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Morphological profiling in human neural 
progenitor cells classifies hits in a pilot drug 
screen for Alzheimer’s disease

Amina H. McDiarmid,1 Katerina O. Gospodinova,1 Richard J. R. Elliott,2 John C. Dawson,2

Rebecca E. Graham,2 Marie-Therese El-Daher,3 Susan M. Anderson,1 Sophie C. Glen,1

Simon Glerup,4 Neil O. Carragher2 and Kathryn L. Evans1

Alzheimer’s disease accounts for 60–70% of dementia cases. Current treatments are inadequate and there is a need to develop new 
approaches to drug discovery. Recently, in cancer, morphological profiling has been used in combination with high-throughput 
screening of small-molecule libraries in human cells in vitro. To test feasibility of this approach for Alzheimer’s disease, we developed 
a cell morphology-based drug screen centred on the risk gene, SORL1 (which encodes the protein SORLA). Increased Alzheimer’s 
disease risk has been repeatedly linked to variants in SORL1, particularly those conferring loss or decreased expression of 
SORLA, and lower SORL1 levels are observed in post-mortem brain samples from individuals with Alzheimer’s disease. 
Consistent with its role in the endolysosomal pathway, SORL1 deletion is associated with enlarged endosomes in neural progenitor 
cells and neurons. We, therefore, hypothesized that multi-parametric, image-based cell phenotyping would identify features charac
teristic of SORL1 deletion. An automated morphological profiling method (Cell Painting) was adapted to neural progenitor cells and 
used to determine the phenotypic response of SORL1−/− neural progenitor cells to treatment with compounds from a small inter
nationally approved drug library (TargetMol, 330 compounds). We detected distinct phenotypic signatures for SORL1−/− neural pro
genitor cells compared to isogenic wild-type controls. Furthermore, we identified 16 compounds (representing 14 drugs) that reversed 
the mutant morphological signatures in neural progenitor cells derived from three SORL1−/− induced pluripotent stem cell sub-clones. 
Network pharmacology analysis revealed the 16 compounds belonged to five mechanistic groups: 20S proteasome, aldehyde dehydro
genase, topoisomerase I and II, and DNA synthesis inhibitors. Enrichment analysis identified DNA synthesis/damage/repair, 
proteases/proteasome and metabolism as key pathways/biological processes. Prediction of novel targets revealed enrichment in 
pathways associated with neural cell function and Alzheimer’s disease. Overall, this work suggests that (i) a quantitative phenotypic 
metric can distinguish induced pluripotent stem cell-derived SORL1−/− neural progenitor cells from isogenic wild-type controls and 
(ii) phenotypic screening combined with multi-parametric high-content image analysis is a viable option for drug repurposing and 
discovery in this human neural cell model of Alzheimer’s disease.
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Graphical Abstract

Introduction
Alzheimer’s disease is the most common form of dementia. It is 
associated with a progressive decline in cognition, ultimately 
leading to incapacitation and death.1 Toxic amyloid-beta 
(Aβ) proteins, Aβ40 and Aβ42, produced by amyloidogenic 
processing of the amyloid precursor protein (APP) form insol
uble, extracellular plaques in the brain of cases.2 Aβ-related 
pathology, intracellular neurofibrillary tangles of hyperpho
sphorylated tau protein3 and neuroinflammation4 are 
thought to lead to disruption of neuronal function and 

neurodegeneration in brain regions important for cognition 
(for example, the hippocampus). Currently, there is no cure, 
although modest, temporary relief from the cognitive impair
ment is achieved in a proportion of cases with acetylcholine 
esterase inhibitors (e.g. rivastigmine)5,6 or the N-methyl-D- 
aspartate receptors antagonist memantine.7 No new drugs 
have been licensed since memantine in 2002 and only two 
new potential treatments, immunotherapeutics aducanumab 
and lecanumab, which target Aβ aggregates in the brain, 
have been discovered in the last two decades.8-11 Whilst 
aducanumab reduced plasma levels of Aβ40 and Aβ42 in a 
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dose-dependent manner,8 it was not associated with significant 
improvements to cognition or function in participants.10

Results from the lecanumab trial suggest treatment has mo
dest beneficial effects on disease progression over 18 months, 
but adverse outcomes such as reaction to infusion and effu
sions or oedema11 were observed in substantial numbers of 
participants. Thus, there is the opportunity to explore alter
native targets/pathways and treatments, via drug discovery 
and repositioning, rather than solely focussing on clearance 
of Aβ plaques.

Genetic, clinical and functional analyses strongly support 
involvement of the sortilin-related receptor 1 (SORL1, which 
encodes SORLA) in Alzheimer’s disease. In genome-wide asso
ciation analyses, the associated variants in SORL1 are largely 
non-coding and are expected to exert their effects via altering 
expression level.12 Haploinsufficiency of SORL1 is highly 
penetrant in Alzheimer’s disease, with 2% of early-onset cases 
being attributed to rare SORL1 loss-of-function variants.13,14

Loss-of-function mutations in SORL1 are associated with 
>50% Alzheimer’s disease penetrance for individuals carrying 
two copies of APOE ϵ3 at >75 years of age, and 100% for 
those homozygous for APOE ϵ4.15 SORL1 risk variants have 
also been shown to predict endophenotypes (decreased white 
matter fractional anisotropy and increased amyloid pathology 
in post-mortem brain) in dementia-free individuals.16

Decreased expression of SORLA is found in the brains of cases 
post-mortem and evidence suggests this occurs prior to the de
velopment of clinical disease.17,18 It can be concluded, there
fore, that reduced SORLA expression increases risk in late/ 
early-onset sporadic and familial cases Alzheimer’s disease.

SORLA is a member of the VPS10p-domain receptor gene 
family of multi-functional neuronal proteins (other members: 
Sortilin and SORCS1–3). It shuttles cargo, including a number 
of molecules that are important to Alzheimer’s disease 
pathology19-22 between the plasma membrane, endosomes, 
lysosomes and the trans-Golgi network. The trafficked mole
cules include APP, which is shuttled from endosomes to the 
Golgi, decreasing the production of Aβ. SORLA also sorts Aβ 
peptides to lysosomes, where they are degraded. Decreased 
Sorl1 expression in mice accelerates Aβ production and plaque 
deposition,17,23 while overexpression of a human SORL1 
cDNA significantly reduced the amount of murine Aβ in wild- 
type mice, and human Aβ in an APP-transgenic mouse model of 
Alzheimer’s disease.24 Sorl1 haploinsufficiency in mini-pigs in
duced a cerebrospinal fluid biomarker profile identical to that 
seen in Alzheimer’s disease.25

Endolysosomal pathways are important in the pathogenesis 
of neurodegenerative conditions.21,26-28 Loss of SORLA leads 
to morphological and functional abnormalities in organelles 
from this pathway.19,20 In a minipig model, Sorl1 haploinsuf
ficiency induced endosomal enlargement in neurons.25 Knupp 
et al.,20 showed that depletion of SORL1 led to enlargement of 
early endosomes (independent of amyloidogenic APP process
ing) in SORLA-depleted human iPSC-derived neural progeni
tor cells (NPCs) and neurons, but not microglia. Similarly, 
Hung et al.,19 found that loss of SORL1 in iPSC-derived neu
rons resulted in endosome, lysosome and autophagy defects. 

