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Scaling description of frictionless dense suspensions under inhomogeneous flow

Bhanu Prasad Bhowmik and Christopher Ness
School of Engineering, University of Edinburgh, Edinburgh EH9 3JL, United Kingdom

Predicting the rheology of dense suspensions under inhomogeneous flow is crucial in many indus-
trial and geophysical applications, yet the conventional ‘µ(J)’ framework is limited to homogeneous
conditions in which the shear rate and solids fraction are spatially invariant. To address this short-
coming, we use particle-based simulations of frictionless dense suspensions to derive new constitutive
laws that unify the rheological response under both homogeneous and inhomogeneous conditions.
By defining a new dimensionless number associated with particle velocity fluctuations and combin-
ing it with the viscous number, the macroscopic friction and the solids fraction, we obtain scaling
relations that collapse data from homogeneous and inhomogeneous simulations. The relations allow
prediction of the steady state velocity, stress and volume fraction fields using only knowledge of the
applied driving force.

Introduction. Dense suspensions are an important
class of soft matter system comprising Brownian or non-
Brownian particles mixed roughly equally by volume with
viscous fluid [1]. Their rheology attracts sustained inter-
est from physicists due to the manifold complex phenom-
ena that arise with apparently simple constituents [2, 3].
These include non-equilibrium absorbing state transi-
tions [4], shear thickening [5], thinning [6], and yield
stress behaviour [7]. As well as being of fundamental
interest, characterising this complexity is key to the ex-
tensive use of dense suspensions in various formulation
and processing industries.

A useful model with which to build rheological un-
derstanding is the non-Brownian suspension [8], an es-
pecially appealing system when one considers the case
of inertialess hard spheres. By analogy to dry granular
systems [9], a recent study successfully obtained consti-
tutive laws for this system [10], confirming their rate-
independence and finding one-to-one relations between
the volume fraction ϕ and each of two dimensionless rhe-
ological quantities, the viscous number J = ηγ̇/P and
the macroscopic friction coefficient µ = σxy/P . Here η
is the suspending liquid viscosity, γ̇ is the shear rate, P
is a measure of the particle contribution to the normal
stress, and σxy is the shear stress. This important re-
sult, the so-called µ(J)-rheology, forms the basis of sub-
sequent models that introduce rate-dependence through
additional stress scales [11, 12].

The applicability of µ(J) becomes limited when con-
sidering inhomogeneous flows in which γ̇ varies spa-
tially [13–15]. In particular, the lower limit of µ (which
we denote µJ) is non-zero in homogeneously flowing sys-
tems irrespective of the particle-particle friction coeffi-
cient [16–18] but can by construction vanish when me-
chanical balance dictates sign changes in σxy such as
along pipe centrelines. In such scenarios regions that
would otherwise be jammed (i.e. with µ < µJ and J = 0)
can have non-zero γ̇ thanks to facilitation by nearby flow-
ing regions [19, 20]. This non-local effect has been exten-
sively studied in amorphous solids [21] and dry granular
systems [22], often by formulating a fluidity field with

diffusive behaviour characterised by an inhomogeneous
Helmholtz equation. Microscopically it is conceptualized
that the fluidity originates from an activated process that
diffuses through the system in a cooperative way con-
trolled by an inherent length scale [19, 21–24]. Recent
works in dry granular matter [25–27] interpret the fluidity
in terms of particle velocity fluctuations δu and density ρ,
defining a fourth dimensionless quantity Θ = ρδu2/P and
seeking constitutive relations linking it to ϕ, µ and I [9]
(the dry counterpart to J). This successfully collapses
data from homogeneous and inhomogeneous simulations
onto a master curve, but is limited in that the Θ fields
required to make predictions thereafter must be obtained
by simulation. Naturally such findings raise the question
of whether similar constitutive equations exist to unify
homogeneous and inhomogeneous dense suspension rhe-
ology.

Here we use particle-based simulation [28] to model
dense suspensions under homogeneous and inhomoge-
neous conditions, achieving the latter through an im-
posed Kolmogorov flow following the approach of Saitoh
and Tighe [19]. We seek to unify the rheology under
both sets of conditions by first defining a dimensionless
suspension temperature based on particle velocity fluctu-
ations, as Θ = ηδu/aP , analogous to the granular tem-
perature [26], and then obtaining relations among the
four dimensionless numbers ϕ, J , µ and Θ. Although the
µ(J) framework was devised based on frictional millimet-
ric grains, recent experiments demonstrate it is nonethe-
less applicable to frictionless ones [29], and we focus here
on the latter. Doing so we find scalings that can collapse
homogeneous and inhomogeneous rheology data onto a
set of master curves that can then be used to predict the
rheology of other flow types.

