value until the maximum 100 epochs were reached.
This indicates that the overfitting risk is minimal.
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Table 1. Evaluation of the segmentation models based on Dice coefficient scores.

Name of model Model A Model B Model C Model D Model E Model RF

Ground truth∗ HT HT HT HT HT RFC

Data augmentation no no no yes yes yes

Training parameters∗ P = 16
S = 1
B = 64

P = 16
S = 0.5
B = 128

P = 16
S = 1
B = 128

P = 16
S = 1
B = 64

P = 16
S = 1
B = 128

P = 16
S = 1
B = 512

Average DICE 0.013 0.021 0.095 0.088 0.964 0.961

Gypsum DICE 0.035 0.041 0.651 0.546 0.983 0.979

Bassanite DICE 0.001 0 0.077 0 0.845 0.923

Pore space DICE 0.019 0.024 0.122 0.160 0.957 0.924

Celestite DICE 0 0 0 0 0 0.827

∗ Abbreviations are as follows: HT is histogram thresholding, RFC is random forest classifier, P is patch size, S is stride ratio, and B is batch
size

We evaluate segmentation quality according to eight stan-
dard evaluation metrics based on overlap and similarity crite-
ria (Taha and Hanbury, 2015; Müller et al., 2021), where the
deep-learning-based segmentations are compared to the cor-
responding ground truths. Here we focus on the Dice coeffi-
cient, however, a full picture of all calculated metrics can be
found in the Supplement. The Dice coefficient scores were
used to evaluate and compare the segmentations resulting
from neural network models trained on (i) histogram thresh-
olding ground truth data (models A, B, and C), (ii) histogram
thresholding with augmented ground truth data (models D
and E), and (iii) random forest classified ground truth data
with augmentation (model RF). The Dice coefficient (DICE)
is the normalised overlap of pixels in the segmentation and
the corresponding ground truth of a given phase. A DICE
score of 0 means that there is no overlap between segmen-
tation and ground truth, while a DICE score of 1 indicates
perfect overlap. In addition to the direct comparison between
automatic and ground truth segmentations, it is common to
use the DICE to measure reproducibility (repeatability) of
a trained neural network segmentation algorithm (Taha and
Hanbury, 2015).

For the networks trained using histogram thresholding, the
average DICE varies between 0.01 and 0.98, and it increases
when data augmentation is used during training. For the net-
work trained using a random forest classifier, the DICE score
is also 0.98 (Table 1). From the error curves and the DICE
plots, it is clear that the inclusion of augmented data into the
histogram threshold ground truth (as seen in models D and E
in Fig. 4 and Table 1) improved the overall performance of
the neural network model compared to the models which did
not (models A, B and C in Fig. 4). The DICE scores for each
segmented phase show similar trends, on average improving
for data augmented models. However, it was only the model
trained using a ground truth from a random forest classifier

that produced scores for all four phases. This includes the
celestite phase, which was entirely absent in the results from
the other models (Fig. 4).

All of these results show that when using random for-
est classifier, pre-classified ground truth data clearly outper-
form a ground truth obtained via simple greyscale histogram
thresholding regardless of the optimisation of parameters.

3.5 Applying the deep-learning segmentation

After the training stage, the model was applied to a larger
sub-volume (400 consecutive slices, ∼ 250 MB) from the
same scan used during training of the deep-learning algo-
rithm (i.e. VA19 time step 40). The model succeeded in cor-
rectly segmenting all four phases in about 7 min using a com-
puter with 256 GB of RAM, an Intel Xeon 18-core processor,
and a 16 GB NVIDIA Quadro RTX 5000 graphics process-
ing unit (GPU). Typical results are shown in Fig. 5, which
compares equivalent horizontal and vertical slices from the
unprocessed and segmented CT images. This comparison
indicates that gypsum, bassanite, porosity, and celestite are
clearly labelled, even in the portions showing ring artefacts
that can mask the true greyscale values (Fig. 5c and d). Im-
portantly, the combination of random-forest-based ground
truth and deep-learning segmentation ensures that the ring
artefacts are not mislabelled as actual phases, a problem that
frequently arises with manual histogram thresholding. This
consequently prevents the creation of fictitious phases when
there are none. Comparison of the vertical (YZ) sections
(Fig. 5e and f), where the unprocessed slice clearly shows
all four phases, qualitatively indicates that the accuracy of
the segmentation is high.

Solid Earth, 15, 493–512, 2024 https://doi.org/10.5194/se-15-493-2024



R. E. Rizzo et al.: Quantifying grain-scale mineral transformations with internal standards in 4D X-ray µCT 501

Figure 4. Error curves and evaluation metrics for the image segmentation models (see Table 1 for details of the models). (a) Error curves com-
parison for different loss values for the tested models. The neural network model trained with a random forest classifier input outperformed
the other models that used manually thresholded inputs. Plots for Dice coefficient (DICE) metric (colour coded as in a) show the predictive
performances of each trained model for both the average volume (in b) and each separate phase: gypsum (c), bassanite (d), pores (e), and
celestite (f). Clearly, the model trained using a random forest classifier input demonstrates superior performance to other models. See Table 1
for details of the training parameters for the different models.

