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Abstract: The COVID-19 outbreak has negatively impacted the income of many bank 

users. Many users without emergency funds had difficulty coping with this unexpected 

event and had to use credit or apply to the government for bailout funds. Therefore, it 

is necessary to develop spending plans and deposit plans based on transaction data of 

users to assist them in saving sufficient emergency funds to cope with unexpected 

events. In this paper, an emergency fund model is proposed, and two optimization 

algorithms are applied to solve the optimal solution of the model. Secondly, an early 

warning mechanism is proposed, i.e. an unexpected prevention index and a 

consumption index are proposed to measure the ability of users to cope with unexpected 

events and the reasonableness of their expenditure respectively, which provides early 

warning to users. Finally, the model is experimented with real bank users and the 

performance of the model is analysed. The experiments show that compared to the no-

planning scenario, the model helps users to save more emergency funds to cope with 

unexpected events, furthermore, the proposed model is real-time and sensitive. 

Keywords: Emergency fund; Optimization algorithms; Open Banking; 

1. Introduction 

At the end of 2019, COVID-19 exploded worldwide and a series of work stoppages, 

production shutdowns and quarantines led to a sharp drop in corporate profits, which 

resulted in a significant impact on people’s the income. Many people struggled without 

emergency funds, resorting to credit or government bailout funds. It is reported that one 

in five British workers had no savings before the COVID-19 crisis. As a result of the 

COVID-19, people are aware of the importance of saving for emergency funds when 

unexpected events happen. The emergency fund is a type of savings to cover future 

unexpected events, which usually require a high level of expenditure and may be one-

off or ongoing, such as a COVID-19 crisis, unemployment, major illness, etc. (Kumajas 

& Wuryaningrat, 2021). Usually people simply save 3 to 6 months of living 

expenditures as an emergency fund, which makes it difficult to help users cope with 

longer-cycle unexpected events. 

The anonymous transaction data reveals that even higher income groups, often 

without an emergency fund, struggle with financial management. This is primarily due 
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to a lack of rational expenditure planning and emergency fund allocation. Developing 

consumption plans tailored for different income groups could foster better consumption 

habits and resilience against future unforeseen events. This research has significant 

implications for both users and banks, as it can inform real-time alerts and future 

planning. The core challenge is twofold: helping users prepare for future unexpected 

events and extending the coping time in case of event failure to minimize reliance on 

credit or government bailouts. The model must consider users' varied expenditure and 

income levels, and for those with adequate emergency funds, optimize spending 

behaviour to improve expenditure quality. Essentially, the optimization problem is: how 

can the model advise on consumption while helping users prepare for or endure 

unexpected events for a sufficient duration? 

The global spread of Covid-19 has led to numerous social challenges including 

economic losses, mental health issues, social isolation, educational disruptions, and 

medical resource shortages (Tisdell, 2020). In response, researchers have been 

exploring optimal decision-making strategies to balance epidemic readiness against 

these social issues. A variety of mathematical models have been developed to predict 

the trajectory and impact of the Covid-19 outbreak (Das et al., 2023; Taylor & Taylor, 

2023), models based on infectious disease dynamics (Chang & Kaplan, 2023), 

including models based on infectious disease dynamics, machine learning, and deep 

learning (Science et al., 2020). The assist policy makers in predicting outbreak spread 

and impacts, facilitating appropriate response strategies. With the advent of Covid-19 

vaccines, optimal vaccine distribution and vaccination strategies have been proposed to 

maximize public health and economic development (Carlo et al., 2023; Thul & Powell, 

2023). The Covid-19 outbreak led to a strain on healthcare resources such as hospital 

beds, ventilators and medical staff, and decision-makers need to develop optimal 

healthcare resource allocation strategies to minimise the healthcare system. Many 

studies have proposed models and algorithms based on decision optimization to help 

decision-makers make the best decisions (K. Liu et al., 2023; Zhang et al., 2023). The 

socio-economic impact of the Covid-19 epidemic has been severe. Many approaches 

have developed policies and measures from an optimization perspective to help 

policymakers assess the socioeconomic impact of the epidemic (Chen et al., 2023; 

Zhang et al., 2023). 

Decision optimization involves selecting the best decision to maximise or 

minimize an objective function within given constraints. It's essential in modern 

management and engineering, aiding decision-makers in understanding complex 

systems and developing optimal solutions. Decision optimization is widely applied in 

production, logistics, finance, energy sectors (Du et al., 2019; L, 2021; Nadizadeh et 

al., 2022; Zhu et al., 2021) , and in supply chain management. It can enhance 

operational efficiency and reduce costs by optimizing production planning, inventory 

management, and distribution routes (Yao et al., 2020). In the financial field, decision 

optimization can help investors to improve returns and reduce risks through portfolio 

optimization and risk management (Jalota et al., 2023; Steuer & Utz, 2023; Wu et al., 

2022). Decision optimization in the energy sector allows companies to enhance energy 

production and dispatching efficiency, thereby reducing costs (L, 2021). Building and 
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solving appropriate mathematical models is crucial in these problems. Various models, 

such as mixed integer linear programming (Er-rahmadi & Ma, 2022; Warwicker & 

Rebennack, 2023), dynamic programming (Cervellera, 2023; Lyu & Huang, 2023), and 

others like stochastic, non-linear, and multi-objective programming have been 

developed. Numerous effective solution algorithms have also emerged, including 

genetic, ant colony, and particle swarm algorithms, among others. Deep learning-based 

models and algorithms, such as deep reinforcement learning and deep neural networks, 

have also been applied in decision optimization (Herrera-viedma, 2020; Jang, 2019; 

Nour et al., 2020; J. J. Q. Yu et al., 2019). Multi-objective optimization, which focuses 

on balancing multiple objectives to achieve an optimal solution, is a significant aspect 

of decision optimization (Cao et al., 2020; He et al., 2021; Huang et al., 2020; Y. Liu et 

al., 2020). In recent years, many algorithms have emerged for multi-objective 

optimization problems, such as multi-objective genetic algorithms (Labani et al., 2020), 

multi-objective particle swarm optimization algorithms (Hu et al., 2021; Labani et al., 

2020), and dominant ranking genetic algorithms. In addition, decision makers are often 

faced with uncertain environments. As a result, uncertainty decision-making has 

become an important direction in the study of decision optimization problems. It is 

mainly concerned with how to make decisions in an uncertain environment, including 

risky/fuzzy decision-makings, and robust optimization (Eko et al., 2023). In recent 

years, many effective algorithms and models have also emerged for uncertain decision 

problems, such as stochastic programming (Cristina et al., 2023; Fusco et al., 2023), 

robust optimization (Goerigk & Kurtz, 2023), and fuzzy programming (G. Yu & Li, 

2022). With the advent of the era of big data, decision optimization problems are also 

facing new challenges and opportunities. Big data decision-making is mainly concerned 

with how to mine effective information in massive amounts of data to support decision-

making. This requires research into new models and algorithms, such as machine 

learning, deep learning, data mining and other techniques based on big data. Big data 

decision-making research has been widely used in many fields, such as finance, 

healthcare and transportation (Jain et al., 2023). Therefore, the use of rich big data 

information can be effective in optimizing decisions. The aim of this paper is to 

optimise the expenditure of users by analysing their transaction data and building up an 

emergency fund, which helps users to save more emergency funds for unexpected 

events. 

The COVID-19 pandemic has highlighted the importance of emergency funds in 

coping with unexpected events. However, many individuals, even those with higher 

incomes, struggle with financial management and lack adequate emergency funds due 

to improper expenditure planning and allocation. The research problem, therefore, lies 

in developing a model that can help users prepare for future unexpected events, extend 

their coping time in case of event failure, and optimize their spending behaviour to 

improve expenditure quality. The model should be able to advise on consumption while 

helping users prepare for or endure unexpected events for a sufficient duration, 

considering varied expenditure and income levels. The objective of this research is to 

optimize the expenditure of users by analyzing their transaction data and building up 

an emergency fund. The study aims to maximize the coverage time of the emergency 
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fund for unexpected events, improve users' spending quality when they can handle 

unexpected events, and maximize the duration that the emergency fund covers the event 

when the model is deployed after the unexpected event has occurred. The study also 

seeks to develop an alert mechanism for real-time monitoring and early alerts to guide 

user consumption behaviour and assess their preparedness for unexpected events. The 

model's effectiveness will be validated using both real-world banking transaction data 

and simulation data. The ultimate goal is to assist users in effectively saving for 

emergency funds and provide a new metric system to measure the capacity of users to 

handle unexpected events and the reasonableness of their expenditure. 

