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Abstract

This paper presents a winning submission to the
SemEval 2022 Task 1 on two sub-tasks: reverse
dictionary and definition modelling. We lever-
age a recently proposed unified model with
multi-task training. It utilizes data symmet-
rically and learns to tackle both tracks concur-
rently. Analysis shows that our system per-
forms consistently on diverse languages, and
works the best with sgns embeddings. Yet, char
and electra carry intriguing properties. The two
tracks’ best results are always in differing sub-
sets grouped by linguistic annotations. In this
task, the quality of definition generation lags
behind, and BLEU scores might be misleading.

1 Introduction

We describe the University of Edinburgh’s partici-
pation in SemEval 2022 Task 1 on comparing dic-
tionaries and word embeddings (CODWOE), orga-
nized by Mickus et al. (2022).1 The task features
two directions: reverse dictionary and definition
modelling. The former is to construct the embed-
ding of a word given its definition gloss, and the
latter is to generate the definition from a word em-
bedding. The organizers provide datasets of word
embedding-definition pairs across three types of
embeddings and five languages. The training data
has a size of 43.6k for each language, which is
smaller than the data released in prior research (Hill
et al., 2016; Chang et al., 2018). However, it pro-
vides a precious chance for a comprehensive study
of lower-resourced reverse dictionary and defini-
tion modelling on languages other than English, as
well as on different embedding architectures.

As our system architecture, we use a recently
proposed unified model, which deals with both
tracks concurrently and achieves superior results
(Chen and Zhao, 2022). The model enables multi-
task training by using word embeddings and defi-
nitions symmetrically. We also create ensembles

1https://competitions.codalab.org/competitions/34022

and handcrafted phrases. Our code implementation
builds on the organizers’ and is publicly available.2

We submit to both reverse dictionary and def-
inition modelling tracks, and cover all language
and embedding combinations. Furthermore, we
examine model generations and scores from three
aspects: embedding architectures, languages, and
linguistic annotations, aiming to figure out how
these affect performance, subject to the models we
have adopted. We finally show the information cap-
tured by different word embeddings and discuss
the limitations in task evaluation and ranking.

Regarding the shared task outcome, we are the
team with the most “gold medals”: out of 18 sub-
tracks, we attain first place in 8, second place in
4 and third place in 4. Our final ranks in the sub-
tracks are detailed in Table 1.

Langauge en es fr it ru

Reverse
dictionary

sgns 2 4 3 2 3
char 3 1 1 1 1

electra 1 n/a 1 n/a 1
Definition modelling 4 3 2 2 1

Table 1: Our ranks in each sub-track.

2 Background

2.1 Datasets

The organizers provide datasets for five languages:
English (en), Spanish (es), French (fr), Italian (it),
and Russian (ru). Also, they supply 256d word
embeddings from three architectures:

• sgns: static (non-contextualized) embeddings
learned using skip-gram with negative sam-
pling (Mikolov et al., 2013);

• char: character-based embeddings from an
autoencoder trained on the spelling of a word;

• electra: contextualized embeddings produced
by a generator-discriminator model (Clark
et al., 2020).

2https://github.com/PinzhenChen/UnifiedRevdicDefmod
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Despite that electra is not available for es and it, the
data still covers 13 combination. All embedding
architectures are trained on comparable corpora for
all languages. Participants are not allowed to use
any external resources, and words are provided as
embeddings rather than actual words.

For each language, data is split into train, valida-
tion, test, and trial sets, at sizes 43.6k, 6,4k, 6.2k,
and 0.2k. Human annotations are included in the
trial split for analysis, but only word embeddings
and definition glosses can be used for training. The
snippet below exemplifies a single data instance
with all possible fields. Training, validation, and
test sets consist of only the bolded key-value pairs;
all fields are found in the tiny trial set.

{"id":"en.trial.2",
"sgns": [2.08729, 0.26177, ...],
"char": [0.38789, 0.19716, ...],
"electra": [-1.47715, -0.47424, ...],
"gloss": "A mixture of other substances or things .",
"word": "cocktail",
"pos": "noun",
"example": "a cocktail of illegal drugs",
"type": "hypernym-based",
"counts": 4187,
"f_rnk": 13245,
"concrete": 1,
"polysemous": 0}

2.2 Evaluation metrics and ranking
Reverse dictionary is evaluated by three metrics:

• MSE: mean squared error between references
and generated embeddings;

• cosine: cosine similarity between references
and generated embeddings;

• ranking score: a percentage score measuring
how many other test instances have a higher
cosine similarity with a generated embedding
than its reference does.

