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The motivation and focus of this work is to generate passive transfer function matrices 1

that model the radiation forces for an array of WECs. Multivariable control design is often 2

based on Linear Time-Invariant (LTI) systems such as state-space or transfer function 3

matrix models. The intended use is for designing real-time control strategies where 4

knowledge of the model’s poles and zeros is helpful. This work presents a passivity- 5

based approach to estimate radiation force transfer functions that accurately replace the 6

convolution operation in the Cummins’ equation while preserving the physical properties 7

of the radiation function. A two-stage numerical optimization approach is used, the first 8

stage uses readily available algorithms for fitting a radiation damping transfer function 9

matrix to the system’s radiation frequency response. The second stage enforces additional 10

constraints on the form of the transfer function matrix to increase its passivity index. After 11

introducing the passivity-based algorithm to estimate radiation force transfer functions 12

for a single WEC, the algorithm was extended to a WEC array. The proposed approach 13

ensures a high degree of match with the radiation function without degrading its passivity 14

characteristics.The figures of merit that will be assessed are (i) the accuracy of the LTI 15

systems in approximating the radiation function as measured by the Normalized Root 16

Mean Squared Error (NRMSE), and (ii) the stability of the overall system quantified by the 17

input passivity index, ν, of the radiation force transfer function matrix. 18

1. Introduction 19

Real-time motion control of a Wave Energy Converter (WEC), requires a model that 20

captures the system’s hydrodynamic interactions. Time-domain dynamics for a marine 21

structure can be described using the Cummins’ equation [1,2]. A WEC array emanates a 22

radiation wave field when excited by an incoming wave field, resulting in radiation forces. 23

Modeling motion dynamics using the Cummins’ equation requires a convolution operation 24

to calculate the radiation forces. The convolution operation can be replaced by an Linear 25

Time-Invariant (LTI) system [3]. However, estimating a numerically stable LTI system, that 26

can accurately replicate the radiation force convolution can be difficult [4]. The radiated 27

forces dissipate energy away from the system – a physical property that this work exploits 28

to estimate numerically stable LTI systems. LTI systems that represent dissipative systems, 29

that cannot generate energy, are characterized as passive systems [5]. The proposed LTI 30

system estimation algorithm, requires the estimated LTI systems to be passive – thereby 31

imposing numerical stability, and the physical properties of the radiation forces. 32

This work presents a time-domain modeling framework for hydrodynamically-coupled 33

multibody dynamics in floating body clusters. The proposed algorithm can be used for 34

heterogeneous WEC arrays that may not have the same geometry. The transfer function 35

array models developed here are an important step towards designing motion control 36

strategies that can respond to changing ocean conditions in real-time. 37
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1.1. Main contributions of the proposed approach 38

This paper focuses on developing linear, passive models for the radiation force 39

effects in WECs, that can be used for model-based control strategies. This approach 40

can be considered a frequency-domain method because the initial reference function is 41

the radiation function Hr(jω). This approach incorporates an optimization routine that 42

enforces the physical properties of the radiation function while minimizing the error 43

between the magnitudes and phases of the estimated transfer functions and the Hr(jω). 44

The multibody dynamics involved in a Multiple Input Multiple Output (MIMO) system 45

can be more conveniently modeled using the estimation of transfer function arrays. This 46

paper will demonstrate a passivity-based estimation algorithm for G(s) that is applicable 47

to MIMO systems such as WEC arrays. 48

1.2. Overview of Frequency and Time Domain Estimation Methods 49

Duarte et al. present a thorough comparison of different approaches taken by researchers 50

over the years [6]. Their comparative review is expanded here with recent developments 51

since their publication. The main approaches for finding approximate replacement to the 52

convolution-based calculation of the radiation force F⃗R(t) can be classified as: 53

• Frequency-domain methods which use the radiation function Hr(jω) itself to estimate 54

state-space or transfer function models. The main routes taken are: 55

– Identifying continuous-time filter parameters from frequency response data , 56

[4,6–8], 57

– or, The moment matching method, [9–13] including maintaining passivity. 58

• Time-domain methods which numerically calculate the radiation IRF hr(t) and then 59

use the IRFs to estimate state-space or transfer function models. The main routes taken 60

for this approach are: 61

– Curve fitting methods based on Least Squares curve fitting of the IRFs, [14,15], 62

– or, The realization theory method which is based on Hankel Singular Value 63

Decomposition (SVD), followed by order reduction strategies such as balanced- 64

realization order reduction. 65

1.3. frequency-domain estimation methods 66

1.3.1. Identifying continuous-time filter parameters from frequency response data 67

Duarte et al. summarize the least-squares methods [6]. These methods minimize the 68

least-squares error between the radiation function and the estimated LTI system. Some of 69

these optimization-based approaches use the invfreqs() command in MATLAB. The invfreqs() 70

command is based on Gauss-Newton iterative search optimization. The estimation process 71

can be weighted or biased by incorporating a fitted polynomial using a weighting function. 72

Originally developed for ship motions, this approach was developed at Norges Teknisk- 73

Naturvitenskapelige Universitet - NTNU and is packaged as the Marine Systems Simulator 74

(MSS toolbox). The MSS toolbox is based on Taghipour et al., Perez, T. and T. I. Fossen [4,7]. 75

The MSS toolbox has the FDI (frequency-domain Identification) utility, approximating 76

LTI models using the frequency-dependent radiation function Hr(jω). The FDI utility 77

first filters out the frequencies with discontinuous points owing to numerical errors in the 78

hydrodynamic coefficients data from WAMIT or any other BEM solver. The process also 79

rejects zero frequency lines in the estimation process. The estimation process starts from a 80

second-order system, and then the order is increased to improve the match in the frequency 81

response of the estimated system and the radiation function Hr(jω). The package then 82

iteratively reduces the error between the radiation IRF, hr(t), and the approximated transfer 83

function. This step is followed by the MATLAB command ss() to generate a state-space 84

model. 85

The estimation process then checks for unstable poles (poles in the right-hand plane 86

of the Laplace plane). If unstable poles are found, they are reflected about the imaginary 87

axis by multiplying the positive real-parts by −1, and the estimation process is reinitialized 88
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with the reflected pole. The rejection of zero frequency points and ‘wild points’, and 89

the weighting process itself does risk losing the physical nuances of the marine system, 90

especially for multiple bodies in WEC arrays. Iterative increase of orders also risks the 91

overestimating issue discussed by Perez and Fossen [7]. The process requires the user to 92

pick a frequency range to be used for estimation. As pointed out by Perez and Fossen, the 93

matches with this method work best for low frequency ranges, and it does not guarantee 94

stability and passivity [7]. Taghipour et al. also observe that the improper scaling of the 95

input data can result in numerical instability [4]. 96

Forehand et al. also generate a transfer function and a state-space model, with the 97

added feature that their code package can be used for a WEC array [8]. They estimate the 98

transfer function using the invfreqs() command in MATLAB. They also minimize the root 99

mean square error between the frequency response of the estimated transfer function and 100

the frequency response of the radiation impedance function using the freqreqs() command 101

in MATLAB. These estimations are done for different orders, and the estimated transfer 102

function with the least error is chosen. The order of the transfer function system is then 103

minimized further to estimate the state-space model. The stability and conditionality for 104

the estimated system are checked but not enforced in the estimation process. 105

1.3.2. The moment matching method 106

Recently, some very promising developments have been made in frequency-domain 107

estimation methods. Faedo et al. at Maynooth University developed a novel approach 108

using moment matching to estimate LTI systems [9]. In this context, a moment refers to the 109

radiation function Hr(jω) at some specific frequency. The method uses a few points or 110

moments of the Hr(jω). Faedo et al. then used these estimated models to devise an energy 111

maximizing controller model [10]. They also extend this approach for an Multiple Degrees 112

of Freedom (MDOF) problem [11]. 113

The moment matching method shows good results with very low normalized root 114

mean squared errors (NRMSE) between body motions calculated using their estimated 115

system and those from the convolution [16–18]. However, this method relies on choosing 116

the moments correctly. In their case studies, Faedo et al. point out that the frequencies used 117

for the chosen moments correspond to the radiation function Hr(jω) peaks. However, this 118

becomes difficult to judge if the Hr(jω) has a multi-lobed frequency response, especially 119

for multibody MDOF systems. Although regular geometries like spheres and cylinders 120

usually have a single-lobed Hr(jω), disparate marine structures or innovative WECs will 121

have multi-lobed Hr(jω), making it difficult to choose the moments especially in situations 122

where coupled modes exist. 123

Similarly, WEC arrays, especially compact WEC arrays, will be a challenging system 124

for a moment matching based method. When marine structures are in close proximity, such 125

as in a compact WEC array, the velocity field within the area occupied by the structures gets 126

modified. This results in a trapping effect which introduces the additional local minima in 127

the hydrodynamic coefficients. These trapping effects are extensively discussed in work by 128