3.6 Post-segmentation processing

Once the data volume is segmented by the trained deep-
learning model, we apply a series of post-segmentation rou-
tines to clean the dataset from segmentation errors, which
is necessary primarily on data acquired early in the experi-

ment when the contrast in the sample was low. These routines
involve removal of isolated clusters of erroneously labelled
pixels and deletion of areas labelled as bassanite around ce-
lestite aggregates. The first routine is implemented using the
“remove island” tool in Dragonfly™, targeting pixels misin-
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Figure 5. Horizontal (XY ) and vertical (YZ) slices of the S-µCT images before (a, c, and e) and after (b, d, and f) deep-learning segmentation
performed using a model trained with random forest classified images. Images in (c) and (d) are magnified views of areas indicated with
white boxes in (a) and (b).

terpreted as bassanite and porosity. The size of clusters to
be removed is fixed in all volumes of the time series and
also through the different scanned samples: 100 and 8 pix-
els for bassanite and porosity, respectively. The application
of this routine is much more frequent at early stages of the
dehydration process when the majority of the volume is still
represented by the gypsum phase: the lack of contrast be-
tween phases leads to very noisy slices (i.e. speckled in ap-
pearance). The second routine involves the deletion of misla-
belled areas around celestite. This procedure is most accurate
and fast if conducted through visual inspection and manual
corrections.

3.7 Understanding the accuracy of the segmentation

Time-resolved µCT data offer the opportunity to quantify
evolving volumes in a sample and thereby the rates of a pro-
cess, whereby the accuracy of the quantification hinges on
the accuracy of the volumetric segmentation. The accuracy
of our deep-learning segmentation method itself is contin-
gent upon three potential sources of error. The first pertains
to the quality of the original CT image data, influenced by
factors such as image resolution, noise, and potential arte-
facts. In our work, this source of error had minor impacts on
the segmentation of bassanite and pores and is primarily re-
stricted to the early stages of the dehydration process when
the dominant presence of a single mineral phase, gypsum,
led to noisy slices and enhanced ring artefacts. A second po-
tential error source lies in the initial segmentation used to es-
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tablish the target image. The initial segmentation is arguably
the most laborious and time-consuming step, with some level
of error inevitable during the labelling of slices and assign-
ment of pixels to specific phases, particularly at phase bound-
aries. These issues, however, have minimal impact on the fi-
nal trained model as they generally occur at isolated pixels
(Badran et al., 2020). The third potential source of error is
mislabelling of pixels during the deep-learning segmentation
stage, attributable to limitations in the accuracy of the trained
model. While the error rate typically decreases with an in-
crease in the number of training images and iterations, over-
feeding the training network can lead to overfitting, which
can in turn degrade performance when segmenting unseen
images. However, we showed (Figs. 3 and 4; Table 1) that
augmenting data significantly reduced both mislabelling and
overfitting during the training step of the neural network.

The quantification of a metamorphic reaction rate from
4D µCT data hinges on the accurate tracking of the evolu-
tion of reacting and emerging phases. To independently as-
certain the accuracy of the chosen deep-learning model, we
compared the theoretical and measured (i.e. segmented) mo-
lar volumetric evolution of gypsum to bassanite during the
dehydration reaction.

For the case studied here, where no irreversible com-
paction occurred in the samples during the experiments (Gil-
gannon et al., 2023), we can use the theoretical molar evolu-
tion during the dehydration of gypsum to bassanite to calcu-
late the amounts of gypsum, bassanite, and water produced
during the dehydration reaction and the stoichiometric ratios
between them. Gypsum has two water molecules per formula
unit, while bassanite has only half of a water molecule per
formula unit. Hence, during the dehydration process, the mo-
lar ratio of water molecules to calcium sulfate molecules de-
creases. The chemical equation for the dehydration of gyp-
sum to bassanite is as follows:

CaSO4 · 2H2O→ CaSO4 · 0.5H2O+ 1.5H2O, (R1)

where one mole of gypsum (CaSO4 · 2H2O) gives one mole
of bassanite (CaSO4 · 0.5H2O) and 1.5 water molecules.

Knowing the initial volume of gypsum in the sample and
its density (2310 kg m−3), we can simply calculate its mass
and the corresponding molar quantity. From this, we can
compute the theoretical amount of bassanite produced from
gypsum at every reaction step. Given that the density of bas-
sanite is 2731 kgm−3, we can use the molar mass to convert
the produced moles of bassanite into volume. A plot of the
moles of reactants versus products is a y =−x graph con-
sistent with the 1 : 1 stoichiometric ratio of reaction (Eq. 1).
For the 1 : 1 gypsum-to-bassanite reaction, the slope is −1
(solid black lines in Fig. 6a and b with grey-shaded 2 % con-
fidence intervals). The segmentation, which provides a vol-
ume of bassanite and gypsum at each step, can be represented
and compared to the theoretical case. This graphical method
forms the basis of the theoretical dehydration curve against
which we compare the segmented volumes. Examples of this

comparison are shown in Fig. 6, where we present dehydra-
tion evolution paths for a sample under radial stress (VA17,
Fig. 6a) and an axial deviatoric stress sample (VA19, Fig. 6c).
In both examples, the curves for theoretical and measured
molar volumes follow the same trend, with fitting parameters
showing close equivalence.

This comparison shows that our segmentation workflow
produces highly accurate volume fractions for each phase.
All fractions fall within the< 5 % error bound of the theoret-
ical curve (Fig. 6). For a more comprehensive evaluation of
the method, a comparison was made between the novel inte-
grated workflow (Fig. 7a) and traditional manual histogram
thresholding. This comparison was applied to a selection of
volumes in the time series (Fig. 7b). The manual thresholding
method, which incorporates basic pre-processing steps (in-
cluding “despeckle” and “non-local means” with sigma= 5
and smoothing= 1) displayed significant shortcomings. It re-
sulted in a severe underestimation of the reaction extent and
the inadvertent “creation” of celestite. Contrarily, the pro-
posed workflow (Fig. 7a) significantly outperforms the tra-
ditional approach (Fig. 7b).