The definition modelling performance is measured
by three too:

• sense-BLEU: sentence-BLEU implemented
in NLTK with smoothing method 4 (Papineni
et al., 2002; Chen and Cherry, 2014);

• lemma-BLEU: the maximum sense-BLEU be-
tween a generated gloss and all possible refer-
ences of the same word and part of speech;

• MoverScore: a neural distance measure based
on multilingual BERT (Zhao et al., 2019).

Finally, participants are ranked by rank scores
instead of scalar numbers from the above metrics.
A rank score is simply the rank of a particular sub-
mission among all submissions. For each sub-track,

the average rank score of all three metrics is used
to rank each team.

3 System Overview

3.1 Model Architecture
We select Chen and Zhao (2022)’s model as our
system architecture because it has demonstrated
great success on previous datasets for reverse dic-
tionary and definition modelling. It is a “unified”
model as it learns both tasks simultaneously, based
on the intuition that a word and its corresponding
definition share the same meaning, thus can be cast
into the same neural semantic space.

We attach a diagram of this architecture as Fig-
ure 1. Technically, the model encodes glosses
or word embeddings as the input, maps it into a
shared representation, then generates embeddings
or glosses accordingly. The shared representation
serves as an autoencoding of both a word and its
definition. Specifically, Linear layers (L) trans-
form embeddings, and Transformer (Vaswani et al.,
2017) blocks (T ) encode or decode definitions.

Shared Linear Layer
Lshare

Linear Layer 
Lin

Transformer Block 
Tin

Linear Layer 
Lout

Transformer Block
Tout

Embedding, Embin Definition, Defin

Definition, DefoutEmbedding, Embout

Definition 
Modelling

Reverse 
Dictionary

Embedding 
Reconstruction

Definition 
Reconstruction

Figure 1: Chen and Zhao’s illustration of the unified model.

3.2 Multi-task training
At the bottom of Figure 1, four trainable objec-
tives are depicted: definition modelling, reverse
dictionary, along with word embedding and defi-
nition reconstruction. The first two are CODWOE
tasks, and the rest are auxiliary autoencoding tasks.
Besides, another objective is to bring the vector
representations of a word and its definition close
in the shared layer. Our overall objective function
combines the five objectives with equal weights.
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3.3 Ensembling for reverse dictionary

Ensembling is a commonly employed technique
to enhance machine learning performance. Specif-
ically for reverse dictionary, we perform average
ensembling: for each test instance, its final predic-
tion is obtained by averaging all the corresponding
predictions from different models. We ludicrously
ensemble up to 21 models, of the same unified
architecture, trained with various random seeds.

3.4 Handcrafting for definition modelling

Upon our initial inspection of definition modelling
on the trial set, the generated definitions are mostly
meaningless hallucinations, scoring a very low
sense-BLEU of about 3. To understand how in-
dicative BLEU is in this case, we handcraft a non-
sensical n-gram submission. The rule is that for
each test instance, we simply concatenate the most
frequent bigram with the most frequent unigram,
computed on all definitions in the training data.
The phrases we prepare for each language are:

en es fr it ru

, or . de la . ) ( . ) ( . в . ,

4 Experiments and Results

4.1 Experimental setup

We tokenize glosses by whitespaces, add tokens
into an open vocabulary, and embed them using
one-hot. Word embeddings are used as provided.
Loss functions are cross-entropy for tokens and
MSE for embeddings. We also try cosine similarity

for embeddings, but the model fails to converge.
For definition modelling, we do not combine vari-
ous embeddings as the input; this might put us at
disadvantage in the team ranking.

While Transformer components are connected
to form a unified model, most hyperparameters re-
main the same as in the provided baseline, which
we specify in Appendix A. Following the original
work, we tie Transformer embeddings and add a
residual connection. We follow the same configu-
rations for all language-embedding combinations.
Training a unified model on an Nvidia GeForce
RTX 2080 Ti takes roughly three hours.

4.2 Results

During the evaluation, we submit the provided base-
line and our unified model. Also, we add ensem-
bles of 17 and 21 models, as well the handcrafted
n-grams. The submission scores, computed by
the task organizers, are reported in Table 2 and 3.
In the direction of reverse dictionary, the unified
model steadily beats the baseline; ensembling adds
a cherry on top for some languages but not all.