This paper makes three assumptions for the problem at hand. First, it is assumed 

that the user's emergency fund cannot fully cover the duration of the unexpected event, 

and the model's optimization goal is to maximize this coverage time. Second, it is 

assumed that the planned emergency fund can cover the entire event, or even longer, 

with the model's optimization goal being expenditure optimization, i.e. it aims to enable 

users to spend more rationally and improve spending quality when they can handle 

unexpected events. Third, it is assumed that the model is deployed after the unexpected 

event has occurred, with the model's optimization goal being to maximize the duration 

that the emergency fund covers the event. An objective function is formulated for the 

model to solve this problem. Genetic Algorithms (GA) and Particle Swarm 

Optimization algorithms (PSO) are employed to find the optimal value. To provide real-

time monitoring and early alerts, an alert mechanism is proposed to guide user 

consumption behaviour and assess their preparedness for unexpected events. 

Specifically, the unexpected prevention capability index is proposed to measure users' 

ability to handle unexpected events and a consumption index is proposed to measure 

real-time user spending, gauging the extent of actual expenditure deviation from the 

plan. 

To validate the model, firstly, several typical user types extracted from anonymous 

banking transaction data provided by our FinTech partners. Secondly, the data from the 

Ornstein-Uhlenbeck (OU) process simulations are used for further validation. The 

model's feasibility is tested across the three scenarios mentioned earlier and compared 

with situations where the model is not utilized. This comparison helps verify the 

model's validity and flexibility. Finally, to test the early warning performance of the 

proposed indices, a scenario where a user does not follow the model's suggestions is 

simulated. The resulting changes in the index values over the months demonstrate the 

model's ability to provide real-time early warnings for users.  

The main contributions and the motivations of this research are summarized as 

follows.  

1) It is the first time that this real-life problem raised by COVID-19 is considered and 

described from an optimization perspective, i.e., assuming that an unexpected event 

occurs in the future, how the users plan their savings and spending to cope with the 

event. 

2) A model is formulated for this realistic problem, in addition, two optimization 

algorithms are applied to solve the problem and the corresponding solution 

performance is analysed. 
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3) A solution to the problem is proposed, i.e. banks should be proactive and give 

certain advice and warnings about the spending habits and deposit situations of their 

users. 

4) It is the first time that the unexpected prevention capability index is proposed to 

measure the ability of users to cope with unexpected events. It is the first time that 

a consumption index is proposed to measure the reasonableness of the expenditure 

of the user. In addition, a real-time monitoring and alerting mechanism are provided 

for users based on these two indexes. 

In summary, this is a novel approach that can assist users building a more effectively 

saving for emergency funds. Additionally, the proposed early warning mechanism, 

including the unexpected prevention index and consumption index, offers a new metric 

system to measure the capacity of users to handle unexpected events and the 

reasonableness of their expenditure. These are elements not present in existing 

technology, thus filling a technological gap. 

The remainder of the paper is organised as follows. Section 2 describes and analyses 

the emergency fund problem and introduces the proposed model. Section 3 analyses 

and verifies the model based on real user transaction data. Section 4 concludes the paper. 

2. Methodology 

The objective of the model is to assist users in saving sufficient emergency funds 

to cover their living expenses under unexpected events by optimizing their spending 

structure. In this section, the notation of the model is defined and the emergency fund 

is described as an optimization problem. To define the notation, we assume the current 

time is 𝑇𝑛 and the event occurs at the time 𝑇𝑠 and ends at 𝑇𝑒, the user's emergency 

fund can sustain the event until 𝑇𝑚, where we usually have 𝑇𝑠 ≤ 𝑇𝑒 and 𝑇𝑛 ≤ 𝑇𝑚 but 

other orders are unclear. 

Assuming we start from the time 𝑇𝑛 with a situation where an individual user has 

income, daily spending, certain debts and an emergency fund, all of which can be non-

negative and stochastic. An unexpected event that lasts for 𝑡2 months will happen at 

𝑇𝑠 time. The income of the user is impacted very negatively by the event and reduces 

at different rates. If the user keeps spending the same amount, they risk running out of 

money. This paper aims to answer the question: After the outbreak of the event, as users' 

income declines, how should users adjust their consumption to tide over the difficulties? 

As illustrated in Figure 1, we describe three scenarios of 𝑇𝑠 and 𝑇𝑒 as well as 𝑇𝑛 

and 𝑇𝑚, based on an overall consideration of emergency funds saving throughout those 

four time periods. The details of modelling the user’s future financial situation are 

discussed in the following sections. 

(1) Scenario 1 in Figure 1 considers a sequence of 𝑇𝑛 ≤ 𝑇𝑠 ≤ 𝑇𝑒 ≤ 𝑇𝑚 , where the 

unexpected event occurs after the current time 𝑇𝑛, and the users can cover their 

living expenses with some loans. Hence, during the period from 𝑇𝑛 to 𝑇𝑒, users’ 

total income (including the loan) can be higher than their total expenditure. The 

optimization objective of our model in this scenario is to make the user’s spending 

more reasonable and reduce the loan while being able to cope with events. 

(2) Scenario 2 in Figure 1 considers a sequence of 𝑇𝑛 ≤ 𝑇𝑠 ≤ 𝑇𝑚 ≤ 𝑇𝑒 , where the 
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unexpected event occurs after the current time 𝑇𝑛, during the period from 𝑇𝑛 to 

𝑇𝑒, the user's total income (including loans) is lower than their total expenditure and 

cannot cope with the event. The optimization objective of the model in this scenario 

is to maximise the response time 𝑡3 to reduce the bailout and debit requested by 

the user. 

(3) Scenario 3 in Figure 1 considers a sequence of 𝑇𝑠 ≤ 𝑇𝑛 ≤ 𝑇𝑚 ≤ 𝑇𝑒 , where the 

unexpected event occurs before the current time point 𝑇𝑛 and lasts for the time 𝑡4. 

Hence, during the period from 𝑇𝑛 to 𝑇𝑒, the total income of user (including the 

loan) can be higher or lower than their total expenditure. In practice, because of the 

impact of unexpected events, the total income of most users is lower than their total 

expenditure. In this scenario, the objective of the model optimization is to maximise 

the duration 𝑡3 and provide an early warning and a new plan. 

t1

Tn

t2Scenario 1: 

t3 t2
t3

t2
Scenario 2: 

t3<t2

t2
Scenario 3: 

The event has 

already happened
t3t4

Ts Tm
Te

Tn
Ts Tm

Te

Ts Tn

Te
Tm

t1

t3

 

Figure 1. Model consideration of the situation. 

Figure 2 shows the workflow of our proposed methodology. The objective 

optimization process includes the following steps: 

(1) Data Extraction: Income and various categories of expenditure data are 

extracted from the anonymous user transaction data for 2017 and 2018. This data serves 

as the basis for calibrating the parameters (θ, mu, k) of the Ornstein-Uhlenbeck (OU) 

process. 

(2) Parameter calibration and future estimation: Firstly, by using the extracted data, 

we calibrate the OU process parameters (θ, mu, k). The purpose of calibrating these 

parameters is to ensure that the results estimated by the OU process match the user's 

characteristics. Second, the OU process is used to estimate the user's future income and 

expenditure. These steps are described in detail in Section 3.2.1.  

(3) Optimization: The calibrated data is input into the model's objective function, 

which is then optimized using GA and PSO algorithms to determine the maximum 

coping time (tmax) and the corresponding advised expenditure values (𝑒𝑏̅̅ ̅
𝑖, 𝑒𝑟̅̅ 𝑖̅, 𝑒𝑙̅𝑖). 

OU Parameter 

Calibration 
OU process 

Objective 

function
GA/PSO

User history data:

Imcome, eb, er, el Θ, mu,k

 

Figure 2. Objective parameter optimization process. 
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2.1. Formulation of optimization model of the emergency fund 

2.1.1. Emergency fund model objective function 

The model notation is defined in Table I. Superscript    ̃ indicates the actual value 

and superscript    ̅ indicates the suggested value. 𝑇 represents the time point and 𝑡 

represents the length of time. 

Table I. Model notation definitions. 

   ̃ Actual value. 

   ̅ Suggested value. 

𝑇 Point of time. 

𝑡 Length of time. 

𝑖 Time index. 

𝑇𝑛 Current time, the time point of using the model. 