These findings suggest that morphological phenotypes quanti
fied using fluorescence microscopy distinguish between 
SORLA-depleted and wild-type NPCs and neurons.

NPCs are a relevant cell type for research into Alzheimer’s 
disease. A developmental basis for Alzheimer’s disease 
has been hypothesized. Some proteins implicated in neurode
generation/Aβ-pathology have important developmental 
functions.29,30 Atypical neurodevelopmental trajectories have 
been described in carriers of SORL1 risk variants,16 and there 
is evidence for increased proliferation of NPCs in mice lacking 
Sorla.31 In addition, to being key to neurodevelopment, recent 
studies have shown that NPCs and hippocampal neurogenesis 
persist beyond 90 years of age in Alzheimer’s disease cases.32,33

Hippocampal neurogenesis declined with age, with the extent 
of decline being correlated with disease severity. The persistence 
of NPCs into old age, and the correlation between decline and 
disease, suggest an important role for NPCs in Alzheimer’s dis
ease. In addition, NPCs are an ideal starting point for develop
ing high-throughput drug screening, not only because prior 
reports outline relevant phenotypes that can be observed using 
image analysis but also because derivation of NPCs in large 
quantities is time- and cost-effective.

Given the above considerations, we developed a phenotypic 
drug screen using SORL1−/− NPCs. Our screen was designed to 
identify compounds that caused reversion of the SORL1 
knock-out phenotype to that of the healthy (isogenic) control 
NPC line. We used the morphological profiling assay, Cell 
Painting, a fluorescent image-based profiling approach that per
mits hypothesis-free and relatively unbiased interrogation of 
phenotypic features. CellProfiler was used to quantify >1000 
cellular and sub-cellular morphological features from this 
data.34 Dimensionality reduction, multivariate statistical ana
lysis (including distance metrics and classification by machine 
learning) was then used to quantify phenotypic differences be
tween mutant and healthy control cells. Subsequently, machine 
learning analysis methods were applied to identify compounds 
that induce reversion of the quantitative phenotypic signature 
of mutant cells towards that of wild-type healthy cells. Such 
image-based multi-parametric, computational approach may 
overcome some of the limitations of traditional single-readout 
end-point drug discovery assays.35

Here, we show that morphological profiling by Cell Painting 
robustly classifies wild-type NPCs from those lacking SORLA. 
In addition, we have performed a pilot drug screen with a small 
library comprising FDA/internationally approved, biologically 
annotated small molecules. The screen yielded hits that reversed 
the mutant phenotype, demonstrating the potential of this assay 
to profile treatment response and identify compounds relevant to 
SORLA-related pathology and potentially Alzheimer’s disease.

Materials and methods
Human-induced pluripotent stem cell 
line
Human-induced pluripotent stem cell (hiPSC) line 
WTSIi004-B (QOLG-1) was obtained from the European 
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Bank for Induced Pluripotent Stem Cells (ebisc.org) under a 
material transfer agreement and access use agreement. 
WTSIi004-B line was derived from fibroblasts from a healthy 
male donor aged 35–39 that met the following criteria: nor
mal karyotype confirmed in hiPSCs, homozygous for APOE 
e3/e3 (which allows effect of SORL1 risk to be explored 
without confounding factors associated with risk APOE ϵ4 
genotypes) and confirmed differentiation into neural cells.

Generation of isogenic homozygous 
SORLA-depleted iPSCs by 
CRISPR-Cas9/genome editing
CRISPR-Cas9 guide RNAs (gRNAs) targeting exon 31 of the 
human SORL1 gene (SORL1ex31) were designed using two 
open-source, computational tools; the Zhang Lab CRISPR 
Design website (https://crispr.mit.edu) and CHOPCHOP 
(https://chopchop.cbu.uib.no/). The final sequence was se
lected based on high specificity to the target site and low pre
dicted off-target activity. The oligos were phosphorylated 
and cloned into px458, which expresses Cas9 endonuclease 
and GFP (RRID: Addgene_48138). Constructs were deliv
ered using nucleofection. Fluorescence automated sorting 
was used to select GFP + cells which were seeded as single 
cells before sub-cloning and genotyping.

SORL1ex31 genotyping assay, 
sequencing and assessment of sortilin 
expression
QuickExtract™ DNA Extraction Solution (QE09050, 
Lucigen) was used to extract gDNA from selected sub-clones 
for polymerase chain reaction (PCR). The gDNA samples 
were amplified by PCR using ReadyMix(TM) Taq PCR 
Reaction Mix (P4600, Sigma) containing 12.5 µl Reaction 
Mix (P4600, Merck, 12.5 µl), 2 µl 20 µM Primers 8.5 µl mo
lecular grade and 2 µl Quick Extract gDNA sample. Five 
micro-litres ofPCR products were visualized on 1.5% agar
ose gels (1 ×  TBE Buffer) with ×10 loading dye alongside 
10 µl 1 kb plus DNA Ladder. Products of the expected size 
were subject to sequence analysis. Mutation of the 
SORL1ex31 locus was confirmed by sequencing of the target 
locus in SORL1 exon 31. Off-target cleavage sites were pre
dicted computationally and sequenced. Karytypic normality 
was confirmed by KaryoStat Assay (ThermoFisher). Clones 
with predicted loss-of-function mutations were tested by im
munoblotting with primary antibodies against SORLA 
(1:4000; 611680, BD Transduction Labs) and GAPDH 
(1:10 000; MAB374, Merck).

Derivation of NPCs
Colonies of hiPSCs from SORL1ex31 sub-clones and paren
tal wild-type clones were cultured until 70–80% confluent 
with no visible differentiation before dissociation and retrieval 
from suspension by centrifugation at 200 g for 3 min. Neural 

induction was achieved using the StemDiff Neural Induction 
Kit (IM, 08581, Stem Cell Technologies) and following the 
embryoid-body protocol as per manufacturer’s instructions. 
The derivation was performed in technical duplicate for 3 
SORL1−/− sub-clones and 3 isogenic wild-type controls 
from one biological iPSC donor line. NPC cultures were con
firmed routinely tested for mycoplasma.