Due to its demonstrable accuracy, the segmentation output
is well suited for extracting quantitative information, such as
mineral growth rates and variations in pore size during the
dehydration reactions. Our segmentation method enables the
quantification of relative accuracy, allowing for the propaga-
tion of errors in any derived and quantified parameters. This
advance represents a significant step towards interpreting re-
sults and establishing their significance, as confidence inter-
vals are often absent in studies using manual thresholding.

4 Discussion and implications

The application of deep learning to time-resolved micro-CT
imaging offers a new tool for geoscientists studying rock
deformation, metamorphic processes, and fluid–rock inter-
actions. We successfully leveraged optimised deep-learning
methods to perform reliable and efficient segmentation of
time-resolved volumetric images during the gypsum dehy-
dration reaction. The approach outlined here not only stream-
lines data analysis by swiftly processing large datasets but
also enhances confidence in the robustness of results by en-
suring high segmentation accuracy. To ascertain the accu-
racy of the chosen deep-learning model we compared the
theoretical and measured molar evolution of gypsum to bas-
sanite during dehydration. This approach defines an inter-
nal standard, verifying that the segmentation method accu-
rately captures the mineralogical changes occurring within
the rock samples. Importantly, the robustness of this vali-
dation is based on the three-component nature of the sys-
tem – gypsum, bassanite, and water (imaged as porosity the
S-µCT data) – allowing for a non-circular and independent
verification of our method’s effectiveness. By harnessing the
power of deep learning for image segmentation, we can ex-
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Figure 6. Theoretical versus measured values. Comparison between the theoretical and the measured molar ratio of gypsum and bassanite
during dehydration. Here, we plot the evolving molar ratio of gypsum to bassanite during dehydration for (a) sample VA17, which experi-
enced radial stress and (c) sample VA19 experiencing axial stress (see Fig. 5 for reference). Shaded grey areas are 2 % confidence intervals
of the theoretical curve. On the right-hand side, 3D renderings of bassanite crystals and pores in two samples’ sub-volumes reacting at two
different stress conditions. In (b) the VA17 reaction principal stress (σmax) is axial (i.e. parallel to Z), while in (d) VA19 the principal applied
stress is radial (in the x–y plane). The height of both boxes is 1.5 mm.

tract more nuanced and precise information from µCT imag-
ing datasets. This will enhance our understanding of geologi-
cal processes and contribute to more accurate models of rock
behaviour under different physical conditions.

4.1 Comparison with other segmentation approaches

Accurate segmentation has long been a challenge across var-
ious scientific domains, from medical CT imaging to mate-
rial sciences and engineering (Withers et al., 2021). Global
segmentation methods, such as manual histogram or water-
shed thresholding, have long been go-to solutions for the seg-
mentation of X-ray CT tomographic images. However, the
following three considerable drawbacks persist: (i) the sig-
nificant time commitment required, (ii) the fact that global

techniques ignore local context and thus have an intrinsic
potential for misclassification, and finally (iii) the poten-
tial for compromised reproducibility (Andrew, 2018). As CT
imaging technologies evolve, resulting in larger datasets, the
scalability and efficiency of manual segmentation methods
become increasingly challenging (Da Wang et al., 2021).
Herein lies the risk of jeopardising reproducibility, defined as
the ability to consistently obtain similar results across mul-
tiple measurements using the same methodology (Renard et
al., 2020).

Machine and deep-learning segmentation strategies form
promising alternatives for automatic segmentation, optimis-
ing parameters for high accuracy performance on the training
dataset and ensuring effective generalisation to other datasets
within the same problem class. However, transitioning to-
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Figure 7. Quantitative analysis of phase volume changes during the gypsum dehydration experiment, as determined by segmenting the
same time series data (sample VA19) using two distinct segmentation methods. The new workflow developed in this study in (a), which
leverages a random forest classifier to label input data for a deep-learning model, yields significantly improved accuracy in phase volume
measurements relative to conventional histogram thresholding segmentation in (b) – including “despeckle” and “non-local means” with
sigma= 5 and smoothing= 1. The inset graphs show volume measurements for the celestite phase (yellow), which is a non-reacting phase
during dehydration. The bottom images show slices of the sample at different stages; in the graph they are represented by the data points
with a black outline.

wards automatic segmentation, while promising, is not triv-
ial. Successful automation of segmentation methods still re-
quires an initial investment of time and resources for skill ac-
quisition and understanding needed to fine-tune models and
adapt the workflow to the specific dataset at hand.

A good example of this is the intrinsic dependency of
deep-learning segmentation on the ground truth data input
and the selection of (hyper-)parameters during the training
process. If the initial segmentation – which forms the ground
truth – is not meticulously executed, this could lead to sub-
par results. These could manifest as minor differences when
compared with the ground truth, creating a misleading per-
ception of accurate segmentation. Given these potential pit-
falls, independent verification of segmentation results ap-
pears to be a preferable approach.