Simulations details. We simulate a suspension of fric-
tionless, non-Brownian spheres of radius a and 1.4a
mixed in equal number in a periodic box of dimensions
Lx, Ly, Lz, using LAMMPS [30, 31] (see Fig. 1(a)). Par-
ticles are suspended in a density ρmatched viscous liquid,
and we impose pairwise contact and hydrodynamic forces
as described by Ref. [18]. Briefly, the hydrodynamic
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FIG. 1. Inhomogeneous flow of a frictionless dense suspension. Shown are (a) a typical configuration of the system for
ϕ̄ = 0.60, with the red region highlighting a coarse-graining box; and the steady-state profiles in y of (b) the x-components of
the externally applied liquid velocity field u∞

x (green line) and the coarse-grained velocity field of the particles ux (red points).
Velocity is presented here in units of κ; (c) the expected shear rate for a Newtonian fluid γ̇∞ = ∂u∞

x /∂y (green line) and the
measured shear rate γ̇ (red points), both in units of κ/a; (d) the velocity fluctuations δu in units of κ; (e) the local volume
fraction ϕ, noting that the higher values at low γ̇ demonstrate particle migration has taken place; (f) the normal stresses σii

and pressure P expressed in units of ηκ/a; (g) the shear stress σxy computed from the particle interactions (red points) and
by integrating over the left hand side of Eq. 4 (green points), in the same units as P .

lubrication force for particles of radii ai and aj , with
center-to-center vector ri,j , is given by F h

i,j ∼ (1/h)ui,j ,
where ui,j is the relative normal velocity of the parti-
cles and h = (ai + aj) − |ri,j |. Fh

i,j is not computed for
h > 0.05a, and it saturates to ∼ (1/hc)ui,j for h ≤ hc

(with hc = 0.001a), allowing particles to come into con-
tact. Contact forces arise only when |ri,j | < (ai+aj) and
are given by F c

i,j = k [(ai + aj)− |ri,j |]nij , where k is a
spring constant and ni,j = ri,j/|ri,j |. Particles addition-
ally experience dissipative drag due to motion relative
to the fluid, given by F d

i = 6πηa (ui − u∞(yi)), with ui

the velocity of particle i and u∞(yi) the liquid streaming
velocity at the position of particle i.

Flow is generated by specifying u∞ to induce particle
motion through drag. We obtain homogeneous rheology
data for fixed-volume systems of ϕ = 0.48 to 0.65 by gen-
erating simple shear via u∞(y) = γ̇yδx, with y the direc-
tion of the velocity gradient and δx the unit vector along
x. We chose our parameters such that ργ̇a2/η ≪ 1 and
γ̇
√

ρa3/k ≪ 1, recovering rate-independence [10]. To
obtain inhomogeneous flow we specify a spatially depen-
dent liquid velocity as u∞(y) = κ sin (2πy/Ly) δx (see
Fig. 1(b), and the gradient γ̇∞ in Fig. 1(c)), and later
test the model with u∞(y) = κ sin3(2πy/Ly)δx. We
run simulations with Ly = 50a, 100a and 200a (with
Lx, Lz = 20a) and systems containing O(104) particles
(we verified that larger systems produce equivalent rhe-
ology results). We simulated systems with mean volume
fraction ϕ̄ = 0.5 to 0.635 (achieved by varying the par-
ticle number), and κ is a constant with dimensions of
velocity, chosen so that the measured ργ̇a2/η remains
< 0.01 throughout and particle inertia is negligible. The
stress (a symmetric tensor) is computed on a per-particle

basis as Σi =
∑

j(F
∗
i,j ⊗ ri,j), counting both contact and

hydrodynamic forces.

We aim to compare the spatially-variant values of J ,
µ, ϕ and Θ obtained via inhomogeneous flow with the
spatially-invariant ones obtained via homogeneous flow
(the latter follow closely our previous results [18]). Do-
ing so requires computing the variation in y of the stress
and velocity fields under inhomogeneous flow, which we
do by binning particle data in blocks of width a and vol-
ume Vb = LxaLz, with the per-block value of a quantity
being simply the mean of the per-particle quantities of
the particles with centers lying therein. We compute the
velocity fluctuation (necessary for calculating the Θ field)

of each particle as δui = |ui,x − u†
i,x| where ui,x is the x-

component of ui and u†
i,x is the average x velocity of all

particles with centers lying in a narrow window ±ϵ (tak-
ing ϵ = O(0.1a)) of y, and we then bin δui per block.
As all three components of the velocity fluctuations are
statistically equivalent we have used only the x values to
compute Θ. In what follows we report steady state data
only [32], averaging across 6 realizations and at least 500
configurations per realization.