Immunocytochemistry
NPCs were fixed using 4% PFA for 20 min after 48 h in cul
ture in an optical 384-well plate. NPCs were washed twice 
with ×1  phosphate buffered saline (PBS) for 5 min per 
wash. Permeabilization and blocking was performed prior 
to incubation with antibodies (1 h in freshly prepared block
ing solution [PBS with 5% (v/v) normal donkey serum 
(D9663, Sigma) and 0.3% (v/v) Triton X-100)]. Primary 
antibodies Anti-Sox2 (1:500 AB5603, Chemicon, stem cell 
marker), Anti-Nestin (1:500, MAB5326, Chemicon, NPC 
marker) and Anti-EEA1 (1:250, BD BioScience, 610456, en
dosome marker) were diluted in blocking solution. The pri
mary antibodies were removed after overnight incubation 
at 4°C. NPCs were washed twice with ×1 PBS for 5 min 
per wash. Then, fluorescent-tagged secondary antibodies 
Alexa Fluor-488 Donkey Anti-Rabbit (Invitrogen) and 
Alexa Fluor-594 Donkey Anti-Mouse (Invitrogen) were di
luted to 1:500 in blocking solution with DAPI (1 mg/ml). 
After incubation with secondary antibodies for 2 h at room 
temperature, NPCs were washed twice and stored in ×1 
PBS (50 ml per well). Expression of these markers was vali
dated in each NPC derivation in all SORL1−/− sub-clones 
and wild-type in passage-matched cultures, isogenic controls 
with a total of three well-level and four image-level technical 
replicates.

Drug screening
Three SORL1−/− sub-clones and one parental WT (n = 1) 
NPCs at p6 were seeded (5000 cells per well) in 384-well 
optical-bottom microplates coated with Matrigel (Corning, 
254234) in NPM. Nine plates were seeded, 3 per 
SORL1ex31 knock-out sub-clone. WT NPCs were seeded 
in 24 wells per plate as reference samples for phenotypic res
cue and as within-plate 2% DMSO vehicle-treated controls. 
Plates were incubated for 24 h at 37°C, 95% humidity and 
5% CO2 before addition of compound treatments. The 
TargetMol Annotated Anti-Cancer library (L2110, 330 
compounds) was supplied in assay-ready plates and thawed 
fresh on the morning of use. Serial dilution of the stock li
brary was achieved using Biomek FX liquid handling system 
to generate compound plates at working concentrations suit
able for in-well dilution in the NPC screening plates at three 
concentrations: 100, 300 nM and 1 µM. Thus, each sub- 
clone was screened across three concentrations in three 
plates (totalling 9 plates). A total of 330 compounds were 
screened using one compound treatment per well per plate 
with 4 image-level replicates per well. Compound treatments 
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were tested at three concentrations (100, 300 nM and 1 mM) 
in three SORL1−/− NPC sub-clonal lines with in-plate vehicle- 
treated SORL1−/− and wild-type, vehicle-treated controls.

Cell Painting assay
NPCs were fixed in 4% PFA for 20 min at room tempera
ture. NPCs were washed twice with ×1 PBS for 5 min per 
wash. Fluorescent dyes were diluted in 1% (v/v) BSA solu
tion in ×1 PBS with 0.1% (v/v) Triton X-100 to prepare 
the Cell Painting staining solution (Table 1). The Cell 
Painting Staining solution was applied to each well of the 
nine 384-well optical-bottom microplates (20 µl per well) 
and incubated for 1 h at room temperature protected from 
light to preserve fluorescence. Cells were washed twice 
with ×1 PBS and then ×1 PBS added to each well (50 µl 
per well) and a foil plate seal applied prior to imaging using 
florescence detection microscopy.

Automated fluorescence microscopy
Fluorescence imaging was performed using ImageXpress 
Confocal (Molecular Devices, USA) and accompanying 
MetaXpress Software (Molecular Devices, USA) with a ro
botic plate handling arm (Harmony, peak analysis and auto
mation, UK). User-defined parameters (such as exposure 
time and laser off-set) were optimized based on a sample of 
10 wells randomly distributed across each of the 384-well 
microplates (781091, Greiner) and kept constant between 
plates thereafter. For immunocytochemistry, images were 
acquired for three fluorescent channels (filters: DAPI, FITC 
and Texas Red) at ×20 magnification. For Cell Painting, 
images were acquired for five fluorescent channels (filters: 
DAPI, FITC, Cy3, Texas Red and Cy5, Table 1) at ×20 mag
nification. For each well, four fields of view were captured 
(image-level quadruplicate). Illumination correction was 
achieved using a within-instrument tool to adjust for small 
variations in sample illumination for each field of view. 
Illumination correction was applied at time of image 

acquisition to correct intensity values according to an illu
mination correction function calculated using MetaXpress 
Software.

Image analysis
Quantitative image analysis of fluorescence microscopy 
images (from both immunocytochemistry samples and 
Cell Painting assay) was performed using CellProfiler 
(cellprofiler.org, v4.1.2). Briefly, the region of interest, i.e. 
a cell, was defined by segmenting nuclei from each of the 
four image-level replicates acquired based on DAPI + objects 
(from DAPI-channel images) to generate a nuclear mask. 
Using the nuclear mask as a reference point for each cellular 
object, segmentation of the cell body was performed to de
fine the cellular region of interest. Those cellular regions of 
interest were then used to isolate cellular objects within 
each image that were subjected to either classification as 
positive or negative for a specific marker (Sox2/Nestin) or 
in the case of Cell Painting to multi-parametric analysis to 
quantify morphological features per object per image using 
a bespoke pipeline (CellProfiler, v4.2.1) which included, 
but was not limited to, measures of stain colocalization, ob
ject adjacency, size, shape, area, texture, radial distribution, 
granularity and intensity.

Data analysis and statistics
CellProfiler analysis was submitted as an array job using 
scripts data staging analysis and data destaging GridEngine 
scripts generated by cptools2 (https://github.com/ 
CarragherLab/cptools2), on ‘Eddie’ the high-performance 
computing cluster at University of Edinburgh. The quantita
tive multivariate datasets were exported in.csv format, 
and analysed using HC StratoMineR (Core Life Analytics). 
The resulting data set comprised of morphological profiles 
from three sub-clonal well-level replicates for each com
pound treatment at each concentration (uniplicate) with 
four image-level replicates per well. Raw data is publicly 

Table 1 Cell Painting assay reagents with conjugated fluorophore emission/excitation spectra filters, cellular 
components label and ImageXpress™ XL channel used for image acquisition corresponding to each dye

Dye 

Filter 
(excitation; 

nm) 

Filter 
(emission; 

nm) 

Organelle or 
cellular 

component 
Imaging 
channel 

Dilution/ 
concentration Manufacturer Cat. no.

DAPI 387/11 417–477 Nucleus DAPI 1μg/mL ThermoFisher 62248 
Concanavalin A/Alexa 

Fluor 488 conjugate
472/30 503–538 Endoplasmic 

reticulum 
FITC 20 µg/mL Invitrogen C11252

SYTO 14 green 
fluorescent nucleic 
acid stain 

531/40 573–613 Nucleoli, 
cytoplasmic RNA 

Cy3 3μM Invitrogen S7576

Phalloidin/Alexa Fluor 
568 conjugate, wheat- 
germ agglutinin/Alexa 
Fluor 555 conjugate 

562/40 622–662 F-actin cytoskeleton, 
Golgi apparatus, 

plasma membrane 

TxRed 1:500 (Phalloidin) Abcam 
(Phalloidin)

ab176757  
(Phalloidin)

2μg/mL  (WGA) Invitrogen 
(WGA)

W11262 
(WGA)

MitoTracker Deep Red 628/40 672–712 Mitochondria Cy5 600 nM Invitrogen M22626 

DAPI, 4′,6-diamidino-2-phenylindole; ng, nanograms; nm, nanometres; TxRed, Texas Red; WGA, wheat-germ agglutinin.
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available (https://idr.openmicroscopy.org/, accession to be 
confirmed).