In fields such as medical imaging and material science
a common strategy to ensure reliability and accuracy of

segmentations is the use of external calibration techniques,
which involve the use of phantoms with known dimensions
and/or compositions as benchmarks (Adams, 2009; Kruth et
al., 2011). These external standards aid in the assurance of
measurement accuracy (Withers et al., 2021). However, these
calibration techniques are not without limitations. One major
challenge lies in partial volume effects, which occur when
the volume of interest encompasses more than one type of
material. The CT values measured in these regions do not
correspond to a single material type but rather are a weighted
average of the different types present (Kruth et al., 2011;
Sokac et al., 2020). Solutions have been proposed and of-
ten require complementary techniques (such as using tactile,
optical sensors) to calibrate measurements derived from CT
data (Torralba et al., 2018). Reinterpreting segmented voxels
using greyscale values can offer a complementary method for
calibration. This approach assigns partial values to affected
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voxels, potentially enhancing accuracy in cases of overlap-
ping mineral phases or partial volume effects. Furthermore,
the use of phantoms can result in difficulties during sample
preparation (such as staining, sample chemistry or structure
modification to include the standard) which can in turn alter
the general output of the segmentation.

In line with the efforts to enhance the accuracy and repro-
ducibility of CT image-based measurements, our approach
leverages a priori knowledge of the chemical reactions in-
volved in the dehydration process, therefore establishing a
framework for assessing the accuracy of the data extracted
from the CT images. This internal validation approach of-
fers a robust and consistent means of assessing the reliability
of our segmentation results. It provides an additional layer
of confidence in the accuracy of our measurements, ensuring
that the segmentation method effectively captures the phase
evolution within the rock samples.

4.2 General applicability of the proposed workflow

The versatility of the presented workflow extends beyond
the study of the gypsum dehydration process. By leverag-
ing 4D CT imaging and integrating chemical knowledge,
our approach has potential for investigating other fluid–
rock interaction processes, enabling precise quantification
of mineralogical changes, and providing valuable insights
into various geological phenomena. For example, our ap-
proach can be directly applied to the investigation of the
KBr−KCl solid–solid replacement, which serves as an ana-
logue for studying the dolomitisation mechanism and other
solvent-mediated reactions, resulting in the creation of poros-
ity (Beaudoin et al., 2018). Similarly, the method has poten-
tial in fluid–rock interaction reactions relevant in the geoen-
ergy field: our methodology can contribute to the analysis of
carbonation reactions within ultramafic rocks, where carbon
dioxide (CO2) reacts with minerals to form carbonate miner-
als (Beinlich et al., 2020; Snaebjörnsdóttir et al., 2020), and
thus gain valuable insights into the mineralogical changes as-
sociated with carbon dioxide (CO2) sequestration, contribut-
ing to the development of efficient carbon capture strategies.
Additionally, our method is applicable to studying metaso-
matic and alteration processes related to hydrothermal fluids,
shedding light on transformations occurring in geothermal
reservoirs (Heap et al., 2020).

The proposed approach enables us to quantify geologi-
cal processes at the grain scale, integrating with data from
other sources and a priori chemical knowledge. This synergy
between advanced imaging techniques and chemical under-
standing can bring about a new level of precision in our com-
prehension of complex geological processes. The ability to
capture and analyse the temporal evolution of mineral phases
with high spatial resolution provides us with a detailed un-
derstanding of the dynamic behaviour of geological systems.
This enhanced level of insight allows us to unravel the intri-

cate mechanisms governing rock deformation, metamorphic
processes, and fluid–rock interactions.

4.3 Future horizons of deep-learning segmentation for
image analysis in geosciences

The success of our deep-learning methods in the task of seg-
menting complex 4D data can represent a versatile approach
that can find use in many image analysis tasks of geomate-
rials. By providing a reusable and adaptable workflow, we
open the door to collaborations and innovations within the
scientific community.

Future iterations of our method will aim to expand its
capabilities and applications. A direction to explore is the
integration of deep-learning convolutional neural networks
with transfer learning and reinforcement learning techniques.
Transfer learning can leverage pre-trained models to reduce
computational cost and improve generalisation ability (Kim
et al., 2022), while reinforcement learning might provide dy-
namic and adaptive strategies for data acquisition and re-
construction (Le et al., 2022). Specifically, transfer learn-
ing could be utilised to adapt models initially trained on
datasets derived using imaging techniques which provide
higher textural resolutions (such as scanning electron mi-
croscopy – SEM), thereby enhancing their ability to gener-
alise to complex datasets with minimal retraining. Reinforce-
ment learning could play a crucial role in optimising data
acquisition and reconstruction processes. By applying rein-
forcement learning algorithms, we could develop systems
that dynamically adjust acquisition parameters or reconstruc-
tion techniques based on real-time feedback, leading to more
efficient and accurate image analysis. For instance, in time-
evolving systems, reinforcement learning could be used to
adaptively select optimal imaging parameters for each time
step, based on the changes observed in the previous scans.
For our case study, by using the chemical theoretical molar
reaction as a guiding principle, we can train the segmenta-
tion algorithm to identify and accurately outline the volumes
of different mineral phases at various stages of the dehydra-
tion process. This adaptive learning process, driven by the
theoretical molar reaction, could maintain high accuracy and
robustness of the segmentation algorithm throughout the de-
hydration process. In addition to this promising integration
of techniques, two key areas of potential advancement lie in
the development of unsupervised segmentation approaches
and the use of time as a parameter to learn from. Unsuper-
vised learning can dramatically reduce the time and effort re-
quired for data annotation, thereby accelerating analysis and
enabling the exploration of larger datasets (Mahdaviara et al.,
2023). Additionally, leveraging data from before and after a
scan in a time series can provide extra information, further
enhancing our ability to segment complex datasets more ef-
fectively. Four-dimensional data pose a unique challenge and
opportunity for these unsupervised methods, as leveraging
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temporal information can significantly improve the quality
and consistency of the segmentation.

