
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

checkpoint_schedules: schedules for incremental checkpointing
of adjoint simulations

Citation for published version:
I. Dolci, D, Maddison, JR, Ham, DA, Pallez, G & Herrmann, J 2024, 'checkpoint_schedules: schedules for
incremental checkpointing of adjoint simulations', The Journal of Open Source Software, no. 6148.
https://doi.org/10.21105/joss.06148

Digital Object Identifier (DOI):
10.21105/joss.06148

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
The Journal of Open Source Software

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 04. Jul. 2024

https://doi.org/10.21105/joss.06148
https://doi.org/10.21105/joss.06148
https://www.research.ed.ac.uk/en/publications/aae92f6d-a68a-46ea-a656-00c93082d32c


checkpoint_schedules: schedules for incremental
checkpointing of adjoint simulations
Daiane I. Dolci 1, James R. Maddison 2, David A. Ham 1, Guillaume
Pallez 3, and Julien Herrmann 4

1 Department of Mathematics, Imperial College London, London, SW72AZ, UK. 2 School of
Mathematics and Maxwell Institute for Mathematical Sciences, The University of Edinburgh, EH9 3FD 3
Inria, University of Rennes, France. 4 CNRS, IRIT, Université de Toulouse.

DOI: 10.21105/joss.06148

Software
• Review
• Repository
• Archive

Editor: Patrick Diehl
Reviewers:

• @matt-graham
• @KYANJO

Submitted: 28 September 2023
Published: 14 March 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
checkpoint_schedules provides schedules for step based incremental checkpointing of the
adjoints to computer models. The schedules contain instructions indicating the sequence of
forward and adjoint steps to be executed, and the data storage and retrieval to be performed.
These instructions are independent of the model implementation, which enables the model
authors to switch between checkpointing algorithms without recoding. Conversely, checkpoint-
ing_schedules provides developers of checkpointing algorithms a direct mechanism to convey
their work to model authors. checkpointing_schedules has been integrated into tlm_adjoint
(James R. Maddison et al., 2019), a Python library designed for the automated derivation
of higher-order tangent-linear and adjoint models and work is ongoing to integrate it with
pyadjoint (Mitusch et al., 2019). This package can be incorporated into other gradient solvers
based on adjoint methods, regardless of the specific approach taken to generate the adjoint
model.

The use of adjoint calculations to compute the gradient of a quantity of interest resulting
from the solution of a system of partial differential equations (PDEs) is widespread and well-
established. The resulting gradient may be employed for many purposes, including topology
optimisation (Papadopoulos et al., 2021), inverse problems (Plessix, 2006), flow control (Jansen,
2011).

Solving the adjoint to a non-linear time-dependent PDE requires the forward PDE to be solved
first. The adjoint PDE is then solved in a reverse time order, but depends on the forward
state. Storing the entire forward state in preparation for the adjoint calculation has a memory
footprint linear in the number of time steps. For sufficiently large problems this will exhaust
the memory of any computer system.

In contrast, checkpointing approaches store only the state required to restart the forward
calculation from a limited set of steps. As the adjoint calculation progresses, the forward
computation is progressively rerun from the latest available stored state up to the current adjoint
step. This enables less forward state to be stored, at the expense of a higher computational cost
as forward steps are run more than once. Griewank & Walther (2000) proposed a checkpointing
algorithm which is optimal under certain assumptions, including that the number of steps is
known in advance, and that all the storage has equal access cost. Subsequent authors have
produced checkpointing algorithms that relax these requirements in various ways, such as by
accounting for different types of storage (e.g. memory and disk) or by not requiring the number
of steps to be known in advance, for example (Aupy et al., 2016; Aupy & Herrmann, 2017;
Herrmann & Pallez, 2020; James R. Maddison, 2023; Schanen et al., 2016; Stumm & Walther,
2009; Zhang & Constantinescu, 2023).

Dolci et al. (2024). checkpoint_schedules: schedules for incremental checkpointing of adjoint simulations. Journal of Open Source Software, 9(95),
6148. https://doi.org/10.21105/joss.06148.