Eatock Taylor et al. [12] - [13]. Wolgamot et al. also described the effect of trapping effects 129

in WEC arrays [19,20]. These phenomena show that each frequency is coded with critical 130

hydrodynamic information about the system. Faedo et al. remarked that an additional 131

constraint could introduce passivity to their optimization [9]. More recently, the same 132

authors have proposed a passivity preserving method [21]. In that work, Faedo et al. 133

introduced the conditions needed to guarantee passivity for a single body. In the numerical 134

example shown in that paper, the authors selected a new set of moments for a passive 135

model. This shows that the selection criteria for moments in an MDOF and/or multiple 136

body system will become difficult. The accuracy for coupled modes, whose radiation 137

damping characteristics usually have multiple local minima, can therefore be enforced only 138

in a limited bandwidth [22,23]. 139
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1.4. Time-domain estimation methods 140

Time-domain estimation methods are carried out in two stages: the numerical integration 141

for the radiation IRF, hr(t), followed by estimating an LTI system based on this radiation 142

IRF, hr(t). The general approach for the numerical integration for the cosine transform is to 143

use either Euler integration or Trapezoidal integration methods. For instance, NEMOH, 144

developed by LHEEA Centrale Nantes, uses Euler integration [14,15]. Whereas the WEC- 145

Sim package, developed by the National Renewable Energy Laboratory (NREL) and 146

Sandia National Laboratories, uses the trapezoidal integration method by calling the 147

trapz() function in MATLAB [24]. Prony’s method can also be used to calculate the radiation 148

IRF, hr(t) [25]. However, Prony’s method only works for single bodies. It does not work for 149

arrays because of the shape of the impulse response functions. WAMIT uses a tool called 150

the f 2t utility to output radiation IRFs using Filon’s trapezoidal numerical integration 151

(See Chapter 13 of the WAMIT manual for a description of the f 2t utility) [24]. The f 2t 152

description recognizes that the Fourier transform (& more specifically the cosine transform 153

for the radiation IRF) is more accurately calculated by Filon’s integration method, especially 154

for large values of the time variable. 155

The following two Subsections describe the main approaches taken over the years by 156

researchers. 157

1.4.1. The Least Squares (LS) curve fitting method 158

Yu & Falnes presented their, in some ways, pioneering work, outlining the different 159

ways the real-time convolution could be circumvented [3]. They proposed that the 160

estimated system may need a higher-order approach to describe the radiation IRF, hr(t). 161

Yu & Falnes used numerical integration to form companion form matrices for the radiation 162

and excitation forces. However, the stability and passivity properties of the estimated state- 163

space models were not considered. Taghipour et al. point out that the LS methods result 164

in LTI systems whose frequency responses have very poor matches with the respective 165

radiation function Hr(jω) [4]. 166

Another notable example of an LS curve fitting model was presented by Alves et al. 167

[26]. They used the MATLAB function prony to find a discrete transfer function. However, 168

this method does not ensure stability, especially for higher-order radiation functions [6]. 169

1.4.2. The Realization theory method using the SVD Hankel decomposition 170

Unneland et al. and Kristiansen et al. did a state-space realization using the Markovian 171

property of state-space models [27–29]. The MATLAB function imp2ss can be used to do the 172

SVD Hankel decomposition. Additionally, Taghipour, Perez, and Fossen showed that the 173

overfitting could be mitigated by a balanced order reduction using the balmr command in 174

MATLAB [4,25]. This approach does not enforce stability or passivity, although Taghipour 175

et al. and Perez et al. recognize that the approximation process should ideally result in 176

a passive LTI system. Perez and Fossen point out that the realization theory method 177

does not necessarily satisfy the low frequency asymptotic values and the relative degree 178

requirements of the radiation function Hr(jω) [4,25]. This approach has been widely cited 179

and was incorporated in the WEC-Sim package developed by Sandia National Laboratories 180

& National Renewable Energy Laboratory (NREL) [24]. Subsequent reports published by 181

Sandia National Laboratories highlight the difficulty of ensuring stability for a complete 182

dynamics model that has the radiation force as the negative feedback [30]. However, this 183

approach will become difficult to implement for a multi-body MDOF system. 184

Lecuyer-Le Bris et al. also used the SVD Hankel decomposition and demonstrated the 185

need for the numerical calculations of the radiation function being zero at t ≤ 0, and of the 186

convergence to zero at t = ∞ [31]. They ensure that the radiation function is zero at t ≤ 0 by 187

incorporating the radiation function evaluated at t ≤ 0. They extrapolated their radiation 188

function coefficients to a frequency high enough that it converges to zero, thereby mitigating 189

the high frequency numerical artifacts. They demonstrated their findings by using a 190

modified kernel of the radiation damping by comparing the effect of their modified kernel 191
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on the Response Amplitude Operators (RAOs) of the motion dynamics. They conclude 192

that their formulation ensures the radiation function being zero at t ≤ 0 and its asymptotic 193

convergence to zero at t = ∞. They assert that their proposed kernel incorporates the 194

passivity of the radiation function. From a system identification perspective, the work by 195

Lecuyer-Le Bris et al. also satisfies the properties listed in Table 1. In the Laplace domain, 196

their considerations ensure phase relationships at zero frequency and describe the need for 197

the estimated LTI systems having a zero at the origin. 198

1.5. Article organization 199

The rest of the paper is organized as follows. Section 2 describes the pertinent 200

equations of motion and develops a time-domain model for a WEC. Section 3 introduces 201

the need for passivity in estimated LTI systems and outlines the physical properties of 202

the radiation function that the LTI system is supposed to emulate. Section 4 outlines 203

the algorithm for the proposed approach. The efficacy of the proposed approach is 204

demonstrated using some examples in Section 5. The estimated system’s accuracy is 205

quantified in terms of its frequency response function (FRF) and passivity using the Input 206

Passivity Index (ν). Section 6 describes the motion simulation using the estimated transfer 207

functions and compares its performance to direct convolution. Following this, Section 7 208

analyzes the results and discusses the observations. Finally, Section 8 makes the overall 209

conclusions. 210

2. Equations of motion and development of a time-domain model 211

This paper focuses on developing linear, stable models for the radiation force effects 212

in single and multiple floating marine structures, such as Wave Energy Converter (WEC) 213

arrays that can be used for model-based control strategies. The viscous drag forces can 214

be ignored for the compact and sparse arrays analyzed in this work, as they are small 215

compared to radiation damping [32]. The equations of motion shown here can be used for 216

both hydrodynamically coupled and uncoupled arrays. A WEC array is hydrodynamically 217

coupled when the motion of a WEC is affected by the motion of other WECs in the array. 218

An array can be considered hydrodynamically uncoupled when its members are far enough 219

apart to have minimal mode-couplings, the motion of any WEC in the array is independent 220

of the motion of any other WEC. 221

The motion of WECs is commonly described by (1), which is the Cummins’ equation 222