𝑇𝑠 The point in time when the event happened. 

𝑇𝑒 The time point at when the event ends. 

𝑇𝑚 The maximum point in time that an emergency fund can cover an 

event. 

𝑡1 The length of time from 𝑇𝑛 to 𝑇𝑠, that is, how long after the event 

occurs. 

𝑡2 The length of time the event lasts, from 𝑇𝑠 to 𝑇𝑒. 

𝑡3 The maximum time that the emergency fund can cover the event, 

from 𝑇𝑠 to 𝑇𝑚. 

𝑠 An additional one-time expense due to the event, i.e., medical 

expense during Covid-19. 

𝑖𝑛𝑐𝑜𝑚𝑒̃  Actual income amount for this month. 

𝑖𝑛𝑐𝑜𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅  Estimated income amount for this month. 

𝐴𝑉𝐺̃𝑖𝑛𝑐𝑜𝑚𝑒𝑖
 

The monthly average income of the 𝑖th month is an actual value. 

𝑒𝑏̃𝑖 The actual basic expenditure amount in the 𝑖th month. 

𝑒𝑟̃𝑖 The actual amount of current expenditure in the 𝑖th month. 

𝑒𝑙̃𝑖 The actual expenditure amount of luxury goods in the 𝑖th month. 

𝐴𝑉𝐺̃𝑒𝑏𝑖
 

The monthly average basic expenditure amount of the 𝑖th month. 

𝐴𝑉𝐺̃𝑒𝑟𝑖
 

The monthly average recurrent expenditure value of the 𝑖th month. 

𝐴𝑉𝐺̃𝑒𝑙𝑖
 

The Monthly average luxury expenditure in the 𝑖th month. 

𝑚̃𝑖 The actual amount of emergency funds in the 𝑖th month. 

𝑚̃𝑠𝑖
 

A total emergency fund of the 𝑖th month. 

𝑚̅𝑖 A suggested emergency fund for 𝑖th month. 

𝑒𝑏̅̅ ̅
𝑖 Suggested basic expenditure amount in the 𝑖th month. 
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𝑒𝑟̅̅ 𝑖̅ Suggested recurrent expenditure amount in the 𝑖th month. 

𝑒𝑙̅𝑖 Suggested luxury expenditure amount in the 𝑖th month. 

 Income decay factor. 

The model aims to maximize the time 𝑡3 that the user may live with adequate 

living expenses when an unexpected event occurs. To achieve this objective, the model 

adjusts the living expenses with the reference to user’s historical data. The model output 

the adjusted living expenses as the suggested expenditure values 𝑒𝑏̅̅ ̅
𝑖、𝑒𝑟̅̅ 𝑖̅ and 𝑒𝑙̅𝑖 and 

the optimized 𝑡3 is the maximum duration that the user may live. The optimization is 

determined by the following factors: 

The actual amount of emergency funds 𝒎̃𝒔𝒊
  saved after 𝑖  months of using the 

model. It is worth noting that at any time 𝑇𝑛 of using our model, the user's income and 

expenditure after the occurrence of the event are unknown, so the decisions made by 

the model at any time point are based on estimates of the user's future income and 

expenditure. The model expects the emergency fund to grow monotonically before an 

unexpected event happens, but in practice, users may not implement the model's 

suggestions and expenditure may exceed the model's suggested value or even exhaust 

the existing emergency fund. 

 

User income. Since the model is planned before unexpected events, the income should 

contain two components. The first component is the income before the unexpected 

event, which is the income during the period 𝑡1. The income during this period is not 

affected by the unexpected event, so the income should be normal and we use the 

historical income data as a reference. We assume that at the normal time, the income of 

most people is a stable stochastic process with some variation. The OU process, which 

is explained in the next section, is a frequently used stochastic process in financial 

mathematics and is used in this study to model the user's income during the normal time. 

The second component is the income after the occurrence of the event in 𝑡3 period. 

Due to the negative impact of the event, income is often reduced or even zero during 

the event period. For instance, the majority of people experience varying degrees of 

income loss during the COVID-19 pandemic, with some even earning nothing at all. 

This effect continued throughout the epidemic period. Our model describes this effect 

using an exponential decay factor  = 𝑒−𝜆𝑡  on the user's normal income, with 𝜆 

determining the magnitude to which it is affected. 

 

The users' actual living spending. In this paper, we use the anonymous transaction 

data provided by the collaborated fintech company. The daily transactional data is pre-

processed and the user expenditure is summarised into three categories: basic 

expenditure 𝑒𝑏̃𝑖 , recurrent expenditure 𝑒𝑟̃𝑖 , and luxury expenditure 𝑒𝑙̃𝑖 . The basic 

expenditure, 𝑒𝑏̃𝑖, is usually the fundamental expenses for living, such as utility bills, 

clothing, food, housing and transport. The recurrent expenditure, 𝑒𝑟̃𝑖 , includes 

entertainment and buying household goods. The luxury expenditure, 𝑒𝑙̃𝑖, however, is 

used for holidays and buying luxury goods. 
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Spending on unexpected events. The model assumes a total expenditure on 

unexpected events 𝑠  addition to the living expenses. For example, the medical 

expenditure during the Covid-19 pandemic period. 

 

The objective function according to the three scenarios can be established in 

Figure 1. Because users' living expenses and users' income are typically updated 

monthly from the transactional data we use in this work, all time variables, 𝑡1, 𝑡2, and 

𝑡3 are expressed in months. We can simply denote the total income before and after the 

occurrence of the event by 𝑖𝑛𝑐𝑜𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∗ 𝑡1  and  𝑖𝑛𝑐𝑜𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∗  ∗ 𝑡3  respectively, where 

the decay factor  is defined as  = 𝑒−𝜆𝑡 to model the income decrease. Hence, the 

total amount of cash that users can spend on living expenses over 𝑡1 and 𝑡3 can be 

denoted as the sum of 

 𝑚̃𝑠𝑖
+ 𝑖𝑛𝑐𝑜𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ × 𝑡1 + 𝑖𝑛𝑐𝑜𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ×  × 𝑡3 − 𝑠. (1) 

 

Furthermore, we consider the total amount of cash during 𝑡3 only and calculate 

the time 𝑡3 as 

 𝑡3 =
𝑚̃𝑠𝑖

+ [𝑖𝑛𝑐𝑜𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − (𝑒𝑏̃𝑖 + 𝑒𝑟̃𝑖 + 𝑒𝑙̃𝑖)] × 𝑡1 + 𝑖𝑛𝑐𝑜𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ×  × 𝑡3 − 𝑠

𝑒𝑏̅̅ ̅
𝑖 + 𝑒𝑟̅̅ 𝑖̅ + 𝑒𝑙̅𝑖

, (2) 

 

where [𝑖𝑛𝑐𝑜𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − (𝑒𝑏̃𝑖 + 𝑒𝑟̃𝑖 + 𝑒𝑙̃𝑖)] × 𝑡1 denote the cash that the user may have at 

the time point of the occurrence of the event 𝑇𝑠. To simplify this equation, we denote 

the 𝑖𝑛𝑐𝑜𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − (𝑒𝑏̃𝑖 + 𝑒𝑟̃𝑖 + 𝑒𝑙̃𝑖) as 𝑖𝑛𝑐𝑜𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ′, and calculate the 𝑡3 as 

 𝑡3 =
𝑚̃𝑠𝑖

+ 𝑖𝑛𝑐𝑜𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ′ × 𝑡1 − 𝑠

(𝑒𝑏̅̅ ̅
𝑖 + 𝑒𝑟̅̅ 𝑖̅ + 𝑒𝑙̅𝑖) − 𝑖𝑛𝑐𝑜𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ × 

. (3) 

 

In scenario 1, we have 𝑡3 ≥ 𝑡2, where the users can cover their living expenses 

with some loans. To reduce the amount of the loan, the objective of the model is to 

minimize the living expenses while maintaining a proper living conditions and 

satisfying the constraint 𝑡3 ≥ 𝑡2, which is the time user can cover their living expenses 

with some loan that is longer than or equal to the time of the unexpected event. 