5 Conclusions

In this work, we have demonstrated the potential of deep-
learning methods in the segmentation of 4D synchrotron X-
ray tomographic images, particularly in the context of meta-
morphic rock transformations. We successfully overcame
the inherent challenge of accurately segmenting all mineral
phases and the pore network in an operando dataset, consist-
ing of around 50 tomograms for each experimental setting,
by using a robust and efficient deep-learning-based work-
flow.

Our deep-learning algorithm, trained on just 13 represen-
tative slices, generated a reliable segmentation, substanti-
ating the versatility and power of such approaches. Con-
versely to the conventional external calibration techniques,
we achieved validation of the segmentation accuracy by em-
ploying the metamorphic reactions themselves as an inter-
nal standard. We found the errors between the theoretical
and segmented volumes from our time series experiments
to be consistently within the 2 % confidence intervals of the
theoretical curves. This facilitates extracting quantitative in-
formation, such as mineral growth rate and pore size vari-
ations, from segmented CT images during a reaction. The
implementation of a 2D U-net architecture for segmentation
and the utilisation of random-forest-obtained labelled data
as input demonstrated how machine learning can efficiently
process large datasets and provide robust results even under
challenging conditions. Coupled with the advantage of very
short run times, our algorithm demonstrates great potential
for practical application in similar studies.

In conclusion, our study underscores the transformative
potential of deep learning in the realm of image analysis for
geomaterials. The robustness, accuracy, and efficiency of our
algorithm, coupled with its reusability, highlight how such
methods can significantly advance research in this field. We
anticipate that our approach will serve as a catalyst for further
research, empowering scientists to make accurate predictions
about microstructural changes under various stress condi-
tions and contributing to a deeper understanding of tectono-
metamorphic processes. We encourage other researchers to
adopt and develop the workflow we introduced here, fos-
tering an environment of shared learning and collaboration
within the scientific community.

Appendix A: Manual segmentation

Manual segmentation is performed using the Dragonfly soft-
ware. The different features of interest are identified by the
human eye, and we define the intensity range of grey value
according to the specific material phase.

Appendix B: Random forest segmentation

Random forest pixel classification is performed using the
Dragonfly software. The pixels pertaining to the different
phases (gypsum, bassanite, pore, celestite) visible in the sam-
ple are identified and painted using the Brush tool in the soft-
ware. We manually classified phases over a small number of
slices (i.e. 13 slices) and then used these data as input dataset
into the random forest classifier. A random forest is a meta
estimator that fits a number of decision tree classifiers on var-
ious sub-samples of the dataset and uses averaging to im-
prove the predictive accuracy and control overfitting. In our
case, the algorithm is a pixel-based segmentation computed
here using local features based on local intensity, edges, and
textures at different scales. The pixels of the mask are used to
train a random forest classifier from scikit-learn (Pedregosa
et al., 2011). Intensity, gradient intensity, and local structure
are computed at different scales thanks to Gaussian blurring.

In our study, the random forest classifier was employed
with a set of predefined features: morphological, Gaussian
multi-scale, and neighbours. Each of these feature sets plays
a distinct role in enhancing the classifier’s ability to accu-
rately segment phases in the dataset.

– Morphological features. These are used to analyse the
shape and structure within the images, enabling the clas-
sifier to detect and distinguish different phases based on
their morphological characteristics.

– Gaussian multi-scale features. These features involve
applying Gaussian filters at multiple scales, aiding in
smoothing the images and reducing noise. This multi-
scale approach helps in capturing features at various
levels of detail, contributing to more effective phase dif-
ferentiation.

– Neighbours features. This set focuses on the local
neighbourhood of each pixel, capturing the texture and
local contrast, which is essential for identifying subtle
boundaries between phases.

All of these features are used together in the random forest
classifier, each contributing to the overall classification task.
The classifier does not operate on a voting system between
these feature sets; rather, it integrates the information pro-
vided by all of them to decide for each voxel in the image.
This integrated approach enables a more nuanced and accu-
rate classification compared to using any single feature set on
its own and significantly improves the process over manual
thresholding methods.
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Appendix C: Evaluation metrics parameters

To help evaluate deep-learning segmentation quality, we use
a set of different evaluation metrics for comparing the neural
network models trained with different ground truth data. All
presented metrics are based on the computation of a confu-
sion matrix for the segmentation task. The confusion matrix
is built on the so-called “basic cardinalities”, which can be
calculated within the Dragonfly software. Basic cardinalities
include the number of true positive (TP), false positive (FP),
true negative (TN), and false negative (FN) predictions. For a
full mathematical description of the cardinalities we refer to
Taha and Hanbury (2015) and to Müller et al. (2022). For all
metrics shown here, except Cohen’s Kappa, the value ranges
from zero (worst) to one (best).

C1 Recall, specificity, and precision

Recall, also known as sensitivity or true positive rate (TPR),
focuses on the true positive detection capabilities. Specificity
instead evaluates the ability for correctly identifying true
negative classes, and thus it is also known as true negative
rate. Another related measure is precision, also called posi-
tive predictive value (PPV), which is not commonly used in
validation of tomographic images, but it is used to calculate
the F-measure (see below). These three metrics are calculated
as follows.