In definition modelling, our n-grams surpass
genuine models on en BLEU scores, and even rank
first in fr sense-BLEU among all participants’ en-
tries. This implies that either BLEU scores are not
informative, or the model outputs are as embarrass-
ing as the n-grams. On contrary, MoverScore is ef-
fective in downing the n-grams, probably by penal-
izing disfluency or semantic mismatch. Sadly, our
manual review suggests that most model-generated

en es fr it ru
MSE cosine rank MSE cosine rank MSE cosine rank MSE cosine rank MSE cosine rank

baseline 0.884 0.189 0.439 0.905 0.241 0.462 1.06 0.275 0.360 1.10 0.245 0.451 0.561 0.295 0.432
unified 0.871 0.241 0.326 0.868 0.339 0.271 1.03 0.312 0.302 1.05 0.371 0.197 0.553 0.327 0.340
ensemble 17 0.864 0.225 0.374 0.860 0.347 0.271 1.03 0.305 0.334 1.03 0.373 0.206 0.538 0.381 0.251
ensemble 21 0.865 0.225 0.374 0.860 0.347 0.271 1.03 0.306 0.330 1.03 0.374 0.205 0.538 0.383 0.247

(a) sgns as target embeddings

en es fr it ru
MSE cosine rank MSE cosine rank MSE cosine rank MSE cosine rank MSE cosine rank

baseline 0.161 0.795 0.500 0.551 0.820 0.499 0.404 0.764 0.495 0.400 0.720 0.499 0.144 0.829 0.496
unified 0.143 0.795 0.500 0.480 0.834 0.431 0.347 0.782 0.448 0.337 0.745 0.428 0.119 0.849 0.395
ensemble 17 0.142 0.795 0.500 0.467 0.839 0.424 0.336 0.788 0.429 0.334 0.747 0.429 0.116 0.851 0.390
ensemble 21 0.142 0.795 0.500 0.467 0.839 0.425 0.335 0.789 0.428 0.334 0.747 0.429 0.116 0.852 0.389

(b) char as target embeddings

en fr ru
MSE cosine rank MSE cosine rank MSE cosine rank

baseline 1.34 0.842 0.497 1.18 0.853 0.497 0.898 0.718 0.498
unified 1.32 0.844 0.495 1.08 0.861 0.476 0.846 0.731 0.421
ensemble 17 1.31 0.847 0.490 1.07 0.862 0.479 0.829 0.735 0.417
ensemble 21 1.31 0.847 0.491 1.07 0.861 0.480 0.829 0.734 0.419

(c) electra as target embeddings

Table 2: Reverse dictionary test performance, measured by MSE (↓), cosine similarity (↑), and ranking score (↓).

77



source
embed.

en es fr it ru
MvSc s-B l-B MvSc s-B l-B MvSc s-B l-B MvSc s-B l-B MvSc s-B l-B

n-grams n/a -0.004 3.06 3.81 -0.032 2.73 3.67 -0.176 2.95 3.56 -0.164 1.89 2.74 -0.006 2.65 3.31
baseline sgns 0.100 2.91 3.67 0.088 3.47 5.28 -0.019 2.34 3.38 0.046 4.62 6.97 0.109 4.91 7.14
unified 0.098 3.01 3.80 0.101 3.42 5.14 -0.064 1.59 2.38 0.107 6.01 9.17 0.095 4.59 6.82
baseline char 0.101 2.47 3.02 0.064 2.06 2.88 -0.186 0.11 0.11 0.019 2.09 2.99 0.092 4.01 5.87
unified 0.104 2.83 3.40 0.065 2.14 2.96 0.026 2.42 3.82 0.044 2.93 4.29 0.085 4.80 7.24
baseline electra 0.070 2.53 3.26 n/a -0.075 1.38 1.93 n/a 0.090 3.78 5.45
unified 0.094 2.75 3.43 -0.045 1.60 2.29 0.088 4.08 5.86

Table 3: Definition modelling test results, in MoverScore (↑), sense-BLEU (↑), and lemma-BLEU (↑).

(a) en, sgns (b) en, char (c) en, electra

(d) fr, sgns

gold
baseline
unified

(e) fr, char (f) fr, electra

(g) ru, sgns (h) ru, char (i) ru, electra

Figure 2: Visualization of gold and output embedding distributions across languages and embedding architectures.

glosses are inaccurate. The dissatisfying results
might be due to the modest training data size.