Principal component analysis (PCA) was used for dimen
sionality reduction and factor analysis was applied to extract 
components important for explaining variation with refer
ence to the samples and controls. Variables causing singular
ity were eliminated. Factor analysis was applied with respect 
to with the DMSO vehicle-treated SORL1−/− and DMSO 
vehicle-treated WT NPCs. This was performed using oblique 
(oblimin) factor rotation method and factor scores calcu
lated by 10 Berge method. Using Kaiser’s criterion and exam
ination of a Scree plot, a set of 50 principal components 
(PCs) were selected for analysis. Euclidean distance and 
Bray–Curtis dissimilarity metrics were used to test for 
phenotypic separation of SORL1−/− and wild-type controls 
on the 50 PCs. Selected PCs were also used as quantitative 
signatures in a machine learning classification model for hit 
selection. Random Forest, neural network (NN) and support 
vector machine (SVM) classifier algorithms were trained on 
the vehicle (DMSO) treated positive and negative control 
images (20% test versus 80% training set) and each model 
was used to classify sample (compound treatment) images 
as either SORL1ex31 knock-out or wild-type. A three-layer 
NN with size and decay as hyper-parameters resulted in 
greatest separation of morphological signatures and was 
therefore selected as the method for hit selection. All algo
rithms were applied to detect objects with morphological 
profiles similar to the positive control. Briefly, the positive con
trol used phenotypic profiles from the DMSO vehicle-treated 
wild-type NPCs and was used as the focus class in the classifier 
to determine which compound-treated SORL1ex31 knock- 
out NPCs classified as more similar (>50.5% likelihood) to 
the wild-type positive control following treatment. Graphical 
visualizations were produced using Plotly in R (v4.0.2, 
www.r-project.org).

Transcriptomic profiling
Transcriptome expression was profiled using RNAseq in 
three, sub-cultured passages of wild-type NPCs (p2, p4 and 
p5) from the parental WT hiPSC line (QOLG-1). The dataset 
was profile was used to filter gene nodes not expressed in our 
cell lines from the network analysis, and for background cor
rection during enrichment analysis.

Network analysis
Validated and predicted target lists for each compound 
hit were generated using database searches. Experimentally 
validated compound–protein interactions were generated 
by searching the compound names (grouped by mechanism 
of action according to published functional annotations) in 
the STITCH database (STITCH: http://stitch.embl.de/). A 
predicted target list for each compound hit was generated 
using a similarity ensemble approach (SEA) search (sea. 
bkslab.org).36 The SEA search uses the SMILES string 
for each compound to query possible compound–protein 

interactions not limited to experimental annotations. By ex
ploring the pharmacological space corresponding to a particu
lar chemical structure it is possible to computationally predict 
possibly novel protein targets. Those putative interactions 
predicted by SEA were ranked according to significance, 
which is a measure of the probability of the predicted inter
action, as well as Tanimoto coefficient (MaxTC), a measure 
of structure-based similarity.

Enrichment analysis
Enrichment analysis was conducted using the enrichment 
tool included in the STRING platform to determine which 
predicted and validated network components (i.e. proteins/ 
genes) were over-represented in biological pathways 
(KEGG database, https://www.genome.jp/kegg/), biological 
processes and molecular functions (Gene Ontology; http:// 
geneontology.org/).37 The STRING database was used to 
highlight nodes representing genes associated with KEGG/ 
GO terms within networks.

Results
Exploring mechanisms associated 
with SORLA depletion in NPCs
The STRING database was used to generate a network of 
NPC-expressed proteins that interact with SORLA (expression 
was determined by RNA-sequencing of wild-type NPCs, grey 
nodes in Fig. 1A indicate genes expressed in the QOLG-1 do
nor line). We tested for enrichment of biological pathways 
amongst the expressed genes (Supplementary Table 1). 
Significant enrichment was observed in multiple AD- and 
SORLA-related Gene Ontology Biological Processes (GOBP) 
terms (Fig. 1B), e.g. vesicle-mediated transport to the plasma 
membrane [GOBP:0016192, Hypergeometric test, effect 
size (ES) = 0.87, Benjamini–Hochberg false discovery rate 
(FDR) correction, P = 1.9 × 10−5], Golgi vesicle transport 
(GOBP:0048193, Hypergeometric test, ES = 1.24, FDR, 
P = 0.00047), regulation of Aβ formation (GOBP:1902003, 
Hypergeometric test, ES = 1.92, FDR, P = 4.2 × 10−3) 
and neurofibrillary tangle assembly (GOBP:1902996, 
Hypergeometric test, ES = 2.84, FDR, P = 3.0 × 10−3).

Generating SORLA-depleted hiPSCs 
for derivation of NPCs
An hiPSC line from a healthy donor was selected for 
gene-editing as we wished to assay for phenotypic reversion 
from a genetic perturbation which mimics disease risk. 
Targeting exon 31 of SORL1 in a human iPSC line 
(Fig. 2A) generated multiple SORLA-depleted sub-clones 
(Fig. 2B; Supplementary Fig. 1A). SORLA-depleted NPCs 
were derived from three sub-clones, two wild-type sub- 
clones isolated from the pool of gene-edited cells (crWT) 
and a parental wild-type (WT) (Fig. 2C). No genome-wide 
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karyotypic abnormalities were observed, nor were mutations 
found at the top nine predicted off-target sites. WT and 
SORL1−/− NPC cultures had >99% Nestin+/Sox2 + cells 
demonstrating efficient neural induction from iPSC. A de
crease in the proportion of Nestin + cells (WT median 
proportion Nestin + cells = 99.77%; SORL1−/− median pro
portion Nestin + cells = 99.58%, Mann–Whitney U = 3061, 
P = 0.0135, Fig. 2C and D; Supplementary Table 2, 
Supplementary Fig. 1B) and Sox2 + nuclei was observed in 

SORL1−/− NPCs (WT median proportion Sox2 + nuclei 
100.00 = %; SORL1−/− median proportion Sox2 + nuclei =  
99.82%, Mann–Whitney U = 1432, P = 0.0310, Fig. 2C 
and E; Supplementary Table 2, Supplementary Fig. 1B) sug
gesting SORLA depletion induces differences in pluripotency. 
To validate the increased endosome area and intensity previ
ously observed in SORLA-depleted NPCs,20 early endosomes 
were detected and area/intensity quantified using fluorescence 
microscopy (Supplementary Fig. 2).