Results. Shown in Fig. 1(b)-(g) are, respectively,
steady-state profiles in y of the coarse-grained velocity
(in x) ux, shear rate γ̇ = ∂ux/∂y, velocity fluctuations
δu, volume fraction ϕ, normal stresses σii and pressure
P (= (1/3)Tr(Σ)), and shear stress σxy, for ϕ̄ = 0.60,
with each plotted point representing a block. Although
at initialisation the particle density is homogeneous (i.e.
ϕ ̸= ϕ(y)), in the steady state ϕ exhibits spatial variation
set up by particle migration to balance the normal stress
σyy [13, 14, 33]. The velocity profile follows a similar



3

10
-6

10
-4

10
-2

10
-4

10
-3

10
-2

10
-1

10
-6

10
-4

10
-2

0.5

0.55

0.6

0.65

0.50
0.53
0.55
0.58
0.60
0.63
Homogeneous flow

10-6 10-4 10-2

10-9

10-6

10-3

100

10-3 10-2 10-1

10-4

10-3

10-2

10-1 0.53, 50
0.50, 100
0.53, 100
0.55, 100
0.58, 100
0.60, 100
0.53, 200
0.60, 200
0.62, 200

0.5 0.55 0.6 0.65
0

0.5

1

10-6 10-4 10-2
0

0.5

1

(e)

Θ1.4
4 μ2.5

J/Θ
0.8

μ1.2∼ J2

∼ J1.33

∼ J1.73

( f )

ϕJ

(d)

ϕJ − ϕ

J/μ

ϕ̄, L /a

∼ (ϕJ − ϕ)2

(a) (b)

J J

ϕ μϕ̄

ϕJ

μJ

J

Θ

(c)

	10

	20

	30

	40

	50

	0.5 	1 	1.5

μ /μJ

(ξ/
2a

)2

Θ−
Θ lo

c
Θ lo

c

M−1 − M−1loc
M−1loc

10-1

101

100 101

FIG. 2. Relations between the dimensionless control param-
eters. Shown are the relations between the viscous number J
and (a) the volume fraction ϕ for a range of homogeneous ϕ
(black data) and inhomogeneous ϕ̄; (b) the effective friction
coefficient µ and; (c) the suspension temperature Θ. Insets
show the growing lengthscales ξ (b) and M−1 (c). Also shown
are the collapses using the scaling Eqs. 1 (d), 2 (e) and 3 (f),
for different ϕ̄ and L. In (d) we show data for L/a = 50 to
highlight its deviation from the scaling relation. Black trian-
gles represent homogeneous data (simple shear) and all other
points are for inhomogeneous flow at different ϕ̄.

trend to the applied force, as expected, but is flattened
at the regions of largest ϕ leading to significant devia-
tions between γ̇ and γ̇∞. The pressure becomes spatially
uniform and is weakly anisotropic (with the anisotropy
vanishing when µ < µJ), and the shear stress follows the
shear rate in sign. Since P is spatially invariant in the
steady state, one can deduce that the variation of the
quantities ηγ̇/P , σxy/P and ηδu/aP follow γ̇, σxy and
δu respectively.

We analyse inhomogeneous data by computing the di-
mensionless control parameters in each block, defining
the scalar shear rate and stress components on the basis
of invariants of the respective tensor quantities so that
J, µ > 0. This is done for a range of ϕ̄, with parametric
plots of J(y), ϕ(y), µ(y) and Θ(y) shown in Figs. 2(a)-(c).
Each plotted point represents a y-coordinate, and colors
represent different ϕ̄. Shown also (in black) are homoge-

neous data. Reading across the data points of a single
color from right-to-left represents moves from regions of
high-to-low γ̇ in the inhomogeneous domain.