Therefore, the objective function in scenario 1 can be expressed as 

 argmax
𝑒𝑏̅̅̅̅

𝑖,𝑒𝑟̅̅ ̅𝑖,𝑒𝑙̅𝑖

[
𝑚̃𝑠𝑖

+ 𝑖𝑛𝑐𝑜𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ′ × 𝑡1 − 𝑠

(𝑒𝑏̅̅ ̅
𝑖 + 𝑒𝑟̅̅ 𝑖̅ + 𝑒𝑙̅𝑖) − 𝑖𝑛𝑐𝑜𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ × 

] , 𝑤. 𝑟. 𝑡 𝑡3 ≥ 𝑡2. (4) 

 

In scenario 2, the model objective is identical while the constraint is changed to 

𝑡2 ≥ 𝑡3, which means that the users cannot cover their living expenses. The goal is to 

make the users’ self-sufficiency time as close as feasible to the length of the unexpected 

event. As a result, the objective function of scenario 2 can be written as 
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 argmax
𝑒𝑏̅̅̅̅

𝑖,𝑒𝑟̅̅ ̅𝑖,𝑒𝑙̅𝑖

[
𝑚̃𝑠𝑖

+ 𝑖𝑛𝑐𝑜𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ′ × 𝑡1 − 𝑠

(𝑒𝑏̅̅ ̅
𝑖 + 𝑒𝑟̅̅ 𝑖̅ + 𝑒𝑙̅𝑖) − 𝑖𝑛𝑐𝑜𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ × 

] , 𝑤. 𝑟. 𝑡 𝑡2 ≥ 𝑡3. (5) 

 

In scenario 3, the unexpected event occurs before the current time point 𝑇𝑛 and 

lasts for a very long time that the user is unable to endure. The aim is to increase the 

user endurance 𝑡3  as much as feasible to alleviate the pressure of government for 

financial aid. We can denote the endurance 𝑡3 as  

 𝑡3 =
𝑚̃𝑠𝑖

+ 𝑖𝑛𝑐𝑜𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ′ ×  × 𝑡4 + 𝑖𝑛𝑐𝑜𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ×  × 𝑡3 − 𝑠

𝑒𝑏̅̅ ̅
𝑖 + 𝑒𝑟̅̅ 𝑖̅ + 𝑒𝑙̅𝑖

. (6) 

 

After re-organizing the equation, the objective function of scenario 3 can be denoted as 

 argmax
𝑒𝑏̅̅̅̅

𝑖,𝑒𝑟̅̅ ̅𝑖,𝑒𝑙̅𝑖

[
𝑚̃𝑠𝑖

+ 𝑖𝑛𝑐𝑜𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ′ ×  × 𝑡4 − 𝑠

(𝑒𝑏̅̅ ̅
𝑖 + 𝑒𝑟̅̅ 𝑖̅ + 𝑒𝑙̅𝑖) − 𝑖𝑛𝑐𝑜𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ × 

] , 𝑤. 𝑟. 𝑡 𝑡2 > 𝑡3. (7) 

 

𝐴𝑉𝐺̃𝑒𝑏𝑖
, 𝐴𝑉𝐺̃𝑒𝑟𝑖

, 𝐴𝑉𝐺̃𝑒𝑙𝑖
 denote the level of the expenditure of the user in the short 

term, and the level of the spending of the user in the short term is relatively stable. 

Assuming that users continue to maintain such spending, the emergency fund can cover 

the event 𝑡𝑚 time. 𝑡𝑚 can be considered as an early warning value, indicating that 

the emergency fund can cover the event 𝑡𝑚 time at most. 𝑡𝑚 can be written as  

 𝑡𝑚 =
𝑚̃𝑠𝑖

+𝑖𝑛𝑐𝑜𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅××𝑡3−𝑠

𝐴𝑉𝐺̃𝑒𝑏𝑖
+ 𝐴𝑉𝐺̃𝑒𝑟𝑖

+ 𝐴𝑉𝐺̃𝑒𝑙𝑖

. (8) 

2.1.2. Constraints 

Based on the discussion and the objective functions, we summarize all constraints 

in our model. Our initial constraints include that the length of time, income, 

consumption expenditure, emergency fund and event spent in the objective function 

should all be non-negative, i.e. 

 𝑡1, 𝑡2, 𝑡3, 𝑖𝑛𝑐𝑜𝑚𝑒̃ , 𝑒𝑏̃𝑖 , 𝑒𝑟̃𝑖 , 𝑒𝑙̃𝑖 , 𝑚̃𝑠𝑖
, 𝑠 ≥ 0. (9) 

Considering that sometimes the income is not enough to cover the expenditure, 

the user can only use the current emergency fund 𝑚̃𝑠𝑖
. As a result, the emergency fund 

𝑚̃𝑖 stored each month may be a negative amount. The total emergency fund is the sum 

of the actual emergency fund storage amounts for each month from the moment 𝑇𝑛. 

The total emergency fund 𝑚̃𝑠𝑖
 can be calculated by 

 𝑚̃𝑠𝑖
= ∑ 𝑚̃𝑖 .

𝑖

0

 (10) 

Since users’ income and expenditure often have certain randomness, fluctuating 

up and down in a long-term equilibrium value, we model those stochastic variables 
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using the OU process (Uhlenbeck G.E. & Ornstein L.S., 1930). The OU process is often 

applied to modelling stochastic asset prices in financial mathematics. In our work, the 

incomes of users and expenditures exhibit the same characteristics as asset prices: they 

are variables that fluctuate around their long-term mean over time.  

Denoting the rate of mean reversion as 𝜃, volatility as 𝑘, the Wiener process as 

𝑊𝑖, and the user's average monthly income over the last 𝑛 months as 𝐴𝑉𝐺𝑖𝑛𝑐𝑜𝑚𝑒𝑖
, we 

can write the OU process for the income of the user as 

 
𝑖𝑛𝑐𝑜𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑖+1 = 𝑖𝑛𝑐𝑜𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑖 + 𝜃𝑖𝑛𝑐𝑜𝑚𝑒 × (𝐴𝑉𝐺𝑖𝑛𝑐𝑜𝑚𝑒𝑖−1

− 𝑖𝑛𝑐𝑜𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑖−1)

+ 𝑘𝑖𝑛𝑐𝑜𝑚𝑒 × 𝑑𝑊𝑖, 

(11) 

where the average monthly income of the user is calculated using their monthly income 

over the previous 𝑛 months, 𝐴𝑉𝐺𝑖𝑛𝑐𝑜𝑚𝑒𝑖
= ∑ 𝑖𝑛𝑐𝑜𝑚𝑒̃ 𝑖

𝑖
𝑖−𝑛 ,𝑛 > 0. In this OU process, 

the Wiener process describes the randomness of the user’s income and the volatility 𝑘 

denotes the amplitude of the uncertainty: a higher value of 𝑘 suggests a greater degree 

of uncertainty. 

 

Experiments are conducted to identify the proper parameters to make the income 

and spending values described by the OU process more compatible with the actual 

financial condition of the user. It's important to maintain an emergency fund so that they 

can cover essential living expenses. Consequently, spending constraints must be 

established. In this work, we analyse anonymous transactional data of users provided 

by a collaborative FinTech firm and divide user expenditures into three groups: basic, 

recurrent, and luxury expenditures. 

 

We use historical data to calibrate the OU process to determine the appropriate 

parameters so that the income and expense values described by the OU process are 

more in line with the actual financial situation of the user. Thus, we establish the OU 

process for three types of user expenditure: basic (𝑒𝑏̃𝑖+1), recurrent (𝑒𝑟̃𝑖+1), and luxury 

(𝑒𝑙̃𝑖+1), i.e. 

 𝑒𝑏̃𝑖+1 = 𝑒𝑏̃𝑖 + 𝜃𝑒𝑏 × (𝐴𝑉𝐺̃𝑒𝑏𝑖
− 𝑒𝑏̃𝑖) + 𝑘𝑒𝑏 × 𝑑𝑊𝑖, (12) 

 𝑒𝑟̃𝑖+1 = 𝑒𝑟̃𝑖 + 𝜃𝑒𝑟 × (𝐴𝑉𝐺̃𝑒𝑟𝑖
− 𝑒𝑟̃𝑖) + 𝑘𝑒𝑟 × 𝑑𝑊𝑖, (13) 

 𝑒𝑙̃𝑖+1 = 𝑒𝑙̃𝑖 + 𝜃𝑒𝑙 × (𝐴𝑉𝐺̃𝑒𝑙𝑖
− 𝑒𝑙̃𝑖) + 𝑘𝑒𝑙 × 𝑑𝑊𝑖. (14) 

Specifically, the Kalman filter is used to calculate the optimal estimate, then the 

maximum likelihood function is calculated and the unknown model parameters are 

estimated. We implement the Kalman filter using the Python library Pykalman, and the 

maximum likelihood optimization is implemented by the Scipy library. This part of the 

work is easy to implement in Python. 
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2.2. Model solution and evaluation index 

2.2.1. Model solution 

The objective function and constraints are established in (2) - (9) in Section 2.1.2. 

Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) algorithms are 

global optimization algorithms. The algorithms search in the global solution space and 

focus their search on the optimal region, resulting in faster convergence (Amer & 

Namaane, 2013). Therefore, in this paper, GA and PSO are used to solve for the optimal 

value 𝑡3 and its corresponding optimal inputs 𝑒𝑏̅̅ ̅
𝑖, 𝑒𝑟̅̅ 𝑖̅ and 𝑒𝑙̅𝑖. In the methodology 

we use, constraints are managed as shown by (9) which delineates the constraints 

intrinsic to our model, demarcating the permissible range of values for the variables 

within our model, i.e. a range that is predicated on the real-world scenario under 

investigation. Subsequently, the optimization algorithm embarks on a search for the 

optimal solution within this explicitly defined value range. This approach guarantees 

that the solutions generated by the proposed model are mathematically optimal, while 

concurrently ensuring their practicality and applicability to the real-world scenarios. 

The GA algorithm is a method for searching for optimal solutions by simulating 

the natural evolutionary process. The following is a description of some of the 

terminology of the GA algorithm, where the population is a set of possible solutions, 

the individual is one of the solutions, the chromosome can be understood as the number 

of variables, and the probability of variation indicates the probability of a change in the 

chromosome. The GA algorithm calculates the fitness of an individual by simulating 

the mechanisms of selection and variation of the evolutionary process. Fitness can be 

understood as the value of the objective function corresponding to the individual. In 

each iteration, a set of candidate individuals is selected based on fitness. Repeating 

these steps, the population evolves over several generations and the best population is 

obtained, which is the optimal solution to the objective function. Specifically, the 

population is initialised within the constrained search range respectively, each 

individual in the population is substituted into the objective function of the model, the 

fitness of each individual is calculated, and some individuals are selected to evolve. The 

iterations are repeated until the optimal fitness is found, which is the optimal value of 

the model 𝑡3 . The specific parameters of the genetic algorithm are as follows: 100 

individuals of the population are initialised, the number of chromosomes is 3, the 

number of iterations is 100, the mutation probability is set to 0.2 and the crossover 

probability is 0.2. Figure 3 shows the iterative process of the GA, and the model 

converges at an iteration number approximately equal to 10.  
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Figure 3. The iterative process of the GA. 

Similar to the GA algorithm, the PSO algorithm searches each particle individually 

in space, the fitness being used to decide the solution to the objective function. In 

contrast to GA, PSO can memorise the current optimal solution and continue the search 

in this direction. The inertia weights, self-learning coefficients and population learning 

coefficients are important parameters of PSO. The inertia weight is the speed of particle 

movement and it determines the speed of convergence. The self-learning coefficient 

and the group-learning coefficient can be understood as the step size of the search. The 

specific parameters of the particle swarm algorithm are as follows: 100 individuals of 

the population are initialised, the number of iterations is 200, the inertia weight is 0.8, 

the self-learning factor is 0.5 and the population learning factor is 0.5. Figure 4 

illustrates the iterative process of the PSO, where the model converges at several 

iterations approximately equal to 10.  

 

Figure 4. The iterative process of the PSO. 

The optimal solution 𝑡3 corresponds to the variables 𝑒𝑏̅̅ ̅
𝑖, 𝑒𝑟̅̅ 𝑖̅ and 𝑒𝑙̅𝑖 which are 

the expenditures suggested by the model, and the emergency fund for the month is 
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calculated by 

 𝑚̅𝑖 = 𝐴𝑉𝐺̃𝑖𝑛𝑐𝑜𝑚𝑒𝑖
− 𝑒𝑏̅̅ ̅

𝑖 − 𝑒𝑟̅̅ 𝑖̅ − 𝑒𝑙̅𝑖 . (15) 

(10) calculates the total amount of emergency funds at each point in time. 𝑚̃𝑠𝑖
≥

0  shows that the current user's emergency fund can still cover the event, 𝑚̃𝑠𝑖
< 0 

shows that the user is already in debt and cannot cover the unexpected event.  

For the genetic algorithm, the time complexity is O(T*M* N), where T represents 

the number of iterations, M is the population size, and N is the length of the individual 

chromosome. The space complexity is O(M*N), i.e. the memory required to store the 

population. For the particle swarm optimization algorithm, the time complexity is 

O(T*P*N), where P is the size of the particle swarm. The space complexity is O(P*N), 

i.e. the memory needed to store all particles and their positions and velocity information. 

2.2.2. Prevention capability index 

To evaluate the ability of users to cover unexpected events, the Prevention 

capability index (PCI) is proposed to measure the current emergency funds and the 

ability to plan for unexpected events. It can be calculated by 

 𝑃𝐶𝐼 =
𝑡3

𝑡3 + 𝑡2
, (16) 

where 𝑡3 is the max time that the user can cover for an unexpected event and 𝑡2 is 

the duration of the unexpected event. 0.5 is the threshold for the user's ability to cope 

with unexpected events. 𝑃𝐶𝐼 < 0.5 means that the current emergency fund and the 

plan cannot cover the contingency to the end. 𝑃𝐶𝐼 ≥ 0.5  means that the currently 

planned emergency fund covers the entire unexpected event. 𝑃𝐶𝐼  is directly 

proportional to the user's ability to cover unexpected events. For example, in scenario 

1, 𝑃𝐶𝐼 < 0.5, which indicates that the user is better able to cope with the event. In 

scenario 2, 𝑃𝐶𝐼 ≥ 0.5 , which indicates that the user is unable to cope with the 

unexpected event to the end of the event. In scenario 3, the user's PCI may be less than 

or greater than 0.5. 

2.2.3. Consumer Index 

To guide users to spend wisely, a consumption index (𝐶𝐼) is proposed in this paper 

to measure the reasonableness of users' various expenditures. The 𝐶𝐼 considers several 

factors, the first being the degree of deviation between the actual and suggested values 

of expenditure. The second is the degree of balance between the various types of 

expenditure. 𝐶𝐼 is calculated from (17), 𝐶𝐼 ∈ [0,1). A smaller 𝐶𝐼 indicates that the 

actual value deviates less from the suggested value, and when 𝐶𝐼 = 0, it indicates that 

the user has fully complied with the model's suggestions. The actual and suggested 

values of expenditure are different at each point in time. Therefore, the 𝐶𝐼 changes 

dynamically over time. It can be calculated by 

 𝐶𝐼 =
1

3
× (∣

𝑒𝑏̃𝑖 − 𝑒𝑏̅̅ ̅
𝑖

𝑒𝑏̃𝑖 + 𝑒𝑏̅̅ ̅
𝑖

| +∣
𝑒𝑟̃𝑖 − 𝑒𝑟̅̅ 𝑖̅

𝑒𝑟̃𝑖 + 𝑒𝑟̅̅ 𝑖̅
| +

∣
∣
∣ 𝑒𝑙̃𝑖 − 𝑒𝑙̅𝑖

𝑒𝑙̃𝑖 + 𝑒𝑙̅𝑖

|). (17) 
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2.2.4. Real-time monitoring and alerts 

Because 𝑃𝐶𝐼  and 𝐶𝐼  are dynamic over time, the ability of users to cover 

unexpected events and the reasonableness of expenditure can be measured in real-time 

by 𝑃𝐶𝐼  and 𝐶𝐼  respectively. Therefore, 𝑃𝐶𝐼  and 𝐶𝐼  can provide real-time 

monitoring and guidance. The model sets a threshold value for 𝑃𝐶𝐼 and 𝐶𝐼 to alert 

the user. For example, when 𝑃𝐶𝐼 < 0.5 , users are reminded that their current 

consumption situation and plans cannot cover future unexpected events and that it 

would be dangerous to continue to overspend. When 𝐶𝐼 = 0.9, the user is alerted to 

the fact that the current risk is low and the user can have more spending. Similarly, 

when the 𝐶𝐼 > 0.6 , the user is alerted that the current expenditure has deviated 

significantly from the plan and that continuation will increase the risk. Of course, the 

𝑃𝐶𝐼 and 𝐶𝐼 thresholds can be set by the user to meet the needs of users with different 

risk mentalities. 𝑃𝐶𝐼  and 𝐶𝐼  can provide monitoring and alerts to users, hence 

reducing the risk to them. In addition, if users implement the model's plan, they will 

only need to apply for a small or no bailout from the government when the unexpected 

happens, which greatly reduces the financial pressure on the government and lowers 

the risk to society. 