Figure 1 The molecular mechanisms associated with SORLA depletion are enriched in Alzheimer’s disease relevant biological 
processes. (A) Multiple proteins known to interact with SORLA based on experimental evidence from the STRING database were expressed at 
transcriptomic-level in our NPCs (expressed genes shown in dark grey). Network diagram lines indicate physical interaction based on data from 
experimental evidence and databases. Line weight/thickness indicates confidence of interaction. (B) Enrichment of the network of NPC-expressed 
SORLA interactors (dark grey nodes from the network diagram in A revealed significant overlap between genes interacting with SORLA, and 
those in Gene Ontology Biological Processes associated with endolysosomal sorting and amyloid processing (visualization by semantic similarity 
generated by ReviGo). Dot size represents log10size where size is equal to the number of annotations in the Gene Ontology Term. Dot colour 
represents the scaled P-value (P = 0.05 set to 0) from the enrichment test for SORLA interaction network gene set with given Gene Ontology 
Term. NPC, neural progenitor cell.
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Cell Painting assay labels cellular 
components in wild-type and SORL1−/− 

NPCs in a pilot drug screen
To screen for compounds that rescue morphological 
profiles, SORL1−/− NPCs were treated with one of 330 
compounds selected from the TargetMol Annotated 
Compound Set (L2110, targetmol.com; Supplementary 
Table 3) at three concentrations (100, 300 or 1000 nM) 
alongside vehicle-treated wild-type and SORL1−/− NPCs. 
Following Cell Painting (Fig. 3, Table 1) and pre-processing 
to remove redundant variables, 756 quantitative measure
ments of cellular features were selected for further analysis 
(Supplementary Table 4). Of these, 408 variables were 
significantly different between groups (one-way ANOVA 
with Benjamini–Hochberg FDR correction, P < 0.05, 
Supplementary Fig. 3).

SORL1−/− NPCs have distinct 
quantitative morphological profiles 
from wild-type control NPCs
PCA was applied to reduce dimensionality of the 756 features 
to 50 non-redundant representative PCs (Supplementary 
Table 5). Fig. 4A is a visualization based on three-dimensional 
PCA. Hierarchical clustering of phenotypic signatures showed 
that untreated and vehicle-treated SORL1−/− NPCs had simi
lar morphology, which was distinct from that observed in the 
vehicle-treated wild-type control (Fig. 4B). Since Euclidean dis
tance metrics did not perform well on this dataset, a 
non-Euclidean Bray–Curtis dissimilarity metric was applied 
to the morphological signatures for vehicle-treated wild-type, 
compound-treated, vehicle-treated and untreated SORL1−/− 

NPCs based on the 50 PCs and demonstrated a significantly 
distinct phenotype between in control classes (Fig. 4C; 

Figure 2 Depletion of SORLA by targeting of exon 31 in SORL1. (A) A single-guide RNA was used to target CRISPR-Cas9 cleavage at a 
site within exon 31 of the SORL1 gene to induce a homozygous mutation by non-homologous end-joining (schematic produced using BioRender). 
(B) Mutations introduced using this method resulted in depletion of SORLA expression beyond levels detectable by immunoblotting by SORLA 
primary antibody with GAPDH loading control (Lane 1 = unedited wild-type positive control, Lane 2 = negative control, Lanes 3–7 = multiple 
SORLA-depleted sub-clones with Lanes 4–6 representing SORL1−/− sub-clones utilized in the current study and Lane 8 = SORLA overexpression 
in HEK cells as a positive control). (C) Representative grey-scale images of NPCs from wild-type and SORL1−/− with immunocytochemistry used to 
detect Sox2 (stem cell marker) and Nestin (neural progenitor cell marker). (D) Quantification showed no change in the relative proportion of 
Nestin + showed when comparing wild-type with SORL1−/− NPCs (Mann–Whitney U test) based on 4 image-level replicates per well with 3–4 
well-level replicates per sub-clone. (E) A significant decrease in the proportion of Sox2 + cells was found in SORL1−/− NPCs compared to wild-type 
(Mann–Whitney U, P < 0.0001). Scale bar represents 50 µm. Non-parametric testing was applied due to unequal variance and non-Gaussian 
distribution of cell proportion quantification. Graphed data was grouped according to genotype. The bar representing WT isogenic NPCs shows 
quantification of the median cell marker proportions from a pool of 88 images acquired from 2 wild-type sub-clones from the CRISPR-Cas9 editing 
to mutate SORL1 exon 31 and 1 parent wild-type line. The bar representing SORL1−/− NPCs shows median cell marker proportions from a pool 
of 88 images acquired from the 3 SORL1−/− sub-clones from the CRISPR-Cas9 editing to mutate SORL1 exon 31. Error bars show range. 
* P < 0.05. WT, wild-type; DMSO, dimethyl sulfoxide; NPC, neural progenitor cell; DAPI, 4′,6-diamidino-2-phenylindole.
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Supplementary Fig. 4A, Bray–Curtis distance score = 1.27, 
P = 1.21 × 10−2).

Classification predicts 16 compounds 
that reverse SORL1−/− NPC 
phenotypic profiles towards that of 
wild-type NPCs
A three-layer neural network (NN) classification with two- 
fold cross-validation was used to identify compounds that 
induced a morphological profile similar to that of the wild- 
type controls in the SORL1−/− NPCs. NN classification per
formance/accuracy for the screening results was assessed 
based on the DMSO-treated controls using a confusion ma
trix, in addition to measures of sensitivity, specificity and 
detection rate (Supplementary Fig. 4B and Supplementary 
Table 6). Images from the positive control class were 
>99.68% likely to classify as a wild-type NPCs, while those 
from the negative control class were >99.64% likely to clas
sify as SORL1−/− NPCs (Supplementary Table 7). The NN 
classification model was used to output a similarity score be
tween 0.0 and 1.0 for every compound-treated sample for 
each of the three SORL1−/− NPC sub-clones at each concen
tration (100, 300 and 1000 nM). A score of 1.0 denotes 
100% phenotypic similarity to the vehicle-treated wild-type 
controls with 0% similarity to the vehicle-treated SORL1−/− 

NPCs (negative controls); hits were defined as those 

compound-treated samples with a score of >0.505 after clas
sification. Sixteen compounds induced morphology in 
SORL1−/− NPCs that scored >50.5% similarity to wild-type 
controls (replicated in n = 3 sub-clones at one or more of the 
concentrations tested, Fig. 5A) suggesting partial rescue of 
the mutant phenotype by these drugs.