The homogeneous, local ϕ(J) and µ(J) relations follow
qualitatively the result of Boyer et al. [10], though our
frictionless particles render ϕJ and µJ dissimilar. Θ(J)
follows a power-law relation, as in dry granular mat-
ter [26] though with a different exponent (likely due to
the presence of hydrodynamics in our model). The finite
J below µJ (Fig. 2(b)) is a violation of µ(J)-rheology
and is attributable to non-local effects. We quantified
the latter at ϕ̄ = 0.63 by defining g = J/µ [22] and fit-
ting our data to ∂2g/∂y2 = (g− gloc)/ξ

2 then extracting
the lengthscale ξ, Fig. 2(b) [Inset]. ξ grows as µ → µJ

(but remains O(a)) demonstrating the heterogeneity of
the flow. In general large-J inhomogeneous data approx-
imately match homogeneous, local data when far from
the yield point, though they deviate with decreasing J ,
demonstrating the shortcomings of the existing consti-
tutive laws when non-local effects are important. Fol-
lowing Pähtz et al. [34] we further define a lengthscale
M−1 = Θ/∇Θ that saturates to M−1

loc at large µ, J and,
similar to ξ, grows as µ → µJ . We find (Fig. 2(c) [Inset])
a one-to-one relation between the departure of Θ and
M−1 from their local values Θloc, M

−1
loc , thus reaffirming

the heterogeneity of the flow at small J and, interestingly,
indicating the equivalence of the local velocity fluctua-
tions and their gradients as measures of non-locality.

With the help of scaling theory, we next seek constitu-
tive laws that simultaneously describe the rheology under
homogeneous and inhomogeneous flow. We focus first on
how the inverse viscosity J/µ = ηγ̇/σxy vanishes as ϕ
approaches the jamming point ϕJ . This trend is followed
by all the homogeneous and inhomogeneous simulations,
leading to our first scaling relation

J/µ = α (ϕJ − ϕ)
2
, (1)

plotted in Fig. 2(d) with α = 4.1 and ϕJ = 0.6555. This
straightforward form relies on ϕJ being the maximal flow-
able volume fraction irrespective of flow heterogeneity,
which is unlikely to be the case for frictional or elongated
particles [15].

The next scaling relation is inspired by Kim and Kam-
rin [26], who exploit an analogy to critical phenomena in
the context of correlated motion near jamming. While
µ(J) appears somewhat uncorrelated in the inhomoge-
neous case (similar to our Fig. 2(b)), they find a success-
ful rescaling of µ with Θ. This reveals that as Θ decreases
at constant J , there is a discernible trend of increas-
ing µ, indicating that regions characterized by higher
velocity fluctuations exhibit better flow. In our homo-
geneous data we find µ2.5 ∼ J (Fig. 2(b)) and Θ1.44 ∼ J
(Fig. 2(c)). Since for the range of ϕ̄ explored here inho-
mogeneous data follow homogeneous laws at large J , we
expect a scaling of the form µ2.5Θ1.44 ∼ F1(J). Indeed



4

this results in a good collapse as shown in Fig. 2(e), in
which data are described by the relation

Θ1.44µ2.5 =


βJ2 if J > 10−2;

ιJ1.73 if 10−3 ≤ J ≤ 10−2;

ϑJ1.33 if J < 10−3;

(2)

with β = 2.73, ι = 1 and ϑ = 0.04.
The final scaling relation is motivated by the relation

between granular fluidity and ϕ reported for dry granular
matter. Zhang and Kamrin [25] write a non-dimensional
granular fluidity g̃ = gd/δu, where g = γ̇/µ, and d is
the spatial dimension. We define an equivalent quantity
in terms of the previously discussed dimensionless num-
bers, namely J/µΘ, though we find a better collapse is
achieved through a change to the exponents as

J

Θ0.8µ1.2
= F2(ϕ), (3)

with F2(ϕ) = ϵ
[
(ϕ− ϕf ) +

√
(ϕ− ϕf )2 + ζ

]
+ λϕ (see

Fig. 2(f)) and ϵ = −12.5, ϕf = 0.62, ζ = 0.0004 and
λ = 1.54. Equation 3 suggests that J/Θ0.8µ1.2 is an
effective granular fluidity which vanishes at ϕJ and is
weakly varying for ϕ < ϕf . We thus have three scaling
relations, Eqs. 1, 2 and 3, that relate ϕ, J , µ and Θ.
The collapse appears poorer for ϕ̄ = 0.5 (Fig. 2(f)) and
L/a = 50 (Fig. 2(d)), indicating limits to the range of
applicability. An issue in the former case may be that
our simplified hydrodynamics, accounting only for lubri-
cation, becomes nonphysical at lower ϕ and that a more
highly resolved fluid field is required.