1

https://orcid.org/0000-0002-1435-9538
https://orcid.org/0000-0001-5742-4363
https://orcid.org/0000-0001-9545-9110
https://orcid.org/0000-0001-8862-3277
https://orcid.org/0000-0003-4935-2368
https://doi.org/10.21105/joss.06148
https://github.com/openjournals/joss-reviews/issues/6148
https://github.com/firedrakeproject/checkpoint_schedules
https://doi.org/10.5281/zenodo.10817312
http://www.diehlpk.de
https://orcid.org/0000-0003-3922-8419
https://github.com/matt-graham
https://github.com/KYANJO
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.06148


Statement of need
This situation is typical across computational mathematics: there exists a diversity of algorithms
whose applicability and optimality depends on the nature and parameters of the problem to be
solved. From the perspective of users who wish to construct adjoint solvers this creates the
need to swap out different checkpointing algorithms in response to changes in the equations,
discretisations, and computer systems with which they work. Those users will often lack the
expertise or the time to continually reimplement additional algorithms in their framework.
Further, such reimplementation work is wasteful and error-prone.

checkpointing_schedules provides a number of checkpointing algorithms accessible through
a common interface and these are interchangeable without recoding. This can be used in
conjunction with an adjoint framework such as tlm_adjoint or pyadjoint and a compatible PDE
framework, such as Firedrake (Ham et al., 2023) or FEniCS (Alnaes et al., 2015) to enable
users to create adjoint solvers for their choice of PDE, numerical methods, and checkpointing
algorithm all without recoding the underlying algorithms.

Some of the algorithms supported by checkpointing_schedules have been implemented many
times, while for others, such as H-Revolve the only previously published implementation was
a simple proof of concept in the original paper (Herrmann & Pallez, 2020). The checkpoint
schedule API provided by checkpoint_schedules further provides a toolkit for the implementation
of further checkpoint schedules, thereby providing a direct route from algorithm developers to
users.

Software description
Currently, checkpoint_schedules is able to generate schedules for the following checkpointing
schemes: Revolve (Stumm & Walther, 2009); disk-revolve (Aupy et al., 2016); periodic-disk
revolve (Aupy & Herrmann, 2017); two-level (Pringle et al., 2016); H-Revolve (Herrmann &
Pallez, 2020); and mixed storage checkpointing (James R. Maddison, 2023). It also contains
trivial schedules which store the entire forward state. This enables users to support adjoint
calculations with or without checkpointing via a single code path.

The complete documentation for checkpoint_schedules is available on the Firedrake project
website.

Acknowledgments
This work was supported by the Engineering and Physical Sciences Research Council
[EP/W029731/1 and EP/W026066/1]. J. R. M. was supported by the Natural Environment
Research Council [NE/T001607/1]. G. P. was supported in part by the French National
Research Agency (ANR) in the frame of DASH (ANR-17-CE25-0004).

Author contributions
GP and JH wrote the original reference implementation of H-Revolve and related schedules
originally published in (Herrmann & Pallez, 2020), and contributed to the fixed and enhanced
version of that code which is included in checkpoint_schedules. DH and JM designed the
original checkpoint_schedules API, which was implemented DH, JM and DD. The remaining
schedules were implemented by JM and DD. DD led the integration of the package, and wrote
most of its documentation and test cases. Copyright headers in the respective source files
record the contributors to those files.

Dolci et al. (2024). checkpoint_schedules: schedules for incremental checkpointing of adjoint simulations. Journal of Open Source Software, 9(95),
6148. https://doi.org/10.21105/joss.06148.

2

https://www.firedrakeproject.org/checkpoint_schedules/
https://www.firedrakeproject.org/checkpoint_schedules/
https://doi.org/10.21105/joss.06148


References
Alnaes, M. S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring,

J., Rognes, M. E., & Wells, G. N. (2015). The FEniCS project version 1.5. Archive of
Numerical Software, 3. https://doi.org/10.11588/ans.2015.100.20553

Aupy, G., & Herrmann, J. (2017). Periodicity in optimal hierarchical checkpointing schemes
for adjoint computations. Optimization Methods and Software, 32(3), 594–624. https:
//doi.org/10.1080/10556788.2016.1230612

Aupy, G., Herrmann, J., Hovland, P., & Robert, Y. (2016). Optimal multistage algorithm
for adjoint computation. SIAM Journal on Scientific Computing, 38(3), C232–C255.
https://doi.org/10.1145/347837.347846

Griewank, A., & Walther, A. (2000). Revolve: An implementation of checkpointing for
the reverse or adjoint mode of computational differentiation. ACM Transactions on
Mathematical Software (TOMS), 26(1), 19–45. https://doi.org/10.1145/347837.347846

Ham, D. A., Kelly, P. H. J., Mitchell, L., Cotter, C. J., Kirby, R. C., Sagiyama, K., Bouziani,
N., Vorderwuelbecke, S., Gregory, T. J., Betteridge, J., Shapero, D. R., Nixon-Hill, R.
W., Ward, C. J., Farrell, P. E., Brubeck, P. D., Marsden, I., Gibson, T. H., Homolya,
M., Sun, T., … Markall, G. R. (2023). Firedrake user manual (First edition). Imperial
College London; University of Oxford; Baylor University; University of Washington. https:
//doi.org/10.25561/104839