5 Performances across embeddings

Reverse dictionary MSE and cosine are incom-
parable across different embedding types, whereas
ranking scores can tell which embedding archi-
tecture is preferred for indexing and retrieving a
word. A random baseline ranking score is 0.5, and
most char and electra figures, unfortunately, fall
between 0.4 and 0.5. On the other hand, sgns is
more useful as its baseline scores start at around
0.45, and our models can improve these up to 0.25.

We employ principal component analysis (PCA)
to reduce the gold and output embeddings to 2 di-
mensions. Then in Figure 2 we visualize en, fr, and

ru, which come with all embeddings. The unified
model usually outputs to a larger space than the
baseline, hinting at a positive correlation between
output spread and performance. Gold electra has
the most isotropic space, but neither model could
imitate the distribution. Char has a crescent shape
with several clusters inside, which is unlikely to be
cosine-friendly. These problems are alleviated on
sgns, which witnesses the best ranking scores.

Definition modelling Sgns is again the winner,
as models trained with it reach the top in many
metrics. Char is also favourable. This is counter-
intuitive as electra should be fitter, for it retains
more sense-specific knowledge. A possible reason
is that electra needs to go through more training
data than sgns and char to reach perfection.
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6 Performances across languages

As seen in the result and rank tables, our system’s
behaviour is relatively consistent on various lan-
guages, except that English is more challenging.
Assuming that the datasets are of similar quality,
it is questionable to conclude that our model suits
other languages more than English. Moreover, Fig-
ure 2 confirms that the English embeddings are not
more peculiar than those of other languages.

We guess that other teams have focused on En-
glish (e.g. only submitted English), as it is a centred
language in the research community. Instead, our
hyperparameter search is based on the average loss
from all languages, neglecting that the losses are
not directly comparable.

7 Performances across linguistic features

We look into the unified model’s trial set predic-
tions, to interpret how scores vary across diverse
linguistic annotations: polysemy, part of speech
(POS), word length in characters, definition length
in words, and word frequency. For categorical fea-
tures, we group data by annotations; for numerical
features, we divide the data into three subsets, by
percentile ranges: 0-33, 33-67, and 67-100. Statis-
tics of the subsets are in Table 4. We list cosine
similarity for reverse dictionary, and lemma-BLEU
for definition modelling. A generic discovery is
that, the best scores of the two tracks emerge in
differing subsets, regardless of what the feature is.

Linguistic feature Category / Range No. of instances

Polysemy Yes 65
No 135

Part-of-speech

Adj 56
Adv 11
Verb 37
Noun 96

Word frequency
(frequency rank in
the whole corpus)

67 – 11145 67
11146 – 44416 66

44417 – 905726 67

Word length
3 – 5 85
6 – 7 60
8 – 17 55

Definition length
1 – 6 71
7 – 10 65

11 – 39 64

Table 4: Statistics of the different subsets grouped by features.

Polysemy Table 5 exhibits the results for the
words with either one or multiple definitions. It
is slightly easier to achieve better cosine similarity
for unambiguous words. Polysemous words have
better BLEU, and electra has worse BLEU than
sgns. This is illogical, as defining a polysemous

word is harder, especially without context. We hy-
pothesize that BLEU is not reflective, and electra
embeddings might be of sub-optimal quality.

Polysemy sgns char electra
cosine l-B cosine l-B cosine l-B

Yes 0.232 4.34 0.804 3.20 0.836 3.61
No 0.360 2.82 0.813 2.53 0.845 3.09

Table 5: Performances across polysemy annotations for en.

Part of speech Next, numbers for the four POS
tags that exist in en trial, are laid out in Table 6.
Strong cosine similarity is associated with verbs,
although cosine numbers are close, except for ad-
verbs. Adverbs, which have a small sample size,
dominate high lemma-BLEU, perhaps because they
are the least ambiguous.

POS sgns char electra
cosine l-B cosine l-B cosine l-B

Adj 0.319 3.36 0.801 2.76 0.811 2.81
Adv 0.134 6.56 0.798 5.45 0.815 5.93
Verb 0.383 3.20 0.839 2.50 0.853 3.83
Noun 0.314 2.97 0.806 2.53 0.860 2.99

Table 6: Performance across POS tags for en.