The 16 compounds corresponded to 14 unique drug treat
ments; two of the 16 hits (topotecan and ixazomib) were 
represented with two formulations (ixazomib/ixazomib cit
rate and topotecan/topotecan HCl). According to library 
annotation, those 16 compounds were grouped into 3 
classes: metabolism, protease/proteasome inhibitors and 
DNA synthesis/repair inhibitors (Supplementary Table 8; 
Fig. 5B). Phenotypic signatures induced by compounds 
from the same regulatory target annotation were hierarchic
ally clustered, suggesting an overlapping morphological pro
file for compounds targeting each of the regulatory processes 
(Fig. 5C). Phenotypic profiles similar to the wild-type con
trols were observed in SORL1−/− NPCs upon treatment 
with the hit compounds (Fig. 5B and C) and all 16 hit com
pounds induced morphological profiles in knock-out lines 
that were significantly different to those of the negative con
trol class (P < 0.05, Bray–Curtis dissimilarity test, Fig. 5C). 
PCs with the greatest predictive power in each of the 
classification models were ranked by relative importance 
(Supplementary Table 9). The top-ranked components, 
PC01, PC12 and PC07 had greatest predictive power in the 
neural network suggesting the most important features for 

Figure 3 Cell Painting using conjugated cell compartment-specific dyes in wild-type and SORL1−/− NPCs. Monolayer, adherent 
NPCs were fixed (4% PFA) and a multiplexed reaction mix containing fluorescent conjugated dyes specific to various cellular and sub-cellular 
compartments applied to cells with subsequent image capture using the high-throughput, automated, confocal fluorescence microscopy platform 
ImageXpress Micro Confocal (×20). These grey-scale images demonstrate fluorescent labelling of nuclei by DAPI, endoplasmic reticulum by 
Concanavalin A, nucleoli/cytoplasmic RNA by SYTO14, plasma membrane and Golgi apparatus by wheat-germ agglutinin, cytoskeleton by 
Phalloidin and mitochondria by MitoTracker in DMSO wild-type and SORL1−/− NPCs and as such represent vehicle-treated positive and negative 
controls in the drug screening assay. Four sites per well were acquired providing 4 image-level replicates with 24 and 16 well-level replicates for the 
DMSO-treated WT and SORL1−/−/ NPCs, respectively. Scale bar represents 50 µm. WT, wild-type; DMSO, dimethyl sulfoxide; RNA, ribonucleic 
acid; Con. A, Concanavalin A; WGA, wheat-germ agglutinin; NPC, neural progenitor cell; DAPI, 4′,6-diamidino-2-phenylindole; PFA, 
paraformaldehyde.
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the classification represented measures of plasma mem
brane, Golgi apparatus, mitochondrial, endoplasmic reticu
lum and cytoskeletal texture and radial distribution 
and nuclear eccentricity, shape, area, radial distribution 
and compactness. Plots of these PCs in 3D show phenotypic 
separation of controls (Supplementary Fig. 4C). These cel
lular components showed enrichment in the SORLA 
NPC-expressed protein network described above (e.g. 

Golgi apparatus GOCC:0005794, Hypergeometric 
test, ES = 0.81, FDR, P = 5.9 × 10−6) (Supplementary 
Table 10). Additionally, enrichment of SORL1 interaction 
network was observed in cellular components linked to the 
image-based phenotypic features relevant to SORLA func
tion (e.g. the most significant enrichment was in early endo
some GOCC:0005769, Hypergeometric test, ES = 1.47, 
FDR, P = 7.29 × 10−15).

Figure 4 Morphology of SORL1−/− NPCs is distinct from isogenic wild-type controls. (A) PCA was used to visualize phenotypic 
separation of vehicle-treated SORL1−/− NPCs and isogenic wild-type controls in 3D. Each data point in the 3D scatter plot represents the well-level 
median (aggregated from 4 image-level replicates per well) for 24 and 16 well-level replicates acquired from WT and SORL1−/− NPCs, respectively. 
PCA was then used to reduce dimensionality from 756 quantitative measures of cellular features from the Cell Painting assay to 50 phenotypic 
PCs. (B) Hierarchical clustering and heatmap visualization of 50 PCs (after min–max scaling) showing separation of the untreated and 
vehicle-treated NPCs SORL1−/− NPCs, as well as separation of vehicle-treated SORL1−/− NPCs from vehicle-treated wild-type NPCs. (C) Violin 
plots depict phenotypic signature of untreated and vehicle-treated NPCs SORL1−/− NPCs and vehicle-treated wild-type NPCs based on unscaled 
PC values for PCs 1–50, and significant separation was observed in the screening control classes vehicle-treated, i.e. morphological signature of 
DMSO-treated SORL1−/− NPCs was significantly different to that of the DMSO-treated wild-type NPCs. 3D, three-dimensions; DMSO, dimethyl 
sulfoxide; NPC, neural progenitor cell; PC, principal component; PCA, principal component analysis; WT, wild-type.
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Compound–protein interaction 
networks are enriched in DNA repair, 
metabolism and protease regulation 
pathways
To understand the molecular targets and pathways asso
ciated with the phenotypic response of SORL1−/− NPCs to 
the hit compounds, we performed a STITCH-STRING 

database search for experimentally validated compound– 
target interactions for the 14 distinct drug molecule hits 
grouped by regulatory class (Fig. 6A). This confirmed that 
disulfiram targets aldehyde dehydrogenases (Fig. 6B) borte
zomib, carfilzomib and ixazomib target proteasome-related 
genes (Fig. 6C), and the remaining compounds target topo
isomerase I (Fig. 6D), topoisomerase II (Fig. 6E) which in
hibit TOP1 and TOP2A/2B respectively. Compounds 
inhibiting DNA synthesis (gemcitabine HCl and cytarabine) 

Figure 5 Neural network classification predicts 16 hit compounds that induce significant changes to SORL1−/− NPC 
morphology which increases similarity to isogenic wild-type controls. Sixteen inhibitor compounds regulating three biological pathways/ 
targets from five mechanistic classes from the 330-compound library were identified from the pilot drug screen. (A) Percentage likelihood of 
classification as a WT was used as a measure of phenotypic similarity to control (%, x-axis) and was measured for each compound treatment (330 
compounds tested at 3 concentrations; 100, 300 and 1000 nM; y-axis) with compound hits selected (all 16 displayed) as those with >50.5% 
phenotypic similarity to control after 24 h treatment. (B) Hierarchical clustering and heatmap visualization of 50 PCs (after min–max scaling) 
showing separation of the SORL1−/− NPCs after treatment with different categories of drug. (C) Violin plots depict phenotypic signatures 
following treatment of SORL1−/− NPCs with the 16 hit compounds with reference to vehicle-treated SORL1−/− and wild-type NPCs. Signatures are 
based on unscaled PC values for PCs 1–50; significant separation was observed between vehicle-treated SORL1−/− NPCs and morphological 
signature induce by treatment with the 16 hit compounds. NPC, neural progenitor cell; PC, principal component; PCA, principal component 
analysis; WT, wild-type.
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targeted the products of multiple genes expressed in our 
NPCs (Fig. 6F). There were common targets for the 
compounds within each mechanistic class (Supplementary 
Fig. 5). This data agrees with the functional/mechanistic 
annotation for the list of predicted hits provided with the 
compound library.

Enrichment analysis was performed on the protein- 
protein interaction network associated with each group of 
compounds within the STRING database. The top eight tar
gets expressed in NPCs for the aldehyde dehydrogenase in
hibitor disulfiram included two genes from the family 

encoding aldehyde dehydrogenases (ALDH2, ALDH5A1). 
The most significant GO biological process and molecular 
function terms for the disulfiram network were response 
to corticosteroid (GO:0031960, Hypergeometric test, 
ES = 1.77, FDR, P = 0.0058) and cysteine-type endopeptid
ase activity involved in the execution phase of apoptosis 
(GO:0097200, Hypergeometric test, ES = 2.74, FDR, 
P = 0.0195), respectively (Fig. 6B).