[1,2]. The viscous drag forces can be ignored for large marine structures, as they are small 223

compared to radiation damping [2]. 224

(M + a∞ )⃗q̈(t) +
∫ t

0
hr(t − τ)⃗q̇(τ)dτ + Kq⃗(t) = Q⃗(t) (1)

where the q⃗(t) are generalized motion coordinates, and the coefficient of ⃗̈q(t) is the 225

summation of the inertia of the system and the asymptotic added mass. That is, for 226

an n degree-of-freedom system, M ∈ Rnxn is the inertia matrix, and a∞ ∈ Rnxn is the added 227

mass matrix at infinite frequency. The second term is the convolution operation needed 228

to calculate the radiation force, F⃗R(t). Also, K ∈ Rnxn is the hydrostatic and gravitational 229

stiffness matrix, and the Q⃗(t) contains the Froude-Krylov, diffraction, PTO, and friction 230

generalized forces. For a rigid body moving in 6 DOF (degrees of freedom), the q⃗(t) are 231

surge, sway, heave, roll, pitch, and yaw modes, and the matrices M, a∞, hr(t), and K are 232

6 × 6 matrices. For multiple bodies forming an array of N rigid bodies, each moving in 233

6 DOF, these matrices become 6N × 6N matrices, and the off-diagonal terms contain the 234

appropriate coupling terms. 235

The linear assumptions entail that the incoming waves have small amplitude and 236

steepness and that the body motions are also small. For the dynamics model discussed 237

in later Sections, it is assumed that no PTO or control forces are acting on the system, 238

so the right side of (1), Q⃗(t), will be replaced with just the excitation force, F⃗exc(t), for 239

the remainder of this paper. Note, in this section the excitation force coefficients and the 240
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radiation function are represented as, Hexc(jω) and Hr(jω) to emphasize that they are 241

complex functions. 242

The excitation force is the input to the system, as shown in (2). The excitation force 243

Impulse Response Function (IRF) is expressed as (3). Therefore, the convolution in (2) 244

models the excitation force acting on the system, for a known wave elevation time-history 245

η as shown in (4). The excitation force can be calculated in advance without affecting 246

the real-time dynamic model because the excitation force depends on the incoming wave 247

profile. However, for irregular wave inputs, with wave profiles changing in real-time, 248

prediction of the incoming wave profile becomes critical. 249

F⃗exc(t) =
∫ ∞

−∞

[
hexc(τ)η(t − τ)

]
dτ (2)

where, 250

hexc(t) =
1

2π

∫ ∞

−∞

[
Hexc(jω)ejωt

]
dω (3)

and, 251

η(t) =
1

2π

∫ ∞

−∞

[
η(jω)ejωt

]
dω (4)

The second term in (1), together with the a∞ ¨⃗q(t) term, corresponds to the radiation 252

force. This term is the convolution of the radiation force IRF with the body’s velocity. This 253

follows from defining the radiation FRF Hr(jω), using the hydrodynamic radiation effects 254

of the body, i.e., added mass a(ω) and radiation damping b(ω), which are obtained using 255

numerical solvers like WAMIT. The radiation FRF can therefore be expressed as, 256

Hr(jω) = [jωã(ω) + b(ω)], (5)

where ã(ω) = a(ω)− a∞(ω), such that the asymptotic added mass that converges to a 257

constant a∞ at higher frequencies is subtracted from the radiation function Hr(jω), and 258

added to the inertia matrix M as shown in (1). The inverse Fourier transform of Hr(jω) in 259

(5) results in the radiation IRF, as shown in (6) 260

hr(t) =
1

2π

∫ ∞

−∞

[
Hr(jω)ejωt

]
dω (6)

which becomes, 261

hr(t) =
1

2π

∫ ∞

−∞

[
[jωã(ω) + b(ω)](cos(ωt) + j sin(ωt))

]
dω (7)

Note, the radiation function, Hr(jω) itself is a complex function, however, the corresponding 262

IRF is a real function. This is physically justified by associating the added mass with local, 263

evanescent, and non-propagating modes, represented with the imaginary-part of the 264

complex radiation function; while the radiation damping part which propagates with the 265

real-part, such that the radiation force, F⃗r(t), is a causal real force experienced in the vicinity. 266

This can be shown mathematically by observing that sine is an odd function, while cosine 267

is an even function, and that both the ã(ω) and b(ω) are even functions [2]. Therefore 268

the imaginary part of (7) is, an odd function and thus vanishes, while the real part being 269

an even function is twice its value when the lower limit is zero and the upper limit is ∞. 270

Changing the lower limit of (7) to zero and doubling the real part, 271

hr(t) =
1

2π

∫ ∞

−∞

[
b(ω) cos(ωt)− ωã(ω) sin(ωt)

]
dω (8)

The Kramers-Kronig relations relate the added mass a(ω) and radiation damping b(ω). 272

The Ogilvie equations use the Kramers-Kronig relations to simplify (8) such that hr(t) can 273

be expressed as either a cosine transform of the radiation damping FRF b(ω) or the sine 274

transform of the FRF of the added mass a(ω) [33]. 275
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hr(t) =
2
π

∫ ∞

0

[
b(ω) cos(ωt)

]
dω

= − 2
π

∫ ∞

0

[
ωã(ω) sin(ωt)

]
dω

(9)

Therefore, the radiation IRF is real-valued and causal. Motion-dynamics modeling of 276

a marine structure will require the convolution of (9) with the body velocity to calculate 277

the radiation force in real-time. Physically, this means the body will only experience the 278

radiation force after a wave has hit it, and the body generates a radiation field around it 279

that, in turn, becomes the radiation force experienced by the body. The expression for the 280

radiation force in the time-domain can therefore be expressed as, 281

F⃗R(t) = a∞ ¨⃗q(t) +
∫ t

0

[
hr(t − τ)⃗q̇(τ)

]
dτ (10)

such that, hr(τ) = 0, for τ < 0 . When numerically integrating (10), the limits of the integral 282

can go from the max(0, t − td) to t, where td is the duration of the radiation IRF (i.e., the 283

radiation IRF is zero for t > td). 284

3. Passivity properties of the radiation function, Hr(jω), radiation IRF, hr(t), and 285

estimated LTI system, G(s) 286

In its simplest high-level form, the Cummins’ equation is analogous to a mass-spring- 287

damper system where the hydrostatic forces act as a spring force, while the radiation forces 288

contribute to the damping force and the overall inertia of the system. Equation 11 shows 289

the equation of motion for such a 1-DOF system, 290

m0z̈ + k0z +
∫ t

0
g(t − τ)ż(τ)dτ = fext (11)

where, m0 represents the system’s effective inertia, z represents motion in some arbitrary 291

mode, k0 the hydrostatic stiffness, followed by the convolution integral used to calculate 292

the radiation forces, in which g(t − τ) is the impulse response function of the wave field 293

radiated by the system. The right side of the equation encapsulates all external forces 294

such as the Power Take-Off (PTO) forces and the excitation forces. The focus of this work 295

is identifying a Linear Time-Invariant system that can replicate the convolution integral 296

needed to calculate the radiation forces. This equivalent LTI system is represented hereafter 297

as the transfer function G(s), where s = jω. The Laplace transform of Equation 11 is, 298

Z(s)
(
m0s2 + k0 + sG(s)

)
= Fext(s) (12)

In Equation 12 and the block diagram shown in Figure 1, the WEC is represented 299

as 1
m0s2+k0

, and is the plant of the system composed of a mass-spring system, such that 300

m0 represents the mass of the simplified WEC model and k0 is the hydrostatic coefficient. 301

The radiation forces serve as the negative feedback to the system, and are represented as 302

G(s). The external forces shown as Fext(s) represent the excitation forces composed of the 303

incident Froude-Krylov forces, and the diffraction forces, that serve as the input to the 304

system, and the WEC’s velocity is the output. The computation of the radiation forces 305

requires the convolution of the body’s velocity and the radiation force Impulse Response 306