Word length We then make three partitions ac-
cording to different word length ranges. Results
in Table 7 suggest that shorter words have higher
cosine, while longer words have higher lemma-
BLEU. Numbers are closer for sgns and electra;
we further investigate on char in Section 8.1.

Word
length

sgns char electra
cosine l-B cosine l-B cosine l-B

short 0.332 3.19 0.845 2.58 0.817 3.10
medium 0.314 3.19 0.842 2.74 0.867 3.41

long 0.327 3.66 0.694 3.00 0.854 3.33

Table 7: Performances across word lengths for en.

Definition length Likewise in Table 8, we sep-
arate the trial data by the gold definition length.
Much higher BLEU is seen when the model defines
words linked with a shorter gold gloss, as generat-
ing a shorter sequence is easier. As we anticipate,
when the model produces word embeddings for
longer glosses, results are better too, potentially
because more information can be encoded.

Definition
length

sgns char electra
cosine l-B cosine l-B cosine l-B

short 0.280 4.51 0.796 3.60 0.824 4.89
medium 0.318 3.48 0.814 2.73 0.848 2.76

long 0.361 1.83 0.822 1.80 0.856 1.93

Table 8: Performances across definition lengths for en.
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Word frequency Finally, Table 9 summarizes
the results of the low, medium, and high frequency
word groups. From the results, we cannot establish
an explicit trend across different task directions,
embeddings, or word frequencies. This implies
that the embedding quality and model performance
might be word frequency-agnostic.

Frequency sgns char electra
cosine l-B cosine l-B cosine l-B

low 0.250 3.53 0.805 2.82 0.850 3.30
medium 0.348 3.54 0.786 2.76 0.864 3.38

high 0.357 2.89 0.839 2.66 0.814 3.10

Table 9: Performances across word frequencies for en.

8 Qualitative Analysis and Discussions

8.1 Observing the crescent with a telescope
After PCA retains the most distinguishing com-
ponents, Figure 2 shows interesting patterns, es-
pecially for char. We randomly label 25 English
words and present them in Figure 3 and Figure 4,
respectively for char and electra. The sub-clusters
in char’s crescent are perfectly in tune with word
lengths; for electra, more frequent words are closer
to the origin. We do not notice a clear trend for
sgns, for which a plot is attached as Figure 5.

We attribute the distinct patterns to the train-
ing paradigms: character-level word autoencoding
for char, and contextualized modelling for electra.
This accounts for the largest cosine gap on char be-
tween long and short words, seen earlier in Table 7.
Intuitively, it is more difficult to train char autoen-
codings for longer words, so, in turn, embeddings
for longer words possess inferior quality.

Within char embeddings, words are grouped by
lengths, so we may utilize this for word retrieval
in future work. Nonetheless, we are unsure of how
length or frequency information aids sense-based
tasks, like definition generation in our context.
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Figure 3: Gold English char embeddings with word labels.

cocktail
schooner

stalwart

pattern

flare

coal

dentistry

mafia
impregnation

landslide

hear

finger
passing

noise
caravan

runnydifferent

secular

abdominal

deplorable

pizzicato

buckler speckless

dread

hoover

Figure 4: Gold English electra embeddings with word labels.
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Figure 5: Gold English sgns embeddings with word labels.

8.2 Sense-BLEU with no sense

We design a sanity check on the representative-
ness of BLEU. On the English trial set, we remove
punctuation marks and NLTK-defined stop words
from both references, and our unified model’s def-
initions generated from sgns. Sense-BLEU drops
from 3.31 to 0.39, and surprisingly, it worsens to 0
with smoothing disabled. Evidently, sense-BLEU
and thereby lemma-BLEU are hugely inflated by
functional tokens as well as smoothing.

8.3 Evaluating task evaluation and ranking

We point out the limitations associated with the
evaluation and ranking process, which can bene-
fit from a rethink. First, as shown above, the two
BLEU metrics may not be practical. Second, some
metrics are correlated, i.e., cosine with the ranking
score, and sense-BLEU with lemma-BLEU. These
problems are amplified by the team ranking pro-
tocol, which averages a team’s ranks in individual
metrics to produce a final standing. It might not be
meaningful to compare the individual metric ranks,
not to mention averaging them since metrics are
not equally weighted.

Nonetheless, we are not in a knowledgeable posi-
tion to propose a better approach, other than clum-
sily displaying ranks in individual metrics.
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