The proteasome inhibitors bortezomib, carfilzomib and 
Ixazomib target a network of 18 proteins expressed in 
our NPCs, including 15 genes encoding sub-units of the 

Figure 6 The 16 hit compounds which rescue effects of SORLA depletion on NPC morphology. Sixteen inhibitor compounds 
regulating three biological pathways/targets from five mechanistic classes from the 330-compound library were identified from the pilot drug 
screen. Those 16 compounds represent 14 FDA-approved drugs, since 2 formulations of topotecan and 2 of ixazomib were identified. (A) The 
table summarizes the 14 drugs according to regulatory target and annotated molecular mechanism. (B–F) STRING (protein only) network 
displayed with grey nodes reflecting those proteins interacting directly with compounds based on STITCH database (compound–protein 
interaction network). Network diagram lines indicate physical interaction based on data from experimental evidence and databases. Line weight/ 
thickness indicates confidence of interaction. FDA, Food and Drug Administration; HCl, hydrochloride; NPC, neural progenitor cell.
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20S proteasome (PSMA1-7 and PSMB1-8). The most signifi
cant GO biological process and molecular function terms for 
the bortezomib, carfilzomib and ixazomib network were 
proteasomal ubiquitin-independent protein catabolic pro
cess (GO:0010499, Hypergeometric test, ES = 1.64, FDR, 
P = 8.31 × 10−18) and threonine-type endopeptidase activity 
(GO:0004298, Hypergeometric test, ES = 2.70, FDR, 
P 7.39 × 10−39), respectively (Fig. 6C).

The compounds regulating DNA synthesis/repair 
pathways belong to a number of mechanistic classes. The 
topoisomerase I inhibitors topotecan, irinotecan and 
10-hydroxycamptothecin target a network of 12 proteins ex
pressed in our NPCs including topoisomerase I (TOP1). The 
most significant GO biological process and molecular func
tion terms for this network were DNA topological change 
(GO:0006265, Hypergeometric test, ES = 2.69, FDR, 
P = 0.00077) and DNA topoisomerase activity (GO:0003916, 
Hypergeometric test, ES = 2.85, FDR, P = 0.00010) respect
ively (Fig. 6D). The topoisomerase II inhibitors epirubicin, 
doxorubicin, daunorubicin, pixantrone and mitoxantrone 
target a network of 15 proteins expressed in our NPCs in
cluding topoisomerase II A and B (TOP2A and TOP2B). 
The most significant GO biological process and molecular 
function terms for this network were negative regulation of 
apoptotic process (GO:0043066, Hypergeometric test, 
ES = 0.71, FDR, P = 0.00888) and DNA topoisomerase 
type II (GO:0003918, Hypergeometric test, ES = 2.94, 
FDR, P = 0.0266), respectively (Fig. 6E). Cytarabine and 
gemcitabine were associated with network of 20 proteins in
cluding multiple proteins associated with DNA biosynthetic 
processes (TK2, DCTD, TYMS and DCK) expressed in our 
NPCs (Fig. 6F). However, the annotated mechanism of ac
tion for these compounds is not via protein–compound inter
action but rather intercalation/incorporation into DNA 
during replication in S-phase of the cell cycle. In keeping 
with this, the network associated with cytarabine and gemci
tabine was most enriched in deoxyribonucleoside monopho
sphate biosynthetic process (GO:0009157, Hypergeometric 
test, ES = 2.64, FDR, P = 8.14 × 10−6) and transferase 
activity (transferring phosphorus-containing groups, 
GO:0016772, Hypergeometric test, ES = 1.02, FDR, 
P = 3.4 × 10−5). Overall, this analysis showed that the 
NPC- expressed protein targets for each drug largely fell 
into the expected gene families, mechanistic pathways and 
GO processes/functions, given the drug functions.

Structural similarity and 
computational ligand-based 
prediction of novel biological targets 
and mechanistic pathways
Since compounds may have previously unreported off-target 
effects we also explored mechanism of action using struc
tural similarity ligand-based target prediction. We used the 
Similarity Ensemble Approach (SEA) search tool to query 
compound–target databases with the SMILES notation of 

the chemical structure of our 14 drug hits. Network and en
richment analysis were then applied to expand the com
pound–target search space to derive a set of novel 
computationally-predicted compound–protein interactions 
for each drug. There were sufficient interactions predicted 
for NPC-expressed genes to predict protein-protein interaction 
networks for carfilzomib, bortezomib, disulfiram, mitoxan
trone, irinotecan, cytarabine and daunorubicin/doxorubicin/ 
epirubicin (which are molecular analogues) (Supplementary 
Table 11). Target networks for proteasome inhibitors carfilzo
mib (Fig. 7A) and bortezomib (Fig. 7B) were significantly asso
ciated with the KEGG pathway for Alzheimer’s disease 
hsa05010; carfilzomib: Hypergeometric test, ES = 1.26, 
FDR, P = 5.13 × 10−38 and bortezomib: Hypergeometric 
test, ES = 1.56, FDR, P = 7.54 × 10−44. These networks in
cluded BACE1 and CAPN1/2 within the networks for both 
carfilzomib and bortezomib, as well as PSEN1/2 in the net
work for bortezomib only. These findings together suggest net
work nodes likely to be disrupted in SORL1−/− NPCs are 
associated with SORLA- and Alzheimer’s disease- relevant 
biological processes, cellular compartments and pathways. 
One gene, BACE1, was expressed in our NPCs and part of 
the SORL1 network of physical interactors. BACE1 is also as
sociated with Alzheimer’s disease via the literature and in the 
GO, KEGG and DISEASES database and in this study we 
show it is a predicted target of bortezomib and carfilzomib 
(based on SEA search). The null hypothesis that any single 
gene could be common to all of the above due to chance 
could not however be rejected [Hypergeometric probability, 
P(X = 1) = 0.05971].