Function (IRF). 307

The radiation force is causal and needs the body’s velocity information in real-time for 308

the convolution. The radiation force in the time-domain is calculated using the frequency- 309

domain hydrodynamic coefficients, solved using a Boundary Element Method (BEM) solver, 310

such as commercial software packages like Wave Analysis MIT (WAMIT). The frequency- 311

domain hydrodynamic coefficients are then used to calculate an IRF. Convolving the IRFs 312

with the buoy velocity gives the radiation force in real-time. This convolution operation 313
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makes model-based motion control difficult because motion control of a dynamic system 314

requires the knowledge of its poles and zeros [4,25]. 315

This work circumvents the convolution operation by proposing an algorithm to 316

generate a transfer function between the radiation force and body velocity. Modeling 317

the dynamics using a Linear Time-Invariant (LTI) model provides the knowledge of the 318

system’s dynamical characteristics and facilitates various motion-control strategies based 319

on the system’s motion dynamics. Note, that the model-based control schemes, whether for 320

analysis or implementation, often rely on reduced-order models, which further necessitate 321

system-identification of the radiation forces. For instance, Model-Predictive Control (MPC) 322

of a WEC array is computed based on running an optimization problem at each control 323

update step. 324

Fext(s)
1

mos
2+ko

G(s)

+

−

ż

Figure 1. A simplified high-level block diagram representation of the Cummins’ equations where
1

m0s2+k0
represents the WEC as the system’s plant, and G(s) represents the radiation damping force.

The motion dynamics matrices need to encapsulate all possible mode couplings. A 325

time-domain model of a multi-body system is a Multiple Input Multiple Output (MIMO) 326

system. Estimating a Linear Time-Invariant (LTI) MIMO system is challenging in terms 327

of accuracy and stability. The estimated radiation force transfer function array (hereafter 328

G(s)) has to ensure the stability of the closed-loop multibody dynamics system. The G(s) 329

is in the negative feedback of the overall dynamics model. A passivity-based estimation 330

algorithm for G(s) can therefore ensure the stability of the overall dynamics model. A 331

passivity-based approach also ensures fidelity to the physical system because radiation 332

forces are dissipative in nature. The Nyquist stability criteria used for Single Input Single 333

Output (SISO) systems can be extended to a Multiple Intput Multiple Output (MIMO) 334

system by assessing the Input Passivity Index (ν) of G(s). 335

The properties of radiation effects are encapsulated in the radiation function Hr(jω); 336

therefore, the estimated LTI system, G(s), should preserve the physical phenomenon being 337

approximated. The boundary conditions of the radiation function Hr(jω), and its time- 338

domain counterpart radiation IRF, hr(t), are summarized in Table 1. Table 1 is similar to 339

the properties discussed by Duarte et al., and Perez and Fossen [6,34]. 340

In Table 1, properties 1, 2, and 3 are a consequence of the Riemann-Lebesgue Lemma, 341

while the BIBO stability condition in property 4 establishes the input-output stability of the 342

convolution for radiation forces [4,34]. 343

Property 5 in Table 1 entails the dissipativity property of the radiation function Hr(jω) 344

since it starts as 0 and then converges to 0 since the radiation forces are dissipative. The 345

Ogilvie equations indicate that the radiation IRF, hr(t), can be calculated using the radiation 346

damping coefficients, b(ω) [33]. The b(ω), also starts from 0 and converges to 0 since the 347

hydrodynamic theory dictates that the b(ω)> 0, ∀ω. It can be therefore said; the radiation 348

forces are passive since radiation forces are dissipative and they generate no energy. For 349

linear systems, the passivity property is equivalent to positive realness [4,5]. 350

The estimated transfer functions are used to calculate the radiation force and are used 351

in the negative feedback of the complete dynamic system. A challenging property of linear 352

systems is that even if a system such as a transfer function is stable on its own when used in 353

the closed-loop of the complete system, it can result in making the overall system unstable. 354

Therefore, system stability can be assessed by looking into its passivity property. Passivity 355

implies that the physical system does not generate energy and can only store or dissipate 356

energy. Therefore, the estimated transfer function array should be passive, i.e., positive real. 357

This stability criterion has been recognized by various researchers, such as in [4,6,15,25,28]. 358
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Property Implications

1. limω→0Hr(jω) = 0 There are zeros at s = 0

2. limω→∞ Hr(jω) = 0 Strictly proper

3. limt→0+ hr(t) ̸= 0 Relative degree 1

4. limt→∞hr(t) = 0 Bounded Input Bounded Output (BIBO) stability

5. The mapping, ẋ → F⃗R(t) is passive Hr(jω), therefore G(s) is Positive Real (PR)
Table 1. Properties of the radiation function Hr(jω), radiation IRF, hr(t), and estimated LTI system,
G(s), see [6,34].

The passivity condition essentially requires that the estimated LTI system, G(s), or 359

the radiation force transfer function array, populated by transfer functions between body 360

velocity and radiation force, F⃗R(t), is positive semi-definite, which implies that the real part 361

of the transfer function array is positive. Formally, the passivity condition for a transfer 362

function array, which is a Multiple Input Multiple Output (MIMO) system, can be stated as 363

discussed by Khalil [5]. 364

Lemma 1. Let G(s) be a p × p proper rational transfer function matrix, and suppose det[G(s) + 365

G(−s)T ] is not identically zero. Then G(s) is strictly positive real if and only if: 366

1. G(s) is Hurwitz; that is, poles of G(s) have negative real parts, 367

2. G(s) + G(−s)T is positive definite for all ω ∈ R, 368

3. Either G(∞) + G(∞)T is positive definite; or it is positive semi definite and the terms 369

limω→∞ω2MT [G(jω) + G(−jω)T ]M is positive definite for any p × (p − q) full rank 370

matrix M, such that the term MT [G(∞) + G(∞)T ]M = 0, where, q = rank[G(∞) + 371

G(∞)T ]. Additionally, if G(∞) + G(∞)T = 0, then M = I, which is the case for radiation 372

damping. 373

The passivity of the estimated radiation transfer functions using the input passivity 374

index, ν, such that ν = 1
2 minωλmin(G(jω) + G(−jω)), where λmin are the minimum 375

eigenvalues of the magnitude of (G(jω) + G(−jω)). For SISO LTI systems, the input 376

passivity index corresponds to the horizontal distance of the Nyquist plot from the imaginary 377

axis, or in other words, the real part of the Nyquist plot, since for a SISO LTI system, 378

(G(jω) + G(−jω)) results in 2Re(G(jω)), making ν = Re(G(jω)). Note, the passivity 379

corresponds to the Nyquist criterion for feedback systems, requiring the phase of the LTI 380

system in question being within [−π/2,+π/2] rad. 381

Classical control methods such as the Nyquist plot can be used to assess the robustness 382

of stability and passivity. However, assessing stability through a passivity-index based 383

approach, as proposed here, has certain advantages, including, 384

1. Satisfying robust stability criteria such as L2 stability, and more generally, dissipativity, 385

2. Using passivity ensures mapping the estimated LTI system to the physical properties 386

of the system being modeled, 387

3. Passivity-based stability analysis can be extended to a MIMO system, such as Multiple 388

Degree of Freedom (MDOF) analysis of a single body or multiple body arrays. 389

Note, the evaluation of stability is based on a real quantity - the input passivity-index. 390

Interestingly, the analytic property of the radiation function is preserved when using the 391

passivity-index based system estimation because the estimation method matches both the 392

magnitude and phase of the radiation function. The estimated system does eventually 393

converge because a passive system is also dissipative, thereby preserving the analytic 394
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property of the radiation function [35,36]. There is, however, a trade-off between the 395

stability of the estimated models and their fidelity to the physical system. While estimating, 396

it must be kept in mind that, in general, increasing the order of the estimated model may 397

result in a better fit but sacrifice passivity (and thus, stability) and also risk overfitting. 398