Recall =
TP

TP+FN
(C1)

Specificity =
TN

TN+FP
(C2)

Precision =
TP

TP+FP
(C3)

C2 Accuracy

Accuracy is one of the best-known evaluation metrics in
statistics (Müller et al., 2022). It is defined as the number of
correct predictions, consisting of true positives and true nega-
tives, compared to the total number of predictions. However,
many recent works (see Taha and Hanbury, 2015; Müller
et al., 2022, for a complete review) have discouraged the
use of accuracy in image analysis, particularly in multi-class
segmentation where class imbalance is highly common; be-
cause of the true negative inclusion, the accuracy metric will
always result in an anomalous high scoring (Müller et al.,
2022). This can be clearly seen in Fig. C1, where the score
for the Accuracy metric is high also for those models which
do not perform well if taking into account other metrics. Ac-
curacy is calculated as follows:

Accuracy =
TP+TN

TP+TN+FN+FP
. (C4)

C3 F-measure-based metrics

F-measure, also known as F-score, metrics are among the
most widely used evaluation performance metrics for com-
puter vision and image analysis (Taha and Hanbury, 2015;
Müller et al., 2021, 2022; Allen et al., 2022). It is calcu-
lated from recall and precision of a prediction, by which
it scores the overlap between predicted segmentation and
ground truth. Including the precision metric, F-measure pe-
nalises false positives, which can be common features in
multi-class datasets – such as those derived from X-ray µCT.
There are two metrics based on the F-measure: Dice coef-
ficient, also called F1 or the Sørensen–Dice index, and the
intersection-over-union (IoU), also known as the Jaccard in-
dex or Jaccard similarity coefficient. The Dice coefficient is
defined as the harmonic mean between sensitivity and preci-
sion and is calculated as follows:

DICE=
2 ·TP

2 ·TP+FP+FN
. (C5)

The IoU, instead, is defined as follows:

IoU=
TP

TP+FP+FN
. (C6)

We can also define DICE as follows:

DICE=
2× IoU
1× IoU

. (C7)

C4 Area under the receiver operating characteristic

The receiver operating characteristic (ROC) is a line plot of
the diagnostic ability of a classifier by visualising its per-
formance with different discrimination thresholds (Taha and
Hanbury, 2015; Müller et al., 2022). The performance is as-
sessed through the true positive rate against the false negative
rate. We can use the area under the receiver operating charac-
teristic (AUC) as a single-value evaluation performance met-
ric for the validation of image classifiers (Müller et al., 2022).
The following AUC formula is determined as the area of the
trapezoid defined by the ROC plot (see Müller et al., 2022
for a full formulation):

AUC= 1−
1
2

(
FP

FP+TN
+

FN
FN+TP

)
. (C8)

It needs to be noted that an AUC value of 0.5 is indicative
of a random classifier.
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Figure C1. Eight common evaluation metrics calculated for the different segmentation models, accuracy, recall, Dice coefficient (DICE),
specificity, intersection-over-union (IoU), area under the receiver operating characteristic (AUC), volumetric similarity, and Cohen’s kappa
(Kappa), are evaluated for the average volume and for each of the phases present in the analysed sample volume. Please refer to the main
text for details regarding each trained model.
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C5 Volumetric similarity

As the name suggests, volumetric similarity (VS) is a mea-
sure that considers the volume of the segmented classes to in-
dicate similarity. Here we use the definition reported in Taha
and Hanbury (2015), namely the absolute volume difference
divided by the sum of the compared volumes. Taha and Han-
bury (2015) define the VS as 1-VD, where VD is the volu-
metric distance:

Volumetric Similarity = 1−
|FN−FP|

2 ·TP+FP+FN
. (C9)

C6 Cohen’s kappa

This metric is defined as a change-corrected measure of
agreement between ground truth and predicted classification
(Taha and Hanbury, 2015; Müller et al., 2022). Differently
for previous metrics, Cohen’s kappa (Kappa) ranges from−1
(worst) to +1 (best); a KAPPA close to 0 indicates a random
classifier. The KAPPA evaluation metric is calculated as fol-
lows:

fc =
(TN+FN)(TN+FP)+ (FP+TP)(FN+TP)

TP+TN+FN+FP
, (C10)

Kappa=
(TP+TN)− fc

(TN+TN+FN+FP)− fc
. (C11)

In the main text the Dice coefficient (Fig. 4 and Ta-
ble 1) is used to evaluate and compare the segmentation re-
sulting from the neural network trained using ground truth
data derived from (i) histogram segmentation (Models A–C),
(ii) histogram segmentation with data augmentation (Mod-
els D and E), and finally (iii) a random forest classifier. A
complete description of all calculated metrics can be found
in Fig. C1 and in Table S1 in the Supplement. Both the fig-
ure and the table report the calculated values for the differ-
ent phases (gypsum, bassanite, pores, and celestite) and the
average over the segmented volume for the reference vol-
ume VA19-040 (736 voxel× 800 voxel× 400 voxel). It can
be noted how the introduction of data augmentation benefits
the segmentation of most phases with respect to almost all
metrics (particularly for Model E). However, only Model RF
(trained with a random forest ground truth) includes the ce-
lestite phase (yellow in the graphs) in addition to the overall
best performance in all most metrics.