3. Experiments and analysis 

3.1. Datasets 

In this paper, our work is based entirely on the anonymous bank transaction data 

provided by our collaborating FinTech companies, which are regulated under the Open 

Banking Agreement and comply with the General Data Protection Regulation (GDPR) 

(General Data Protection Regulation, n.d.). This dataset contains transaction data from 

bank customers for 2017 and 2018 and contains 10 million transactions from nearly 

20,000 customers. Each transaction record contains 15 attributes, including category, 

sub-category, transaction type, account ID, account provider, account type, amount, 

company ID, debit, merchant line of business, description, provider category, 

transaction date, and transaction. The saving of the emergency fund is only relevant to 

the financial situation of the user, therefore, only attributes relevant to the financial 

situation are selected from the raw data. Table 2 summarises the attributes that are 

relevant to this study, including category, sub-category, transaction type, account ID, 

amount and date of transaction. We analysed the raw data and found that the types of 

transactions included income and expenditure. The income categories are divided into 

non-recurrent income and recurrent income. The expenditure categories are divided into 

three types of expenditure: basic, discretionary and luxury. These income and 

expenditure categories are also divided into several sub-categories, e.g. non-recurrent 

income includes expense refunds and others, and basic expenditure includes bank 

repayment, bank fees, etc. Each transaction is given a specific sub-category and amount, 

and the features required by the model (income, base expenditure, discretionary 

expenditure and luxury expenditure) are extracted from these attributes. The income of 

the user is obtained by summing all the sub-categories of the income of the customer. 

Similarly, basic, discretionary and luxury expenditures are obtained by summing the 
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amounts of their corresponding sub-categories.  

 

Table II. Raw transaction data. 

Transaction 

Type 
Category Subcategory 

Amount 

 

Transaction 

Date 
User id 

Income 

Non-

Recurrent 

Income 

Expense 

Refund 

Amount of 

the 

transaction 

Date of 

transaction: 

(Year-

Month-Day) 

User ID, 

a 

number 

Other 

Recurrent 

Income 

Salary 

Rental Income 

Benefits 

Interest 

Income 

Expenditure 

Basic 

Expenditure 

Bank 

Repayment 

Bank Fees 

Tax 

Education 

Housing 

Other 

Bank Interest 

Transport 

Utilities 

Groceries 

Insurance 

Health 

Discretionary 

Expenditure 

Products 

Services 

Entertainment 

Cash 

Other 

Food Drink 

Luxury 

Expenditure 

Holidays 

Luxury 

Services 

Luxury 

Products 

As shown in Figure 5, the majority of users are in debt during the two years 2017 

and 2018, indicating that these customers are out-spending their income affordability. 

In addition, although many customers have an emergency fund in some months, they 

do not have an emergency fund in most months, which indicates a lack of proper 

planning for their spending. Only a very small number of customers maintained an 

emergency fund during these two years. The results in Table 3 indicate that it is very 
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meaningful to build models to help customers optimise their spending behaviour and to 

store emergency funds. 

 

Figure 5. Emergency fund deposits of the surveyed customers. 

3.2. Model validation 

3.2.1. Event impact & OU process 

To verify the model, four typical categories of users are selected from the selection 

data, and one user from each category is randomly chosen for analysis. As shown in 

Table III, these users have distinct characteristics. The income and expenditure of these 

four categories of customers in 2017 and 2018 are shown in Figure 6. In the experiments 

that follow, these four categories of users are used to validate the proposed model. 

Table III. Features of the four users. 

User User 1 User 2 User 3 User 4 

Average 

monthly 

income 

2686 2122 32497 72561 

Average 

monthly 

expenditure 

2848 1350 13178 39093 

Total income 

in 2017 and 

2018 

64474 50933 779925 1741484 

Total 

expenditure 

in 2017 and 

2018 

68366 32421 316281 938246 
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Feature 

Low income, 

high 

expenditure, 

no savings 

Low income and 

low expenditure but 

have savings 

 

High income, 

high expenses 

and no savings 

High income, low 

expenditure and 

have savings 

 

The purpose of the model is to plan for the future spending of the user, however, 

for the current point in time, the future income and expenditure of the user are unknown. 

Therefore, the model needs to simulate the future income and expenditure of the user 

and make plans based on this data. To enable the simulated data to reflect the real 

financial situation of the users, the experiments to simulate the future data of the users 

are based on user data from 2017 and 2018. The income and expenditure of users are 

values that fluctuate around the mean in the near term, so the OU process is used to 

simulate the future income and expenditure of the four users shown in Table III. 

Because the OU process is based on historical data, the results can be considered as an 

approximation of the future income and expenditure of the user.  

 

Figure 6. Income and expenditure of the four users for 2017 and 2018. (a) Income and 

expenditure of user 1. (b) Income and expenditure of user 2. (c) Income and 

expenditure of user 3. (d) Income and expenditure of user 4. 

 

The choice of the four sets of parameters in Table IV is based on several 

considerations: Firstly, the efficacy of the model across different types of users is 

intended to be validated. Thus four categories of users from Table III are selected, where 

each of them exhibits distinct characteristics in terms of income and expenditure. 

Consequently, the income and expenditure data for each of these categories are 

estimated separately, and they are provided in Table IV. Secondly, the model is designed 

(a) (b) 

(c) (d) 
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such that users' future emergency funds can be planned and the duration they can 

withstand unexpected events can be assessed. These evaluations are dependent on the 

user's income (𝑖𝑛𝑐𝑜𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) and various types of expenditures (𝑒𝑏̅̅ ̅
𝑖 , 𝑒𝑟̅̅ 𝑖̅ and 𝑒𝑙̅𝑖). Thus, it 

is necessary for these four variables to be projected for each user, the values of which 

are also included in Table IV. Finally, as demonstrated by (11) through (14), the 

historical data (2017 and 2018) are utilized to estimate each user's income (𝑖𝑛𝑐𝑜𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) 

and various types of expenditures (𝑒𝑏̅̅ ̅
𝑖, 𝑒𝑟̅̅ 𝑖̅ and 𝑒𝑙̅𝑖). These estimates exhibit distinct 

characteristics in the existing historical data. To ensure that the estimated income and 

expenditures align more closely with the user's characteristics, each value is calibrated 

based on the user's historical data. This calibration involved the OU parameters 𝜃, mu, 

k being adjusted for each variable of each user. These reasons primarily informed the 

choice of the four sets of parameters, which are believed to sufficiently reflect the 

functionality and effectiveness of the proposed model. To set the appropriate parameters 

to make the simulated income, basic expenditure, recurrent expenditure and luxury 

expenditure similar to the real situation of the user, the data from the user for 2017 and 

2018 are used to calibrate the OU process. Specifically, the Kalman filter is used to 

calculate the best estimate and then to calculate the maximum likelihood function and 

estimate the parameters of the unknown model. We use the Python library Pykalman to 

implement the Kalman filter, while the maximum likelihood optimization is 

implemented by the Scipy library. Table IV shows the parameters obtained from the 

calibration of the data of the users for 2017 and 2018, which are used to simulate the 

future income and expenditure of the four users. The OU process simulates the data 

according to the parameters in Table IV. As shown in Figure 7, income and expenditure 

data for the four types of users are simulated, where the x-axis indicates the number of 

months simulated. The OU process simulates the financial situation of users as shown 

in Figure 7, which shows that these income and expenditure values fluctuate around the 

mean value. 

Table IV. Parameters of the OU process. 

User Estimated variable 

Parameters 

𝜃 𝑚𝑢 𝑘 

User1 

𝑖𝑛𝑐𝑜𝑚𝑒 0.03142 0.048619 0.054328 

𝑒𝑏 9.8096e-05 0.44428 0.36873 

𝑒𝑟 0.00028496 0.12106 0.5751 

𝑒𝑙 7.8839e-06 0.48973 0.14333 

User2 𝑖𝑛𝑐𝑜𝑚𝑒 0.009052 0.088093 0.059729 
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𝑒𝑏 4.2392e-05 0.30815 0.71694 

𝑒𝑟 0.0045556 0.088854 0.10088 

𝑒𝑙 2.978e-06 0.48972 0.14338 

User3 

𝑖𝑛𝑐𝑜𝑚𝑒 4.3641 0.32692 -0.17673 

𝑒𝑏 1.5831 0.13159 0.11661 

𝑒𝑟 15.0852 0.18574 0.07012 

𝑒𝑙 8.2157e-05 0.48972 0.14338 

User4 

𝑖𝑛𝑐𝑜𝑚𝑒 9.2852 0.72752 0.6098 

𝑒𝑏 10.0026 0.25212 -0.27209 

𝑒𝑟 10.2014 0.53425 0.2858 

𝑒𝑙 12.4256 0.050116 0.10922 

 

 

(a)                               (b) 
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(c)           (d) 

Figure 7. Simulation of the financial situation of four types of users. (a) The financial 

estimation of user 1. (b) The financial estimation of user 2. (c) The financial estimation of 

user 3. (d) The financial estimation of user 4. 