Overfitting results in the estimated system having high-frequency poles (typically higher 399

than 10 rad/s) that do not correspond to the actual physical system because marine systems 400

are relatively very slow (typically operate within 0 to 4 rad/s). On the contrary, reducing 401

the order of the estimated system will enhance passivity but sacrifice fidelity to the physical 402

system being estimated. 403

It is proposed that the passivity property can be checked for, and the orders of the 404

estimated transfer functions can be chosen through iterations, as discussed in [4,25]. Many 405

researchers, therefore, start with the smallest order possible, i.e., relative degree 1, and 406

then increase order while checking for model fidelity and passivity [4,25]. The current 407

state-of-the-art methods, therefore, check for passivity but do not enforce or guarantee the 408

passivity in the estimated transfer functions [4,9,21,25]. 409

4. The Algorithm 410

This Section will describe the proposed algorithm and the scaling scheme that can 411

be used to generalize the estimated transfer function, so that it can be scaled up or down 412

corresponding to the body geometry as long as its dimensions maintain geometric similarity, 413

i.e., have the same ratios with respect to each other. The radiation force estimation strategy 414

follows three stages: 415

1. Generation of a reference for the radiation transfer function, 416

2. Iteration to obtain a low-order, accurate, and passive transfer function, 417

3. Final tuning to ensure minimum phase, such that at least one zero of the estimated 418

radiation transfer function is at the origin (i.e., s = 0 is a zero). 419

4.1. Generation of a reference for the radiation transfer function 420

For the frequency domain approach, the radiation function Hr(jω) is generated using 421

WAMIT as shown in Eq. 5. This function is then used as the reference function for 422

the iterative estimation of radiation transfer functions. Since the radiation function is 423

dissipative, it asymptotically approaches zero. In the discussion that follows the frequency 424

at which the radiation function is less than 5% of its maxima ( f0 rad/s is greater than the 425

frequency at the maxima) will be referred to as f0 rad/s. 426

4.2. Iterative estimation of radiation transfer functions 427

This stage corresponds to the iterative loop initialized with N0 poles in Figure 2. The 428

initial number of poles N0, is the highest order desired by the user. The algorithm then 429

iteratively decreases the number of poles – balancing the trade-offs between stability and 430

accuracy because it can be observed empirically that estimated systems with higher number 431

of poles sacrifice stability for accuracy, and vice-versa. The estimation process is done using 432

the tfest() command in MATLAB. The function uses iterative optimization to curve fit either 433

impulse response data or frequency response data. The function has options that let the user 434

enforce Hurwitz stability. This is done by reflecting poles estimated in the right-hand plane 435

about the imaginary axis and starting the estimating optimization again. The estimated 436

transfer function is then further refined using non-linear search optimization to get the 437

best possible fit. The tfest() command by default estimates a strictly − proper transfer 438

function. The estimation process is carried out for each mode combination, resulting in a 439

transfer function array, G(s). For MDOF systems such as WEC arrays, mode-couplings 440

include both intra-body and inter-body interactions, while for single body MDOF systems, 441

mode-couplings include implying intra-body mode couplings. When estimating transfer 442

function matrices, G(s), the input passivity index (ν) characteristics correspond to the 443

positive-definiteness of the transfer function matrix. The matrix of magnitudes of each 444

individual transfer function in G(s) can be seen as a Toeplitz matrix. It was observed 445
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INITIALIZE OPTIMIZATION ROUTINE

COST FUNCTION:

MINIMIZE ERROR IN MAGNITUDE AND PHASE BETWEEN
FREQUENCY RESPONSE OF ESTIMATED TF, AND HR(ω).
CONSTRAINTS:

• THE ESTIMATED TRANSFER FUNCTION IS MINIMUM
PHASE, AND HAS A ZERO AT ORIGIN,

• ALL OTHER AFOREMENTIONED CONDITIONS.

DEFINE INITIAL CONDITIONS FOR ITERATIVE tfest()

INITIALIZE ESTIMATION ITERATIONS WITH N = N0 POLES.
SUBJECT TO CONDITIONS:

• INPUT PASSIVITY INDEX IS POSITIVE IN THE OPERATIONAL FREQUENCY BANDWIDTH,
ν > 0,

• MAXIMUM MAGNITUDE OF POLES AND ZEROS IS LESS THAN 2f0 rad/s,

• FREQUENCY RESPONSE OF THE ESTIMATED TRANSFER FUNCTION MATCHES THE HR(ω)
BY MORE THAN 90 % IN THE OPERATIONAL FREQUENCY BANDWIDTH.

INITIALIZE tfest(), SUCH THAT,

• INITIAL CONDITIONS FOR THE ESTIMATED TRANSFER FUNCTION IS ZERO,

• HURWITZ STABILITY CONDITION IS ENFORCED

GENERATE RADIATION FUNCTION,
Hr(jω) = [jωã(ω) + b(ω)], (Eq. 6)

START

YES

CONDITIONS
SATISFIED?

N = N − 1

NO

N > 3?

CONDITIONS, AND
CONSTRAINTS

SATISFIED?

NO

YES

SUCCESS = 1

END

SUCCESS = 0

NO

YES

Figure 2. Algorithm for the estimation of radiation transfer function array G(s).

that the ν of the entire transfer function matrix could be enhanced if the ν of the Toeplitz 446

matrices making up the transfer function array increased [37]. Therefore, iterating on 447

the order of the individual transfer functions in G(s) to achieve more positive ν for each 448

transfer function helps in estimating more positive ν for the transfer function array G(s). 449
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The iterative estimation process using the tfest() command is initiated with the highest 450

expected order, N0. At each iteration, the tfest() command estimates a transfer function 451

array G(s). This G(s) should then satisfy the following criteria: 452

1. G(s) is bandwidth-limited passive, such that the input passivity index is positive 453

(ν > 0) for a defined frequency bandwidth, 454

2. G(s) has accurate frequency response, such that the percentage f it between the 455

frequency response of G(s) and the radiation function Hr(jω) is greater than 90% for 456

a defined frequency bandwidth, 457

3. Finally, G(s) should not have pole frequencies higher than 2 f0 rad/s in the Laplace 458

domain. This is necessary to avoid overfitting and avoiding poles that do not 459

correspond to the physical phenomenon G(s) is supposed to replicate. This upper 460

bound was empirically set to about two times the frequency at which the radiation 461

function converges to 0. 462

If the estimation process fails to find a G(s) that satisfies these three criteria, the 463

algorithm reiterates by reducing the expected order by one. This iterative process is 464

deemed to fail if the estimated order has to be reduced below the third order. Note, that 465

regardless of the initial reference function being the radiation IRF, hr(t), or the radiation 466

function Hr(jω), the iterative process compares the frequency response of G(s) with the 467

radiation function Hr(jω), ensuring fidelity with the hydrodynamics radiation damping 468

data. 469

4.3. Final optimization routine 470

The estimated G(s) from the previous step serves as a very good initial guess for 471

the final optimization. The estimated G(s) from the iterative tfest() routine has very high 472

accuracy and positive input passivity index ν. However, the G(s) estimated from the 473

iterative routine in the previous step often generates transfer functions that do not have 474

a zero at the origin. The G(s) is then subjected to optimization to enhance accuracy and 475

passivity index characteristics while ensuring that the properties listed in Table 1 are 476

exhibited by the estimated transfer function array G(s). 477

The final optimization is set up so that the cost function is a weighted function formed 478

by the sum of the absolute squared difference between the frequency response magnitude 479

and phase of the transfer function array G(s) and the radiation function Hr(jω), such that, 480
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Figure 3. Comparison of the estimated G(s) before and after the final optimization. Notice, that in
Figure 3-a.(Left), the phase of the estimated transfer function did not have an intial phase of 90o

before the optimization. The Figure 3-b.(Right), shows the difference in magnitude and phase due to
the optimization.
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J = α ∑
(
|Hr(jω)| − |G(jω)|