Code availability. Data analysis and plots were created using the
Matplotlib library for the Python language (https://matplotlib.org/
stable/index.html, last access: 27 March 2024); the script for recre-
ating the figures together with the input data are available at
https://doi.org/10.7488/ds/7493 (Rizzo, 2023).

Data availability. The images and deep-learning models for this
paper were generated using Dragonfly software, version 2020.2,

for Windows. Dragonfly is a software by Object Research Sys-
tems (ORS) Inc., Montreal, Canada; software available at http:
//www.theobjects.com/dragonfly (last access: 27 March 2024). The
deep-learning model and dataset used in this work are available
from the following sources.

– Deep-learning model: https://doi.org/10.7488/ds/7493 (Rizzo,
2023);

– VA17: https://doi.org/10.16907/8ca0995b-d09b-46a7-945d-
a996a70bf70b (Fusseis, 2023a);

– VA19: https://doi.org/10.16907/a97b5230-7a16-4fdf-92f6-
1ed800e45e37 (Fusseis, 2023b).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/se-15-493-2024-supplement.
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Zone, New Zealand), J. Volcanol. Geoth. Res., 390, 106703,
https://doi.org/10.1016/j.jvolgeores.2019.106703, 2020.

Karimpouli, S., and Tahmasebi, P.: Segmentation of digital rock im-
ages using deep convolutional autoencoder networks, Comput.
Geosci., 126, 142–150, 2019.

Kim, H. E., Cosa-Linan, A., Santhanam, N., Jannesari, M., Maros,
M. E., and Ganslandt, T.: Transfer learning for medical image
classification: a literature review, BMC Med. Imaging, 22, 69,
https://doi.org/10.1186/s12880-022-00793-7, 2022.

Kruth, J. P., Bartscher, M., Carmignato, S., Schmitt, R., De Chiffre,
L., and Weckenmann, A.: Computed tomography for dimen-
sional metrology, CIRP Ann., 60, 821–842, 2011.

Le, N., Rathour, V. S., Yamazaki, K., Luu, K., and Sav-
vides, M.: Deep reinforcement learning in computer vi-
sion: a comprehensive survey, Artif. Intell. Rev., 55, 1–87,
https://doi.org/10.1007/s10462-021-10061-9, 2022.

LeCun, Y., Bengio, Y., and Hinton, G.: Deep learning, Nature, 521,
436–444, 2015.

Lee, D., Karadimitriou, N., Ruf, M., and Steeb, H.: Detecting mi-
cro fractures: a comprehensive comparison of conventional and
machine-learning-based segmentation methods, Solid Earth, 13,
1475–1494, https://doi.org/10.5194/se-13-1475-2022, 2022.

Mahdaviara, M., Sharifi, M., and Rafiei, Y.: PoreSeg:
An Unsupervised and Interactive-based Framework
for Automatic Segmentation of X-ray Tomography of
Porous Materials, Adv. Water Resour., 178, 104495,
https://doi.org/10.1016/j.advwatres.2023.104495, 2023.

Marti, S., Fusseis, F., Butler, I. B., Schlepütz, C., Marone,
F., Gilgannon, J., Kilian, R., and Yang, Y.: Time-resolved
grain-scale 3D imaging of hydrofracturing in halite
layers induced by gypsum dehydration and pore fluid
pressure buildup, Earth Planet. Sc. Lett., 554, 116679,
https://doi.org/10.1016/j.epsl.2020.116679, 2021.

https://doi.org/10.5194/se-15-493-2024 Solid Earth, 15, 493–512, 2024

https://doi.org/10.1029/2019JB019060
https://doi.org/10.1038/s41598-022-08170-8
https://doi.org/10.1038/s41598-022-08170-8
https://doi.org/10.1038/s41467-022-33855-z
https://doi.org/10.1038/s41467-022-33855-z
https://doi.org/10.1016/j.earscirev.2021.103555
https://doi.org/10.16907/8ca0995b-d09b-46a7-945d-a996a70bf70b
https://doi.org/10.16907/8ca0995b-d09b-46a7-945d-a996a70bf70b
https://doi.org/10.16907/a97b5230-7a16-4fdf-92f6-1ed800e45e37
https://doi.org/10.16907/a97b5230-7a16-4fdf-92f6-1ed800e45e37
https://doi.org/10.5194/se-3-71-2012
https://doi.org/10.5194/se-3-71-2012
https://doi.org/10.1130/G51612.1
https://doi.org/10.1016/j.jvolgeores.2019.106703
https://doi.org/10.1186/s12880-022-00793-7
https://doi.org/10.1007/s10462-021-10061-9
https://doi.org/10.5194/se-13-1475-2022
https://doi.org/10.1016/j.advwatres.2023.104495
https://doi.org/10.1016/j.epsl.2020.116679


512 R. E. Rizzo et al.: Quantifying grain-scale mineral transformations with internal standards in 4D X-ray µCT

Müller, D., Soto-Rey, I., and Kramer, F.: Towards a guideline for
evaluation metrics in medical image segmentation, BMC Res.
Notes, 15, 1–8, 2022.

Müller, S., Sauter, C., Shunmugasundaram, R., Wenzler, N., De
Andrade, V., De Carlo, F., Konukoglu, E., and Wood, V.: Deep
learning-based segmentation of lithium-ion battery microstruc-
tures enhanced by artificially generated electrodes, Nat. Com-
mun., 12, 1–12, 2021.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg,
V., and Vanderplas, J.: Scikit-learn: Machine learning in Python,
J. Mach. Learn. Res., 12, 2825–2830, 2011.