In real-life scenarios, income is affected to varying degrees by unexpected events, 

but the degree of the impact of these events on income is unknown in advance. The 

decay factor 𝜆  is taken as different values to indicate the degree of effect of the 

unexpected event on income, respectively. To explore the emergency fund situation of 

users when events impact differently on income, the following assumptions are made. 

Assume an unexpected event occurs after 𝑡1  months that maintains 𝑡2  months. 

Meanwhile, it is assumed that the unexpected event may impact the income of the user 

to different degrees. The emergency fund situation when the user does not take any 

action is explored (Figure 8), where 𝑡1 = 16, 𝑡2 = 8, 𝜆 = 0, 0.01, 0.02, 0.03. Figure 

8 (a), (c), (e) and (g) represent the income of four user types when the decay factor 𝜆 

takes different values. A larger 𝜆 indicates a greater impact of the event on income, 

𝜆 = 0 indicates that the event does not happen or the event does not impact on income. 

Figure 8 (b), (d), (f) and (h) represents the emergency funds for the four types of users 

when the decay factor 𝜆 takes different values. Figure 8 (a), (c), (e) and (g) indicates 

that after the event (𝑡1 =  16), the income of the each customer begins to decline and 

the decline is continuous and exponential. As 𝜆 increases, user income declines at an 

even faster rate. Figure 8 (b), (d), (f) and (h) show that before the event (𝑚𝑜𝑛𝑡ℎ ≤  16), 

the income of each user is normal. During this period, users have emergency funds in 

some months, or the debt is relatively low. However, after the event (𝑚𝑜𝑛𝑡ℎ >  16), 

the emergency funds of the users become less due to the impact of the event (𝜆 =

 0.01, 𝜆 =  0.02, 𝜆 =  0.03). In addition, the debt of the user is very high and the user 

is without emergency funds for most of the months. Furthermore, the debt becomes 

more severe as 𝜆 increases. For example, before the event, User 1 and User 2 have 

emergency funds for a few months, but most of the time after the event they have no 

emergency funds and the debt becomes severe as the event continues. Figure 8 shows 

that even for users in a better financial situation (e.g. user 1 and user 2), the emergency 

fund can only cover the event for a short time if they do not plan for it before the event 

occurs. 

 

(a)                                  (b) 
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(c)                                  (d)  

 
(e)                                  (f) 

 

(g)                                  (h) 

Figure 8. Effect of different 𝜆 on user income and emergency funds. (a) The income of user 

1 when the decay factor 𝜆 takes different values. (b) The emergency funds of user 1 when 

the decay factor 𝜆 takes different values. (c) The income of user 2 when the decay factor 𝜆 

takes different values. (d) The emergency funds of user 2 when the decay factor 𝜆 takes 

different values. (e) The income of user 3 when the decay factor 𝜆 takes different values. (f) 

The emergency funds of user 3 when the decay factor 𝜆 takes different values. (g) The 

income of user 4 when the decay factor 𝜆 takes different values. (h) The emergency funds of 

user 4 when the decay factor 𝜆 takes different values. 

3.2.2. Scenario 1 

To verify the validity of the model, the proposed model is used to plan. The model 

is optimised to obtain optimal values for income, base expenditure, recurrent 
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expenditure and luxury expenditure. Meanwhile, the emergency fund for the current 

month 𝑚̃𝑖 is added to the emergency fund already deposited 𝑚̃𝑠𝑖
 to obtain the current 

emergency fund. Figure 9 (a), (c), (e) and (g) shows the emergency fund deposits for 

the four types of users. In the absence of the model, the emergency funds are difficult 

to maintain until the end of the event, even for users in a better financial situation (e.g. 

user 4). With the use of the proposed model, the emergency fund of the user can be 

maintained until the end of time. Before the event (𝑚𝑜𝑛𝑡ℎ <  16), the emergency fund 

tends to rise, which means that users deposit emergency funds before events to prepare 

for the event. After the event (𝑚𝑜𝑛𝑡ℎ ≥  16), the emergency fund is decreased, which 

is consonant with reality. After the event, the income of the user is affected and the 

income cannot cover normal expenses. Therefore, user can only spend their existing 

emergency fund, which reduces the emergency fund from month to month. If the user 

follows the suggestions of the model to spend, then the emergency fund can cover the 

event until the end. Figure 9 (b), (d), (f) and (h) show the various types of expenditure 

suggested by the model. As shown in Figure 9 (a), (c), (e) and (g), the emergency fund 

of the user can cover the event to the end, which means that the proposed model can 

help users cope better with unexpected events compared to no measure at all. 

 

(a)          (b) 

 
(c)          (d) 
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(e)          (f) 

 

(g)          (h) 

Figure 9. The suggestions of the proposed model to the users. (a) The emergency fund 

deposits for the four types of user 1. (b) The model suggests various types of expenditure for 

user 1. (c) The emergency fund deposits for the four types of user 2. (d) The model suggests 

various types of expenditure for user 2. (e) The emergency fund deposits for the four types of 

user 3. (f) The model suggests various types of expenditure for user 3. (g) The emergency 

fund deposits for the four types of user 4. (h) The model suggests various types of expenditure 

for user 4. 

3.2.3. Scenario 2 

Assuming the event duration 𝑡2 is infinite, the user is bound to be unable to cope 

with the event at some point, regardless of how the model is planned. It corresponds to 

scenario 2 described in section 2. To analyse the maximum time to cope with an event 

for the model, this work assumes 𝑡1 = 16  and then increasing 𝑡2 . The model first 

estimates the normal future income of the user based on data from 2017 and 2018 

respectively. The income is decayed by 𝜆 =  0.01, 𝜆 =  0.02, 𝜆 =  0.03 at 𝑡1 =  16, 

which indicates that the user is affected by an unexpected event. The model optimises 

the base, recurrent and luxury expenditures respectively based on the data obtained 

from the simulation. The current emergency fund is calculated using (3). As shown in 

Figure 10, Figure 11 and Figure 12, the model is unable to cope with the event when 

t2 increases to a certain value, at which point the value of t2 taken as t2max is the 

limiting time value for the model. If 𝑡2 > 𝑡2𝑚𝑎𝑥, it indicates that the model cannot help 

the user to cope with the event until the end, but only to maximise the time to cope with 

the event. For different users, 𝑡2𝑚𝑎𝑥  is different, which is related to the financial 

situation of the users. Figure 10, Figure 11 and Figure 12 show that in comparison to 

the case without the model, the use of the proposed model enabled the emergency fund 

to cover the event for a longer time. In addition, the larger the 𝜆, i.e. the greater the 

impact of the event on the income of the user, the shorter the maximum time for the 

user to cope with the unexpected event, whether the model is used or not. In general, 

the use of models can make the maximum time to cope with the event longer. 
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Figure 10. The maximum duration of emergency fund maintenance events before and after the 

use of the model (𝜆 = 0.01). (a) The deposit of user 1. (b) The deposit of user 2. (c) The 

deposit of user 3. (d) The deposit of user 4. 

 

Figure 11. The maximum duration of emergency fund maintenance events before and after the 

use of the model (𝜆 = 0.02). (a) The deposit of user 1. (b) The deposit of user 2. (c) The 

deposit of user 3. (d) The deposit of user 4. 

(a) (b) 

(c) (d) 

(a) (b) 

(c) (d) 
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Figure 12. The maximum duration of emergency fund maintenance events before and after the 

use of the model (𝜆 = 0.03). (a) The deposit of user 1. (b) The deposit of user 2. (c) The 

deposit of user 3. (d) The deposit of user 4. 