)2

+ β ∑
(
∠(Hr(jω))−∠(G(jω))

)2

, (13)

where J is the cost function to be minimized by optimization, α is the weight for the 481

magnitude difference, and β is the weight for the phase difference. The weights of the 482

cost function are so chosen that both phase and magnitude of the optimized G(s) are more 483

accurately matched with the radiation function Hr(jω). Additionally, the frequency range 484

over which the optimization is performed can also be chosen such that the accuracy and 485

passivity characteristics are further improved. 486

The optimization is further subject to constraints such that the estimated G(s) satisfies 487

the properties laid out in Table 1 and meets the following criteria: 488

1. G(s) must be minimum-phase and have a zero at the origin, 489

2. G(s) must be strictly proper, i.e., has a relative degree of 1, 490

3. The input passivity index is positive, such that ν > 0, for a defined frequency 491

bandwidth, 492

4. All poles are less than 2 f0 rad/s, 493

5. The accuracy of the optimized G(s) exceeds 90% for a defined frequency bandwidth. 494

Figure 3 shows the effect of optimization on the estimated G(s) for the case of a single 495

heaving cylinder with a radius of 1 m and draft 1m. It can be observed that the optimized 496

G(s) has resolved the non-minimum phase issue in the G(s) before optimization. The zero 497

at the origin constraint helped in significantly enhancing the accuracy of the optimized 498

G(s) with respect to Hr(jω) at low frequencies. The optimized G(s) satisfied the properties 499

listed in Table 1 for the frequency bandwidth in which hydrodynamic data was available. 500

The final optimization ensured that the G(s) had a minimum phase. This also helped 501

increase the input passivity index ν, as shall be demonstrated in the case studies in 502

Section 5. As shown in Figure 2, should the optimization fail in satisfying all aforementioned 503

conditions, further iteration is done by reducing the initial estimation order. Further 504

refinement is subject to the empirical inverse relationship between the accuracy and the 505

stability such that an increase in the accuracy typically decreases the passivity index and 506

vice versa. 507

4.4. Scaling Scheme 508

Scalability of the estimated transfer functions is desirable for consistency in modeling 509

the WECs at prototype-scale and deployment-scale. The algorithm can be scaled up or 510

down by first normalizing the estimated transfer function using wave frequency, water 511

density and the characteristic length, and then performing Froude scaling using the 512

characteristic length for wave frequency and the pertinent hydrodynamic coefficients. 513

The normalizing scheme for the added mass, radiation damping and the wave frequency 514

can be expressed as [38], 515

āi,j(ω) =
ai,j(ω)

ρgLk ; b̄i,j(ω) =
bi,j(ω)

ρgωLk ;

where,

k = 3 for (i, j = 1, 2, 3)

k = 4 for (i = 1, 2, 3, j = 4, 5, 6) or (i = 1, 2, 3, j = 4, 5, 6)

k = 5 for (i, j = 4, 5, 6)

(14)

Consider a system with a characteristic length L = L0 and radiation function Hr0(jω0), and 516

another system with a characteristic length L = L1 and radiation function Hr1(jω1), where 517

ω0 represents the frequency at L0 scale, and ω1 represents the frequency at L1 scale. The 518

radiation function as shown in Equation 5, Hr(jω) = [jωã(ω) + b(ω)], for Hr0(jω0) and 519
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Hr1(jω1), can be expressed in terms of the normalized hydrodynamic coefficients shown in 520

Equation 14, such that, 521

Hr0(jω0) = [jāi,j(ω0) + b̄i,j(ω0)]ω0ρgLk
0; Hr1(jω1) = [jāi,j(ω1) + b̄i,j(ω1)]ω1ρgLk

1 (15)

Note, Froude-scaling the characteristic length of the system, also scales its frequency, 522

such that, ω1 = ω0

(
L1
L0

)− 1
2

. Then these radiation functions can be related using the ratio 523

of the two characteristic lengths Lsc =
L1
L0

, such that, 524

Hr1(jω1) = Hr0(jω0)L

(
k− 1

2

)
sc (16)

while all other physical parameters will be scaled using Froude scaling respectively. 525

Therefore, the estimated transfer functions can be scaled as, 526

G1(s) = G0(s)L

(
k− 1

2

)
sc (17)

5. Case studies 527

The proposed algorithm is demonstrated using a single cylindrical buoy and a nine- 528

buoy WEC array. The cylindrical WEC buoy represents a prototype that can be tested at 529

a typical wave-tank facility. The incoming waves were set parallel to the +x-direction. 530

An axisymmetric body makes for a good candidate for a simpler hydrodynamic analysis. 531

This Section compares the accuracy and passivity characteristics of the estimated transfer 532

functions’ Frequency Response Function (FRF). Falnes et al., and Folley used the non- 533

dimensionalized hydrodynamic coefficients, while discussing the radiation FRF, and IRF 534

characteristics [32,39]. The cylindrical WEC discussed here was modeled as a cylinder of 535

radius 1 m, and draft 1 m, such that the radius to draft ratio was unity. Therefore, for a 536

cylinder of similar radius to draft ratio, the estimated transfer function can be scaled by a 537

factor of Lk− 1
2 , if the characteristic length for the cylinder of radius 1 m and draft 1 m is set 538

to unity. 539

For a single WEC, the estimation process generates a 6 × 6 transfer function matrix 540

G(s), whose diagonal elements correspond to self-interacting modes and off-diagonal 541

elements correspond to coupled modes. This work shows the Heave mode only, but 542

similar analyses can be carried out for other modes and mode couplings. For the single 543

WEC case, the proposed algorithm is demonstrated using a frequency domain route and 544

two time-domain routes (see Section 4.1). Henceforth, the estimated transfer function 545

matrix will be denoted by GHr (s). The accuracy of the estimated transfer function matrix, 546

G(s), is demonstrated by comparing its FRF with the radiation function Hr(ω) matrix 547

constructed with the purely Heave modes and their couplings. The passivity characteristics 548

are quantified using the input passivity index ν, such that ν = 1
2 minωλmin(G(jω) + 549

G(−jω)), where λmin are the minimum eigenvalues of (G(jω) + G(−jω)). The accuracy 550

of the FRF is assessed using the Normalized Root Mean Square Error (NRMSE) fitness 551

percentage, such that, 552

NRMSE(%) = 100 ×
(

1 − ||y − ŷ||
||y − mean(y)||

)
, (18)

where y is the validation data, which would be the magnitude of the radiation function 553

Hr(jω), while ŷ would be the FRF of the G(s) being assessed. 554
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Figure 4. The Figure 4-a. (Left) shows the comparison of magnitude and phase of Hr(ω) with the
GHr (s) and the Figure 4-b. (Right) shows the Normalized Root Mean Square Error (NRMSE) fit.

