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Summary
checkpoint_schedules provides schedules for step based incremental checkpointing of the
adjoints to computer models. The schedules contain instructions indicating the sequence of
forward and adjoint steps to be executed, and the data storage and retrieval to be performed.
These instructions are independent of the model implementation, which enables the model
authors to switch between checkpointing algorithms without recoding. Conversely, checkpoint-
ing_schedules provides developers of checkpointing algorithms a direct mechanism to convey
their work to model authors. checkpointing_schedules has been integrated into tlm_adjoint
(James R. Maddison et al., 2019), a Python library designed for the automated derivation
of higher-order tangent-linear and adjoint models and work is ongoing to integrate it with
pyadjoint (Mitusch et al., 2019). This package can be incorporated into other gradient solvers
based on adjoint methods, regardless of the specific approach taken to generate the adjoint
model.

The use of adjoint calculations to compute the gradient of a quantity of interest resulting
from the solution of a system of partial differential equations (PDEs) is widespread and well-
established. The resulting gradient may be employed for many purposes, including topology
optimisation (Papadopoulos et al., 2021), inverse problems (Plessix, 2006), flow control (Jansen,
2011).

Solving the adjoint to a non-linear time-dependent PDE requires the forward PDE to be solved
first. The adjoint PDE is then solved in a reverse time order, but depends on the forward
state. Storing the entire forward state in preparation for the adjoint calculation has a memory
footprint linear in the number of time steps. For sufficiently large problems this will exhaust
the memory of any computer system.

In contrast, checkpointing approaches store only the state required to restart the forward
calculation from a limited set of steps. As the adjoint calculation progresses, the forward
computation is progressively rerun from the latest available stored state up to the current adjoint
step. This enables less forward state to be stored, at the expense of a higher computational cost
as forward steps are run more than once. Griewank & Walther (2000) proposed a checkpointing
algorithm which is optimal under certain assumptions, including that the number of steps is
known in advance, and that all the storage has equal access cost. Subsequent authors have
produced checkpointing algorithms that relax these requirements in various ways, such as by
accounting for different types of storage (e.g. memory and disk) or by not requiring the number
of steps to be known in advance, for example (Aupy et al., 2016; Aupy & Herrmann, 2017;
Herrmann & Pallez, 2020; James R. Maddison, 2023; Schanen et al., 2016; Stumm & Walther,
2009; Zhang & Constantinescu, 2023).
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Statement of need
This situation is typical across computational mathematics: there exists a diversity of algorithms
whose applicability and optimality depends on the nature and parameters of the problem to be
solved. From the perspective of users who wish to construct adjoint solvers this creates the
need to swap out different checkpointing algorithms in response to changes in the equations,
discretisations, and computer systems with which they work. Those users will often lack the
expertise or the time to continually reimplement additional algorithms in their framework.
Further, such reimplementation work is wasteful and error-prone.

checkpointing_schedules provides a number of checkpointing algorithms accessible through
a common interface and these are interchangeable without recoding. This can be used in
conjunction with an adjoint framework such as tlm_adjoint or pyadjoint and a compatible PDE
framework, such as Firedrake (Ham et al., 2023) or FEniCS (Alnaes et al., 2015) to enable
users to create adjoint solvers for their choice of PDE, numerical methods, and checkpointing
algorithm all without recoding the underlying algorithms.

Some of the algorithms supported by checkpointing_schedules have been implemented many
times, while for others, such as H-Revolve the only previously published implementation was
a simple proof of concept in the original paper (Herrmann & Pallez, 2020). The checkpoint
schedule API provided by checkpoint_schedules further provides a toolkit for the implementation
of further checkpoint schedules, thereby providing a direct route from algorithm developers to
users.

Software description
Currently, checkpoint_schedules is able to generate schedules for the following checkpointing
schemes: Revolve (Stumm & Walther, 2009); disk-revolve (Aupy et al., 2016); periodic-disk
revolve (Aupy & Herrmann, 2017); two-level (Pringle et al., 2016); H-Revolve (Herrmann &
Pallez, 2020); and mixed storage checkpointing (James R. Maddison, 2023). It also contains
trivial schedules which store the entire forward state. This enables users to support adjoint
calculations with or without checkpointing via a single code path.

The complete documentation for checkpoint_schedules is available on the Firedrake project
website.
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