3.2.4. Scenario 3 

A scenario is also considered in this paper in which it is assumed that the 

unexpected event has occurred at the time 𝑡4 when the model is used. This corresponds 

to scenario 3 described in section 2. To verify the limits of the model response to the 

event, assume 𝜆 =  0.02, 𝑡1  =  0  and 𝑡2  = 30. The model still uses the data 

estimated by OU in the previous experiments. As shown in Figure 13, 𝑡4 indicates the 

length from the time of the event to the current time, where 𝑡4 take different values 

(𝑡4 = 1, 𝑡4 = 5). As shown in Figure 13 and Figure 14, the time to cover the event 𝑡3 

is inversely proportional to 𝑡4 . In addition, some users (e.g. user 2 and user 3) are 

unable to cope with events after the event occurs 𝑡4 time. The result is compatible with 

realistic scenarios, as most users in a poor financial situation are hard-pressed to deposit 

emergency funds under normal circumstances, and even harder after an unexpected 

event. In addition, in comparison to not using the model, the use of the proposed model 

can help users to cope with unexpected events for a longer time. 

 

(a)                                  (b) 

(a) (b) 

(c) (d) 
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(c)                                  (d) 

Figure 13. The effect of using the model on the emergency fund after an event (𝑡4 = 1). (a) 

The deposit of user 1. (b) The deposit of user 2. (c) The deposit of user 3. (d) The deposit of 

user 4. 

 

(a)          (b) 

 
(c)                                  (d) 

Figure 14. The effect of using the model on the emergency fund after an event 𝑡4 = 5. (a) 

The deposit of user 1. (b) The deposit of user 2. (c) The deposit of user 3. (d) The deposit of 

user 4. 

3.2.5. Validity of model 

To verify the validity of the model, the proposed model is used at different times. 

It is assumed that the model is used at 𝑡𝑖 = 1,8,16,24 respectively, and the maximum 

time for the user to cope with the event is compared. Assume λ = 0.02 and 𝑡1 = 16. 
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The model still uses the data estimated by OU in the previous experiment. For different 

values of 𝑡𝑖, the base expenditure, recurrent expenditure and luxury expenditure are 

optimised and an emergency fund is calculated according to (3). The emergency fund 

𝑚̃𝑠𝑖
= 0 indicates that the user is unable to cope with the event. Figure 15 shows the 

situation of the four types of users who cope with unexpected events. In each subplot, 

each curve represents the change in the emergency fund when the user uses the model 

at different times. The point where the curve intersects the 𝑥 = 0 axis indicates the 

emergency fund 𝑚̃𝑠𝑖
= 0 . As shown in Figure 15, 𝑡𝑖  and cope time are inversely 

proportional, which visually demonstrates the validity of the model. 

 

(a)                                  (b) 

 

(c)          (d) 

Figure 15. Compare the emergency fund and cope time in using the model at different times. 

(a) The deposit of user 1. (b) The deposit of user 2. (c) The deposit of user 3. (d) The deposit 

of user 4. 

3.2.6. Dynamic update of the model 

In real scenarios, users may not comply with the suggestions of the model, and this 

is an issue well worth considering for the model. To verify the real-time performance 

of the model, the following realistic assumptions are made. Assume that at a certain 

month, a category of expenditure is not spent as originally suggested and is overspent. 

Specifically, it is assumed that 𝑡6  =  6, the actual base expenditure of the user is 1.2 

times that suggested by the model. Furthermore, the same as in the previous experiment, 

assume λ = 0.02, 𝑡1 = 16 and 𝑡2 = 8. The model still uses the data estimated by OU 
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in the previous experiment. The current emergency fund 𝑚̃𝑠𝑖
 is calculated by (3). As 

shown in Figure 16, during 𝑡 < 𝑡6, the actual and suggested expenditures are equal, 

because the user complies with the suggestions of the model. However, the model gives 

a new suggestion for expenditure at 𝑚𝑜𝑛𝑡ℎ > 6 as the actual base expenditure of the 

user increases at 𝑡 = 6 . Figure 16 (b), (d), (f) and (h) shows that for 𝑡 > 6 , the 

emergency fund plan for the user also changes compared to the original plan, but it 

enables the customer to cope with unexpected events in the end. Figure 16 shows that 

the model can update the plan according to the actual expenditure of the user. 

 

(a)                                  (b) 

 
(c)                                  (d) 

 
(e)                                  (f) 
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(g)                                  (h) 

Figure 16. The actual expenditure of the user changes and the model updates the suggestion in 

real-time. (a) The model suggested expenditure for user 1. (b) The deposit of user 1. (c) The 

model suggested expenditure for user 2. (d) The deposit of user 2. (e) The model suggested 

expenditure for user 3. (f) The deposit of user 3. (g) The model suggested expenditure for user 

4. (h) The deposit of user 4. 

3.3. Monitoring and alerts 

To provide the user with visual monitoring and alerts, the proposed 𝐶𝐼 index is 

used to measure the ability of users to currently cope with risk and the degree of 

deviation from consumption. 𝐶𝐼  is used to measure several categories of users 

separately, as shown in Figure 17. The 𝐶𝐼 = 0 when the user fully complies with the 

plan and 𝐶𝐼 > 0 when the actual and suggested expenditures is equal. A higher 𝐶𝐼 

indicates a higher degree of deviation from the plan in actual expenditure. As in section 

2.2.4, it is assumed that in a certain month, a certain type of expenditure is not spent in 

the way initially suggested and is overspent. Specifically, it is assumed that in 𝑡6  =  6, 

the actual basic expenditure of the user is 1.2 times the model suggestion. Further, as in 

the previous experiment, set λ = 0.02, 𝑡1 = 16 and 𝑡2 = 8. Figure shows two scenarios, 

one assuming the user complies with the plan throughout, and the other assuming that 

the user does not comply with the plan in 𝑡6, when 𝐶𝐼 > 0 in theory. Figure 17 shows 

four users, where 𝐶𝐼 > 0  when 𝑡6  =  6 , indicating that in this month the user 

deviated from the plan and the magnitude of the 𝐶𝐼  can indicate the degree of 

deviation. Since the actual base expenditure for all four users is set to 1.2 times the 

model suggestion, therefore 𝐶𝐼 = 0.03 , which indicates that although the actual 

expenditure of users deviates from the plan, the degree of deviation is acceptable. The 

𝐶𝐼 value should be zero if the user follows the plan exactly. The 𝐶𝐼 value gives the 

user a clear idea of whether their current consumption is reasonable or not. 
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 (a)                                  (b) 

 

 (c)                                  (d) 

Figure 17. The 𝐶𝐼 of the four users. (a) The 𝐶𝐼 of user 1. (b) The 𝐶𝐼 of user 2. (c) The 𝐶𝐼 

of user 3. (d) The 𝐶𝐼 of user 4. 

 

 

4.   Conclusion 

In this paper, a novel emergency fund saving model is proposed to help users to 

save emergency funds to better cope with future unexpected events. A contribution to 

the research literature is proposed in this paper in the following ways. (1) It is the first 

time that the real-life social issues raised by COVID-19 are considered and described 

from an optimization perspective, i.e. how to plan to better cope with future 

contingencies, assuming that they will occur. (2) A model is formulated for solving the 

emergency fund problem and an optimization algorithm is applied to solve this problem, 

providing a targeted solution for users. (3) An index of prevention and an index of 

consumption is proposed to evaluate the reasonableness of consumption and the ability 

of users to cope with events and to provide a real-time monitoring and early warning 

solution. (4) The feasibility and validity of the proposed models are verified based on 

real Open Banking customer data. The experiments compared the emergency fund 

saved by customers and their ability to respond to incidents before and after the use of 
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the model respectively. The experiments shown that it can be effective to use the model 

to plan consumption early, before unexpected events occur, to cope with future 

unexpected events. The proposed model can help customers cope with unexpected 

events or extend the time to cope with unexpected events. In future research, the model 

can be extended to a family emergency fund model, which is also very realistic with 

family members working together to cope with unexpected events. In addition, refining 

time to a day-by-day basis provides customers with real-time planning and monitoring 

of spending. This allows for better cope with unexpected events. The limitations of this 

study are mainly reflected in the following two aspects: (1) Data source: The study uses 

anonymous transaction data provided by FinTech partners and data from the OU 

process simulations for model validation. The model's effectiveness in real-world 

scenarios may vary depending on the accuracy and representativeness of this data. (2) 

Financial behaviour: The model is designed to optimize user expenditure and build up 

an emergency fund. However, it may not fully account for individual financial 

behaviours, preferences, and unexpected changes in income or expenditure. 
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