5.1. A single WEC 555

The single WEC was modeled as a cylinder of radius of 1 m and draft 1 m, such that the 556

radius to draft ratio is unity. The algorithm was initiated with an N0 = 10 poles (see Section 557

4.2 & Figure 2). The higher-order transfer functions had high accuracy but did not satisfy 558

the passivity requirements, while the converse was true for lower-order transfer functions. 559

The final estimated transfer functions had satisfactory accuracy and had a positive input 560

passivity index ν, for the frequency bandwidth in which radiation damping data from 561

WAMIT was greater than 0. 562

5.1.1. Comparison of Frequency Response of estimated transfer functions 563

Figure 4 shows the comparison of frequency response characteristics of GHr (s). Notice 564

that the estimated transfer function is minimum-phase. The phase plot shows that the 565

phase for the transfer functions stays between ±π/2, which suggests positive-realness 566

and passivity. This corresponds to the Nyquist plot being in the right-hand plane for a 567

SISO system. The FRF of the estimated transfer functions is compared to the Hr(ω). Also, 568

the estimated transfer function has its phase plot between ±π/2 rad. The NRMSE fit 569

percentage as a function of frequency was calculated by comparing the radiation function 570

Hr(ω) and the FRF of GHr (s). 571

5.1.2. Comparison of Input Passivity Index of estimated transfer functions 572

Figure 5 shows that the estimated transfer functions have a positive input passivity 573

index between 0 to 5 rad/s. Therefore, the estimated transfer functions will have passivity 574

for the frequency bandwidths where ν is positive. Since this work is only using the heave 575

mode, the transfer function system is a single transfer function corresponding to that 576

mode, and therefore, the input passivity index reduces to the FRF of the corresponding 577

estimated G(s). In other words ν = 1
2 minωλmin(G(jω) + G(−jω)) = 1

2 (2G(jω)) for SISO 578

LTI systems. Note for multi-mode analyses, such as MDOF systems or multibody systems; 579

the transfer function system will be a MIMO transfer function matrix and therefore would 580

not reduce to G(s). As discussed in Section 3, stability analyses can also be done using 581

the Nyquist criterion; however, it is limited to SISO systems. As described in Section 4, 582

the final optimization routine ensured that the estimated transfer function had a positive 583

input passivity index in the operational bandwidth, had high accuracy with respect to 584

the corresponding radiation function and had a zero at the origin (see Table 1). The input 585

passivity index analyses shown here make the stability analyses simpler, especially for 586

MDOF and multibody systems, as shown in the following Subsection. 587
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Figure 5. Comparison of Input Passivity Index, ν, for GHr (s) for a cylinder with a radius of 1 m and
draft 1 m, in heave mode.

5.2. A Homogeneous WEC Array of CorPower Devices 588

The algorithm will now be demonstrated using a homogeneous array comprised 589

of nine CorPower devices laid out in a square array of three rows and three columns 590

(see Figure 6). The CorPower is a heaving point-absorber device being developed by the 591

Swedish company CorPower Ocean and its device specifications can be found at [40]. The 592

device can be described as a combination of three shapes: a cylinder of diameter 8.4 m and 593

height 4.6 m, over an inverted-truncated cone with top radius 8.4 m, bottom radius 1.25 m, 594

and height 5.08 m. The third and bottom-most part of the device extends as a cylinder of 595

radius 1.25 m for a length of 7.32 m. The draft of the device is 14.5 m. 596

This homogeneous WEC array was designed to represent a realistic deployable 597

compact array. The distance between any two neighboring bodies was 100 m along the 598

X and Y directions. The hydrodynamics were calculated assuming plane-progressive waves 599

propagating along the positive X-axis. Figure 6 shows the homogeneous WEC array’s 600

spatial layout. For a WEC array, the self-interacting modes and their mutual couplings 601

result in a 6N × 6N radiation function matrix (where N = 9 for the current array). For 602

this work, only the Heave modes and their mutual couplings are considered, such that the 603

radiation function matrix was a N × N matrix.

Figure 6. The spatial layout of the homogeneous WEC array. The unidirectional wave field shown
represents the PM spectrum used in the analysis of this array.

604
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Figure 7. Passivity Index, ν, as a function of wave frequency for the homogeneous WEC array.

5.3. Passivity Index, ν for the Homogeneous WEC Array 605

The WECs in the homogeneous array had a much higher volume (16 times of the 606

cylinder in previous case), and the WECs in array interacted with each other such that 607

motion of one WEC affects another due to hydrodynamic couplings. The multiple peaks in 608

the passivity index of the homogeneous array in Figure 7 indicate hydrodynamic couplings 609

in the system. 610

It can be observed in Figure 7 that the optimized transfer function matrix represented 611

by Gopt(s) shows an increase in input passivity index, especially at lower frequencies. The 612

optimization also ensured that the phase at 0 rad/s was 90◦ for all transfer functions in the 613

transfer function matrix. Note, a phase of 90◦ at 0 rad/s indicates a zero at the origin. All 614

estimated transfer functions matched with the corresponding reference radiation function 615

by more than 90 % in terms of NRMSE error defined in the previous case. The asymptotic 616

convergence to zero indicates that the estimated transfer function matrix represents a 617

dissipative system. The input passivity index characteristics shown can be used to inform 618

WEC array design and optimize a control strategy that can maximize the energy extracted. 619

The properties mentioned in Table 1 were therefore achieved by the proposed system 620

identification algorithm. 621

6. Motion Simulations 622

A motion simulation model was created based on the Cummins’ equation discussed in 623

Section 2. Only heave mode is presented here, such that the generalized motion coordinates 624

q⃗(t) can be replaced by heave displacements, x⃗(t). Also, the generalized external forces 625

Q⃗(t) can be replaced by the excitation force, F⃗exc(t), and control force, F⃗c(t). 626

Rewriting the Cummins’ equation, (1) gives: 627

⃗̈x(t) =
1

M + a∞

[
F⃗exc(t) + F⃗c(t)− F⃗R(t)− Kx⃗(t)

]
(19)

The incoming wave elevation profile was calculated using the Pierson–Moskowitz 628

(PM) spectrum that uses an energy distribution as a function of frequency [41]. It is defined 629

as [24,41], 630

SPM( f ) =
Hm0

2

4
(
1.057 fp

)4 f−5 exp

[
−5

4

(
fp

f

)4
]

(20)

whose coefficients in general form are, 631
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Aws =
Hm0

2

4
(
1.057 fp

)4 ≈ 5
16

Hm0
2 fp

4 ≈ Bws

4
Hm0

2

Bws =
(
1.057 fp

)4 ≈ 5
4

fp
4

(21)

where Hm0 is the significant wave height, fp is the peak wave frequency (= 1/Tp), 632

f is the wave frequency while the coefficients Aws and Bws vary depending on the wave 633

spectrum, which in this case, define the spectrum to represent the Pierson–Moskowitz (PM) 634

spectrum. 635

In recent years WEC motion simulations have been increasingly modeled using WEC- 636

Sim, an open-source MATLAB Simulink based simulation software [24]. WEC-Sim uses 637

customized Simulink blocks and the multi-physics capabilities of the Simscape. In the 638

results that follow, the motion simulations were verified against a WEC-Sim model that 639

used the convolution integral to calculate the radiation forces. 640

6.1. The single-cylinder case 641

The dynamics equation shown in (19) is used to simulate the complete dynamics model 642

in the time-domain. The complete dynamics model was set up in MATLAB-Simulink. The 643

hydrodynamic coefficients were calculated for a water depth of 100 m. The excitation force 644

was calculated offline prior to the simulations. The cylinder was approached by a regular 645

wave of amplitude 0.25 m and wave period 6.22 seconds. For these motion simulations, no 646

control force was applied, and the cylindrical body only experienced the excitation force as 647

an input. 648
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Figure 8. The Figure on the top shows the body motion in heave mode for the cylinder with a radius
of 1 m and draft 1 m (Small Buoy), when the radiation force is calculated using GHr (s), compared
to the body motion in heave mode when the radiation force is calculated using the convolution.
The Figure on the bottom shows the overall NRMSE match is expressed as a fitness percentage in
the legend of the upper plot, while the lower plot shows the root mean squared error (RMSE) as a
function of time.