Phan, J., Ruspini, L. C., and Lindseth, F. L.: Automatic segmenta-
tion tool for 3D digital rocks by deep learning, Sci. Rep.-UK, 11,
1–15, 2021.

Phillips, T., Bultreys, T., Bisdom, K., Kampman, N., Van Offenwert,
S., Mascini, A., Cnudde, V., and Busch, A.: A Systematic Inves-
tigation Into the Control of Roughness on the Flow Properties of
3D-Printed Fractures, Water Resour. Res., 57, e2020WR028671,
https://doi.org/10.1029/2020WR028671, 2021.

Reinhardt, M., Jacob, A., Sadeghnejad, S., Cappuccio, F., Arnold,
P., Frank, S., Enzmann, F., and Kersten, M.: Benchmarking con-
ventional and machine learning segmentation techniques for dig-
ital rock physics analysis of fractured rocks, Environ. Earth Sci.,
81, 71, https://doi.org/10.1007/s12665-021-10133-7, 2022.

Renard, F., Guedria, S., Palma, N. D., and Vuillerme, N.: Variability
and reproducibility in deep learning for medical image segmen-
tation, Sci. Rep.-UK, 10, 1–16, 2020.

Rezaee, M., Mahdianpari, M., Zhang, Y., and Salehi, B.: Deep con-
volutional neural network for complex wetland classification us-
ing optical remote sensing imagery, IEEE J. Sel. Top. Appl., 11,
3030–3039, 2018.

Rizzo, R. E.: Deep learning training model, University of
Edinburgh. School of GeoScience [code and data set],
https://doi.org/10.7488/ds/7493, 2023.

Ronneberger, O., Fischer, P., and Brox, T.: U-net: Convolutional
networks for biomedical image segmentation, Medical Im-
age Computing and Computer-Assisted Intervention–MICCAI
2015: 18th International Conference, Munich, Germany, 5–
9 October 2015, Proceedings, Part III 18, vol. 9351, 234–241,
Springer International Publishing, https://doi.org/10.1007/978-3-
319-24574-4_28, 2015.

Shorten, C., and Khoshgoftaar, T. M.: A survey on image data aug-
mentation for deep learning, J. Big Data, 6, 1–48, 2019.

Snaebjörnsdóttir, S. Ó., Sigfússon, B., Marieni, C., Goldberg, D.,
Gislason, S. R., and Oelkers, E. H.: Carbon dioxide storage
through mineral carbonation, Nat. Rev. Earth Environ., 1, 90–
102, 2020.

Sokac, M., Budak, I., Katic, M., Jakovljevic, Z., San-
tosi, Z., and Vukelic, D.: Improved surface extraction of
multi-material components for single-source industrial X-
ray computed tomography, Measurement, 153, 107438,
https://doi.org/10.1016/j.measurement.2019.107438, 2020.

Taha, A. A., and Hanbury, A.: Metrics for evaluating 3D medical
image segmentation: analysis, selection, and tool, BMC Med.
Imaging, 15, 1–28, 2015.

Torralba, M., Jiménez, R., Yagüe-Fabra, J. A., Ontiveros, S., and
Tosello, G.: Comparison of surface extraction techniques perfor-
mance in computed tomography for 3D complex micro-geometry
dimensional measurements, Int. J. Adv. Manuf. Tech., 97, 441–
453, 2018.

Withers, P. J., Bouman, C., Carmignato, S., Cnudde, V., Grimaldi,
D., Hagen, C. K., Maire, E., Manley, M., Du Plessis, A., and
Stock, S. R.: X-ray computed tomography, Nat. Rev. Meth-
ods Primers, 1, 18, https://doi.org/10.1038/s43586-021-00015-4,
2021.

Zeiler, M. D.: Adadelta: an adaptive learning rate method, arXiv
[preprint], arXiv:1212.5701, 2012.

Solid Earth, 15, 493–512, 2024 https://doi.org/10.5194/se-15-493-2024

https://doi.org/10.1029/2020WR028671
https://doi.org/10.1007/s12665-021-10133-7
https://doi.org/10.7488/ds/7493
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1016/j.measurement.2019.107438
https://doi.org/10.1038/s43586-021-00015-4
https://arxiv.org/abs/1212.5701

	Abstract
	Introduction
	Gypsum dehydration as an example of a complex segmentation problem
	The gypsum dehydration system and experimental set-up
	Challenges of segmenting dehydrating gypsum during operando X-ray microtomographies
	A segmentation workflow with internal standards

	Influence of training data
	Input data for the deep-learning convolutional neural network
	Histogram thresholding as training data
	Random forest classifier as training data
	Optimising the deep-learning models
	Applying the deep-learning segmentation
	Post-segmentation processing
	Understanding the accuracy of the segmentation

	Discussion and implications
	Comparison with other segmentation approaches
	General applicability of the proposed workflow
	Future horizons of deep-learning segmentation for image analysis in geosciences

	Conclusions
	Appendix A: Manual segmentation
	Appendix B: Random forest segmentation
	Appendix C: Evaluation metrics parameters
	Appendix C1: Recall, specificity, and precision
	Appendix C2: Accuracy
	Appendix C3: F-measure-based metrics
	Appendix C4: Area under the receiver operating characteristic
	Appendix C5: Volumetric similarity
	Appendix C6: Cohen's kappa

	Code availability
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