Given a profile of one of the dimensionless numbers,
one could therefore fully characterise the rheology of the
system. In our simulations, however, the only known
input is the externally applied force, which we recall is
defined through u∞. To use the scaling relations we need
to establish another relation that can provide us one of
these dimensionless numbers from the knowledge of the
applied force profile. Considering the inertia-free mo-
mentum balance ∇ · Σ = −f per unit volume, we write
the following equation for the kth block of the simulation
cell (which we verified in Fig. 1(g)):

Nk6πηak
[
u∞
x,k − ux,k

]
= −

(
∂σxy,k

∂y

)
Vb. (4)

Here Nk, u
∞
x,k, ux,k and σxy,k are the particle number in

the block, the liquid streaming velocity at the centre of
the block, and the particle velocity and stress averaged
over the block, which has volume Vb. ak ≈ 1.2 represents
a volume-averaged particle radius at k. The left side
of Eq. 4 represents the net viscous force exerted by the
fluid due to drag, which is balanced by the net stress
gradient inside the block. Using the definition of our
dimensionless numbers, Eq. 4 can be rewritten for the
streaming velocity at y as
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FIG. 3. Predictions of the scaling relations against simula-
tion data not used for obtaining the scaling exponents, with
u∞(y) = κ sin3(2πy/Ly)δx. Shown are (a) the volume frac-
tion ϕ; (b) the viscous number J ; (c) the effective friction
coefficient µ; and (d) the suspension temperature Θ, with
predictions given by solid lines and simulation data in points,
for ϕ̄ = 0.55 (red) and 0.57 (green).

u′∞
x (y) =

[∫ y

0

1

a
J∗(y′)dy′ − 2a

9ϕ(y)

(
∂µ∗(y)

∂y

)]
, (5)

with u′∞
x (y) = u∞

x (y)η/aP and asterisks representing
multiplication by sgn(γ̇∞(y)), noting that P is uniform
at steady state and using ϕ(y) = (4/3)πa3N(y)/Vb, ac-
knowledging our earlier comment about phase separa-
tion [32]. Equation 5 thus relates the externally applied
liquid flow field to the profiles of J , µ and ϕ.
For a known u∞ we solve Eqs. 1, 2, 3 and 5 numerically

in the following way. We first guess a ϕ (y) profile by as-
suming accumulation at points where the spatial deriva-
tive of the imposed force vanishes, starting with a simple
form as ϕ(y) =

∑np

j=1 aj/[(y− y0j )
2 + b2j ] + ϕ0, with mass

conserved through ϕ̄ = 1
Ly

∫ Ly

0
ϕ (y) dy. Here y0j are the

coordinates of the point where the first derivative of the
applied force vanishes, np is the number of such points
and bj is the width of the Lorentzian function peaked at
y0j . We then compute directly J , µ and Θ using Eqs. 1,
2 and 3, before attempting to balance Eq. 5. The imbal-
ance of Eq. 5 reflects the accuracy of our guess. We refine
ϕ(y) by tuning ϕ0, aj and bj until Eq. 5 is satisfied (up
to some tolerance). Shown in Fig. 3 are predicted results
compared against ‘unseen’ simulation data (i.e. data not
used to obtain the scaling exponents) with ϕ̄ = 0.55,
0.57 and u∞(y) = κ sin3(2πy/Ly)δx, demonstrating the
degree of success of the scaling relations for predicting



5

y-profiles of ϕ, J , µ and Θ. Considering the highly non-
linear nature of the scaling relations, the quality of the
predictions is reasonably good.

Conclusions. Using particle-based simulation we seek
universality in flows of dense, frictionless suspensions.
Along with canonical control parameters ϕ, J and µ,
we introduce a fourth quantity Θ characterising velocity
fluctuations, inspired by dry granular physics [26]. We
find a trio of scaling relations among these quantities that
collapse data for homogeneous and inhomogeneous flow.
Utilising a momentum balance we show that using the
externally applied force one can predict the features of
a general inhomogeneous flow. Our work raises manifold
avenues for future work. In particular, the microscopic
origin of the exponents is not understood, nor is their
generalisation to the broader class of suspensions that
includes polydisperse particles (for which colloidal forces
may become relevant [35]), non-spheres and complexities
such as friction. In the latter case Eq. 1 will certainly fail
as the random loose packing limit ϕrlp < ϕJ will become
relevant, and, additionally, the validity of the quantity Θ
as a measure of non-locality may depend on flow geome-
try [36].
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