Herrmann, J., & Pallez, G. (2020). H-revolve: A framework for adjoint computation on
synchronous hierarchical platforms. ACM Transactions on Mathematical Software (TOMS),
46(2), 1–25. https://doi.org/10.1145/3378672

Jansen, J. D. (2011). Adjoint-based optimization of multi-phase flow through porous media –
a review. Computers & Fluids, 46(1), 40–51. https://doi.org/10.1016/j.compfluid.2010.
09.039

Maddison, James R. (2023). On the implementation of checkpointing with high-level algorithmic
differentiation. arXiv Preprint arXiv:2305.09568. https://doi.org/10.48550/arXiv.2305.
09568

Maddison, James R., Goldberg, D. N., & Goddard, B. D. (2019). Automated calculation of
higher order partial differential equation constrained derivative information. SIAM Journal
on Scientific Computing, 41(5), C417–C445. https://doi.org/10.1137/18M1209465

Mitusch, S. K., Funke, S. W., & Dokken, J. S. (2019). Dolfin-adjoint 2018.1: Automated
adjoints for FEniCS and firedrake. Journal of Open Source Software, 4(38), 1292. https:
//doi.org/10.21105/joss.01292

Papadopoulos, I. P., Farrell, P. E., & Surowiec, T. M. (2021). Computing multiple solu-
tions of topology optimization problems. SIAM Journal on Scientific Computing, 43(3),
A1555–A1582. https://doi.org/10.1137/20M1326209

Plessix, R.-E. (2006). A review of the adjoint-state method for computing the gradient
of a functional with geophysical applications. Geophys. J. Int, 167, 495–503. https:
//doi.org/10.1111/j.1365-246X.2006.02978.x

Pringle, G., Jones, D. C., Goswami, S., Narayanan, S. H. K., & Goldberg, D. (2016). Providing
the ARCHER community with adjoint modelling tools for high-performance oceanographic
and cryospheric computation.

Schanen, M., Marin, O., Zhang, H., & Anitescu, M. (2016). Asynchronous two-level check-
pointing scheme for large-scale adjoints in the spectral-element solver Nek5000. Procedia
Computer Science, 80, 1147–1158. https://doi.org/10.1016/j.procs.2016.05.444

Dolci et al. (2024). checkpoint_schedules: schedules for incremental checkpointing of adjoint simulations. Journal of Open Source Software, 9(95),
6148. https://doi.org/10.21105/joss.06148.

3

https://doi.org/10.11588/ans.2015.100.20553
https://doi.org/10.1080/10556788.2016.1230612
https://doi.org/10.1080/10556788.2016.1230612
https://doi.org/10.1145/347837.347846
https://doi.org/10.1145/347837.347846
https://doi.org/10.25561/104839
https://doi.org/10.25561/104839
https://doi.org/10.1145/3378672
https://doi.org/10.1016/j.compfluid.2010.09.039
https://doi.org/10.1016/j.compfluid.2010.09.039
https://doi.org/10.48550/arXiv.2305.09568
https://doi.org/10.48550/arXiv.2305.09568
https://doi.org/10.1137/18M1209465
https://doi.org/10.21105/joss.01292
https://doi.org/10.21105/joss.01292
https://doi.org/10.1137/20M1326209
https://doi.org/10.1111/j.1365-246X.2006.02978.x
https://doi.org/10.1111/j.1365-246X.2006.02978.x
https://doi.org/10.1016/j.procs.2016.05.444
https://doi.org/10.21105/joss.06148


Stumm, P., & Walther, A. (2009). Multistage approaches for optimal offline checkpointing.
SIAM Journal on Scientific Computing, 31(3), 1946–1967. https://doi.org/10.1137/
080718036

Zhang, H., & Constantinescu, E. M. (2023). Optimal checkpointing for adjoint multistage
time-stepping schemes. Journal of Computational Science, 66, 101913. https://doi.org/10.
1016/j.jocs.2022.101913

Dolci et al. (2024). checkpoint_schedules: schedules for incremental checkpointing of adjoint simulations. Journal of Open Source Software, 9(95),
6148. https://doi.org/10.21105/joss.06148.

4

https://doi.org/10.1137/080718036
https://doi.org/10.1137/080718036
https://doi.org/10.1016/j.jocs.2022.101913
https://doi.org/10.1016/j.jocs.2022.101913
https://doi.org/10.21105/joss.06148

	Summary
	Statement of need
	Software description
	Acknowledgments
	Author contributions
	References