Figure 8 shows the heave motion characteristics for a time period of 100 seconds. 649

The simulation was first run with the radiation force calculated using direct convolution 650

and then by using the estimated transfer functions. These body-motion simulations were 651

performed in Simulink. 652
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The simulations were run for only the heave mode but can be easily run for any other 653

mode or mode combination, using the estimated transfer function matrices appropriately. 654

Figure 8 shows the heave motion for a single regular wave. The models can be easily used 655

for irregular waves if the excitation force inputs can be calculated in advance. 656

Note that in Figure 8, at the beginning of the time history, the motion simulation shows 657

some fluctuating behavior. The transient behavior seen at the start of the top figures in 658

Figure 8 is physical and not numerical. It is the result of the buoys being released from rest 659

at t = 0, while the fluctuating behavior seen at the start of the bottom figure in Figure 8 is 660

numerical. This fluctuating behavior can be mitigated by using a ramp function as done in 661

the WEC simulator package WEC-Sim [24]. However, such pre-processing or truncation 662

was not done here to show the initial transient behavior. The overall NRMSE matches for 663

all estimated transfer functions and the agreement approaches 99% if the initial 40 seconds 664

of the data is truncated. Note that the dynamics model shown here used a linearized 665

model, but the analyses shown here can be easily adapted for a model that uses non-linear 666

Froude-Krylov forces as the external forces acting on the body. 667

6.2. The Homogeneous WEC Array Case 668

Figure 9. Heave displacements of the 9 body WEC array when FR(t) is calculated using estimated
transfer function array, compared with displacements when FR(t) is calculated using direct
convolution. The homogeneous WEC array was simulated with irregular waves modeled using the
Pierson-Moskowitz spectrum, with a significant wave height, Hs = 1 m and a significant wave period
of Ts = 8 s.

A transfer function matrix G(s) was formed using the body-only heave modes and 669

the inter-body heave mode couplings. The dynamics equation of motion in (19) is used 670
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to simulate the complete dynamics model in the time-domain using MATLAB-Simulink. 671

The excitation force was calculated offline to the simulation. Figure 9 shows the heave 672

motion characteristics such that the simulation was first run by calculating the radiation 673

force using real-time convolution and then run again by calculating the radiation force 674

using the estimated transfer function matrix. These simulations were run for only the heave 675

mode but can be easily run for any other mode or mode combination, using the estimated 676

transfer function matrices appropriately. 677

The percentages shown in Figure 9 are the NRMSE fit percentage between the body 678

motion when the radiation force is calculated using the estimated transfer function arrays, 679

compared to the body motion when the radiation force is calculated using the convolution 680

of radiation IRF, hr(t), and body velocity. As discussed for the single-cylinder case, an 681

initial transient in the time histories for the WEC array buoys was observed. For this 682

case, a ramp function was used to mitigate this initial transient. The accuracy percentages 683

in Figure 9 show the comparison between 10 s to 50 s. Note the WEC array modeled 684

here didn’t incorporate the contributions of non-heave modes to heave time histories 685

due to hydrodynamic coupling. A more realistic WEC array model would include the 686

contributions of the support structure and moorings that would maintain the WEC array 687

layout. This would further introduce forces and couplings of dynamics modes WEC buoys. 688

7. Discussion 689

The frequency domain was used to estimate transfer functions between body velocity 690

and radiation forces. Frequency domain estimation methods are the most direct route 691

to generate the desired time-domain models. Marine systems operate at relatively low 692

frequency bandwidths. For instance, JONSWAP and Bretschneider wave spectra have 693

most of their energy concentrated between 0 to 1.5 rad/s [1,2,32]. Due to the relative 694

slow nature of marine dynamics and very narrow bandwidth of marine systems, the 695

FRF of a marine system encapsulates critical information about the said marine system’s 696

dynamics at each data point in the FRF. Direct estimation methods, like the frequency 697

domain estimation method shown here, can reduce the potential numerical artifacts that 698

multi-stage time-domain estimation methods may have due to truncation and round-off 699

errors. The proposed algorithm can achieve highly accurate transfer functions using the 700

direct estimation or frequency domain route despite its sensitivity, while having a positive 701

input passivity index across most of the operational bandwidth. 702

As discussed in Section 4.2, the proposed algorithm tries to strike a balance between 703

the accuracy of the estimated transfer function and its passivity characteristics by iterating 704

upon the order of the estimated transfer function system. Empirically, increasing the 705

order of the estimated transfer function system increases its accuracy while decreasing its 706

passivity and vice versa. 707

The estimated models were assessed on two metrics, firstly, how well the estimated 708

models replicated the FRF of the radiation functions, and secondly, how well was the body 709

motion replicated when the radiation force was calculated using the estimated models as 710

opposed to calculating the radiation force using the convolution approach. Significantly, 711

the estimated LTI systems presented here did not have high-frequency poles, despite 712

being high order systems. Low order estimation methods compromise the fidelity of 713

fit in favor of stability and robustness, resulting in underfitting, as was the case in [4, 714

25]. Conversely, high order estimation methods compromise guaranteeing stability and 715

robustness because they have poles faster than the physical system’s properties due to 716

overfitting [4,25]. The proposed estimation algorithm succeeded in preventing underfitting 717

and overfitting while guaranteeing Hurwitz stability and ensuring passivity. Although 718

Taghipour et al., observed that the body motions tend to be less sensitive to the otherwise 719

sensitive LTI system estimation process [4]; an effective and optimal motion-control design 720

requires that the model-based controller be based on the physical phenomenon’s most 721

accurate representation. Therefore, sacrificing accuracy in favor of passivity should be 722

assessed based on the particular case being considered. 723
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The case studies that are shown here demonstrate that the proposed algorithm can 724

model accurate and stable motion-dynamics models of MDOF marine systems with various 725

degrees of hydrodynamic coupling. The off-diagonal terms representing the coupled modes 726

of the radiation function are highly-oscillating but have relatively low magnitudes. These 727

terms were modeled with relatively higher-order transfer functions due to the sensitivity of 728

the coupled modes. Their low magnitude and highly oscillatory behavior make the transfer 729

function estimation more challenging. It could be argued that the low magnitude and 730

highly oscillatory behavior of these terms is non-physical and due to numerical issues in the 731

calculation of the hydrodynamic coefficients corresponding to the inter-body hydrodynamic 732

couplings. 733

The motion time-histories from the models using the convolution-based radiation 734

forces were used as the reference for the time-domain performance of the models using 735

the estimated transfer function array to calculate the radiation force. Ultimately, the 736

body motion characteristics should replicate the motion characteristics calculated using 737

Cummins’ equation. As shown in Section 6, all cases resulted in very accurate motion 738

characteristics while staying stable. A numerical stable time-domain model that can be 739

analyzed in the Laplace domain using the estimated LTI systems can eventually be used 740

to investigate the multibody dynamics of more complicated models with the necessary 741

control. 742

8. Conclusions 743

The real-time convolution operation needed to calculate radiation forces can be 744

circumvented using estimated LTI systems. Motion control of floating marine structures 745

requires the Cummins’ equation to be modified, such that the radiation force is calculated 746

using an LTI system. This work presents an algorithm to calculate radiation forces 747

experienced by floating marine structures using an LTI system. The proposed algorithm 748

enforces the stability of the complete dynamics model by ensuring the passivity of the 749

estimated LTI system. The passivity of estimated transfer functions and the complete 750

dynamics model is assessed using the input-passivity index. The passivity-based proposed 751

algorithm facilitates motion control analyses of floating marine structures. The passivity 752

criteria are more stringent than mere gain margin criteria by ensuring the stability of the 753

complete dynamic models. Also, the passivity-based approach, unlike the Nyquist plot 754

based approach, can be extended to MDOF systems with multiple modes and bodies. 755

The modeling architecture presented here can serve as a base dynamics model for marine 756

hydrokinetics simulations. Such a base model can then integrate and compute control 757

forces for a model-based controller deployed on sea-worthy devices. 758

Although closely related, both stability and hydrodynamic couplings can be characterized 759

using the passivity index. Not only does the passivity index ensure numerical stability, 760

but it also indicates the degree of stability quantified as the input passivity index. Motion 761

simulations further confirmed that the estimated transfer function array could replace the 762

convolution operation for MDOF floating marine structures. Further work on passivity- 763

based control can be explored. The passivity-based time-domain methods presented here 764

can help develop a robust model-based framework for motion-control and establishment 765

of Marine Energy Grids, especially for power-management and power-control. For the 766

hydrodynamically coupled MDOF systems, the input passivity index is an important 767

criterion for model robustness and can be a crucial design parameter guiding the WEC 768

array layout design, motion modeling, and control. 769
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