Discussion
Drug development for dementia has had an extremely high 
rate of attrition over many decades.38,39 While recent progress, 
with the immunotherapy drugs appears promising,8,10,40 effi
cacy and minimizing off-target and adverse reactions requires 
further development9,41 and there is a need for alternative 
therapeutic approaches. One possible reason for the previous 
high failure rate is development in animal models, which do 
not faithfully recapitulate human disease. The use of neural de
rivatives of human iPSCs may increase the likelihood of suc
cess, as compounds are tested on human cells during 
discovery and development, facilitating early efficacy testing 
in the context of human physiology, and early recognition of 
human-specific toxicity. We used loss of SORLA in an 
NPC-based drug screening model because of strong genetic 
and functional evidence supporting SORL1/SORLA’s involve
ment in Alzheimer’s disease. The previous finding of image- 
based endosomal phenotypes in SORL1−/− NPCs provided 
the rationale for the cell type. The use of a line from a healthy 
individual facilitated a screen for compounds that cause rever
sion of the phenotype caused by the loss of SORLA to that of a 
healthy cell. Finally, we used Cell Painting because this high- 
content analysis captures the rich phenotypic information pre
sent in image data. Thus, compounds that result in reversion of 
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multiple phenotypic features induced by loss of SORLA loss 
are identified without these phenotypes having to be previously 
defined. Such methodology has been successfully applied to 
cancer drug screening.34,42,43

Here, we demonstrate that Cell Painting distinguishes 
wild-type hiPSC-derived NPCs from those lacking SORLA. 
The principal component with the greatest predictive power 
in these classification models represented ER, Golgi 

Figure 7 Predicted compound–protein interaction networks based on structural similarity are enriched in Alzheimer’s disease 
KEGG pathway. The proteasome inhibitors (A) carfilzomib and (B) bortezomib were predicted to target multiple sub-units of the 20S 
proteasome based on structural similarity. Enrichment analysis showed multiple nodes in the target network for each compound was enriched in 
the KEGG pathway for Alzheimer’s disease (hsa05010). Nodes in grey depict those molecular targets which are both part of the predicted 
compound target and feature in the gene list for KEGG pathway hsa05010. Lines indicate physical interaction based on data from experimental 
evidence and databases. Line weight/thickness indicates confidence of interaction. KEGG, Kyoto Encyclopedia of Genes and Genomes.
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apparatus and plasma membrane measures, consistent with 
SORLA’s role in intracellular trafficking. These reference pro
files permitted identification of 16 compounds from a library 
of 330 FDA-approved drugs where there was evidence for re
version of the mutant phenotype at one or more of the concen
trations tested. These compounds induced changes in multiple 
cellular/sub-cellular compartments, including the nucleus, 
mitochondria, endoplasmic reticulum, Golgi apparatus and 
cell membrane, suggesting the high-content approach identi
fies compounds with diverse target proteins/pathways and 
mechanism of action. The hits included four inhibitors of 
proteasome/proteases, eight topoisomerase inhibitors, three 
DNA synthesis inhibitors and an aldehyde dehydrogenase in
hibitor, representing three biological pathways: DNA dam
age/repair, metabolism and protein degradation.

Aldehyde dehydrogenase 2 (ALDH2) activity is important 
for aldehyde metabolism, e.g. it catalyses the rate-limiting step 
of alcohol metabolism, and has been linked to multiple 
neurological and neurodegenerative diseases.44 In mice, 
ALDH2 regulates neuroinflammation and Aβ-levels in vivo, 
particularly in response to ethanol.45 Modification of this 
pathway, e.g. using chemical compounds related to disulfiram 
may, therefore, be useful in the regulation of this aspect of 
Alzheimer’s neuropathology.44

SORLA has not been linked to DNA damage/repair, but 
depletion of family member SORCS2 led to increased 
DNA double strand breaks in the mouse dentate gyrus and 
higher numbers of topoisomerase IIβ-dependent breaks in 
human dopaminergic neurons.46 There is also mounting evi
dence for a relationship between DNA damage and 
neurodegeneration.47,48

As inhibition/impairment of the proteasome has been as
sociated with Alzheimer’s disease,49,50 it was unexpected 
that drugs inhibiting the proteasome rescued SORL1−/− as
sociated morphology. This may be due to a differential im
pact of proteasome inhibition in NPCs and neurons, or it 
may point to a previously uncharacterized mechanism of ac
tion of the drug(s). Our analysis revealed a number of non- 
proteasome linked, Alzheimer’s disease-associated predicted 
targets of the drug hits. For example, production of Aβ de
pends on proteolysis of APP by β- and γ-secretases,51,52

and β-secretase (which is NPC-expressed) is a predicted tar
get of proteasome inhibitors bortezomib and carfilzomib. 
Incorporation of bortezomib into amyloidosis treatment sig
nificantly improved patient outcomes in clinical trials.53,54

Such instances demonstrate that pharmacological confirm
ation of ligand–target interaction is required for translation 
of possible lead compounds.

In terms of limitations, screening a library of small mole
cules enriched for anti-cancer compounds is an atypical 
choice for an Alzheimer’s disease study. Morphological fea
tures associated with SORLA depletion are similar in NPCs 
and neuronal cell types.19,20 Loss of Sorla in mice leads to in
creased proliferation of NPCs,55 supporting the selection of 
a library with many small molecules influencing cell prolifer
ation. Given the pleiotropic effects of most drugs, as demon
strated in the SEA search presented here, exploring the 

morphological response of NPCs to a library with broad 
mechanistic classes may reveal mechanisms for such com
pounds beyond their annotated function in cell-cycle regula
tion. Comprehensive drug screening assays should include 
replication of compound hits from other mechanistic classes 
both independent from and related to the library used here. 
This was a pilot screen, and, as such, was performed in a sin
gle cell line and type. Future work should be performed in 
other neural cell types also using additional biological donor 
cell lines, including a female line.

As compounds that cause reversion of the mutant pheno
type do not act by altering SORLA directly, the precise me
chanisms by which they elicit their response remains 
uncharacterized. The results of our network analysis support 
future deconvolution of molecular targets, which is required 
for the necessary mechanistic understanding, and a clear un
derstanding of off-target effects, which is required for com
pound safety. The in silico networks identified in this study 
suggest possible targets for future target–ligand interaction 
and binding affinity assays, whilst insights from the path
way/enrichment analysis will support exploration of the 
mechanisms responsible for the phenotypic reversion we 
observed.

Alzheimer’s disease pre-clinical research is largely fo
cussed on mature neural cells, such as neurons and/or glia. 
This is logical given that these cells are relevant to the disease 
mechanisms as they are currently understood.14 But recent 
evidence suggests NPCs are also important in Alzheimer’s 
disease. Proliferative, pluripotent NPCs persist in the ageing 
brain33 and there is a greater decrease in adult hippocampal 
neurogenesis in Alzheimer’s disease cases than in healthy 
controls.32 Our findings in SORL1−/− NPCs are in keeping 
with this: there were fewer nuclei positive for the multipotent 
neural stem cell marker Sox2 than in wild-type cultures. This 
suggests that SORLA loss in NPCs may lead to alterations in 
the levels of pluripotent NPCs (which may be relevant during 
development and/or adulthood).

In summary, our goal was to apply morphological profil
ing via Cell Painting to differentiate wild-type NPCs from 
those lacking SORLA, and thus develop a drug screening as
say to discover compounds for future translation for 
Alzheimer’s disease. We discovered a morphological signa
ture that distinguishes neural progenitors lacking SORL1 
from wild-type isogenic controls and demonstrated that 
this hypothesis-free assay has the potential for drug screen
ing. A set of putative hits was identified, but follow-up stud
ies to confirm their effect and potency and their targets/ 
mechanisms of action, is needed to determine their transla
tional potential. In the future, this methodology could be 
used to screen larger, more mechanistically diverse drug 
libraries for novel drug discovery in Alzheimer’s disease.
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