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Abstract

Single-cell RNA sequencing (scRNA-seq) is a powerful technology that allows

researchers to understand gene expression patterns at the single-cell level and

uncover the heterogeneous nature of cells. Clustering is an important tool in

scRNA-seq analysis to discover groups of cells with similar gene expression

patterns and identify potential cell types. Integration of multiple scRNA-

seq datasets is a pressing challenge, and in this direction, a novel model is

developed to extend clustering methods to appropriately combine inference

across multiple datasets. The model simultaneously addresses normalization

to deal with the inherent noise and uncertainty in scRNA-seq, infers cell types,

and integrates multiple datasets for shared clustering in principled manner

through a hierarchical Bayesian framework. A Gibbs sampler is developed

that copes with the high-dimensionality of scRNA-seq through consensus

clustering. The methodological developments are driven by experimental

data from embryonic cells, with the aim of understanding the role of PAX6
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in prenatal development, and more specifically how cell-subtypes and their

proportions change when knocking out this factor.

Keywords: Clustering, Hierarchical Dirichlet process, Log-fold change,

Markov Chain Monte Carlo, Single-cell RNA sequencing

1. Introduction

Technological developments in the detection of genetic sequences, such

as single-cell RNA-sequencing (scRNA-seq), have enabled scientists to mea-

sure gene expression on a single-cell level. As opposed to bulk sequencing

experiments, which measure average expression levels across the bulk cell

population, scRNA-seq enables investigation into the heterogeneity of cells in

the population. Clustering is an important tool in scRNA-seq analysis, which

is used to disentangle this heterogeneity and discover groups of cells with

similar gene expression profiles, yielding potential cell types. Experiments

routinely collect multiple scRNA-seq datasets across samples (e.g. individuals,

experimental conditions, disease subtypes, time points, etc.) and methods to

effectively integrate these datasets are required (as highlighted in the grand

challenges of single-cell data science (Lähnemann et al., 2020)). In this work,

we aim to extend clustering methods to appropriately integrate multiple

datasets in order to identify potential cell types and understand how their

proportions differ across datasets in a principled manner, as well as identify

potential unique and/or rare patterns that may be present in only a subset

of the datasets.

Our work is motivated by experimental data collected to shed light on

the development and fates of embryonic cells and the importance of the
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transcription factor PAX6 in this process (Mi et al., 2013). More generally, a

single cell develops into an estimated 30 trillion cells in humans, and there

is great interest in using single-cell technology to understand this process.

The transcription factor PAX6 plays an important role in early development

and is believed to control the expression of receptors that allow cells to

respond correctly to signals from other cells during development (Cabellaro

et al., 2014). To empirically study the effect of PAX6, the experimental data

was collected at day E13.5 from mouse embryos under control and mutant

conditions in which PAX6 is deleted. By employing integrated clustering

methods for combined inference across the control and mutant datasets, we

can discover potential cell types, which may be shared or unique to a condition,

and utilize statistical tools to examine how their proportions change when

knocking out this factor, providing insight into the role of PAX6 in cellular

development.

However, challenges arise in scRNA-seq data analysis due to the increased

uncertainty and noise in measurements when moving from bulk to single-cell

RNA-seq (Lähnemann et al., 2020). Specifically, only a small fraction of the

total RNA present can be recorded, and thus, the data are very sparse, with

zero values representing either true zero counts or missing values, also called

dropouts. In addition, the fraction of transcripts recovered, also called the

capture efficiency, varies across cells, causing high variability in expression

levels and dropout rates. Moreover, batch effects may be present across

experimental conditions, e.g. the control and mutant group, leading to further

variability in capture efficiencies.

There has been a large amount of research in the field of normalization
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of observed gene counts Vallejos et al. (2017b) to account for dropouts,

imputation, over-dispersion and batch effects. Often methods originally

developed for bulk RNA-seq are employed; however as single cells are highly

heterogeneous, the assumptions of these methods are typically not met,

potentially leading to adverse consequences in downstream analysis Vallejos

et al. (2017b). More recently, methods tailored to scRNA-seq have been

introduced Finak et al. (e.g. 2015); Kharchenko et al. (e.g. 2014); L. Lun

et al. (e.g. 2016), in which normalization is carried out in a preprocessing

step by dividing the raw counts by estimated cell-specific scaling factors (i.e.

capture efficiencies). Subsequently, the data are simply log-transformed, after

adding an offset to avoid the log of zero, in order to apply standard statistical

tools. Alternatively, capture efficiencies can be jointly estimated with other

parameters of interest, such as gene expression, through approaches that

account for the count nature of the data directly, for example, through a

negative-binomial model which also allows for over-dispersion (Vallejos et al.,

2015; Risso et al., 2018; Tang et al., 2020).

In order to cluster cells and identify potential cell types, most approaches

first apply such normalization strategies to the data in a preprocessing step,

followed by clustering in a downstream analysis. In addition, many methods

also employ some form of dimension reduction, typically via principal compo-

nent analysis (PCA) (Senabouth et al., 2017; Satija et al., 2015; Lin et al.,

2017) or t-distributed stochastic neighbour embedding (t-SNE) (Qiu et al.,

2017). Subsequently, a variety of clustering methods have been employed,

such as hierarchical clustering (Senabouth et al., 2017; Lin et al., 2017; Gassen

et al., 2015; Kiselev et al., 2017), k-means (Zurauskiene and Yau, 2016; Yang
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et al., 2017), density-based methods (Ester et al., 1996; Jiang et al., 2016), or

model-based clustering (de Souto et al., 2008; Ji and Ji, 2016; Chandra et al.,

2023). For recent reviews of clustering methods for scRNA-seq data, we refer

the reader to Kiselev et al. (2019) and Petegrosso et al. (2020).

However, separating the workflow into the steps of normalization, dimen-

sion reduction and clustering can adversely affect the analysis, resulting in

improper clustering and characterization of cell subtypes (Prabhakaran et al.,

2016; Vallejos et al., 2017a). More recent proposals integrate normalization,

parameter estimation, and clustering in a combined model-based framework;

not only does this allow for simultaneous recovery of clusters, inference of cell

subtypes and normalization of the data based on cells with similar expression

patterns, but it also provides measures of uncertainty through the model-

based approach. Proposals include 1) Prabhakaran et al. (2016) who employ

a Dirichlet process (DP) mixture of log-normal distributions and demonstrate

the superiority of their approach compared with global normalization followed

by clustering; 2) Sun et al. (2018) and Duan et al. (2019) who consider a DP

mixture of multinomial distributions; and 3) Wu and Luo (2019) who com-

bine the nested-hierarchical DP (Rodriguez et al., 2008) with a zero-inflated

Poisson-log-normal distribution to cluster both subjects and cells in a nested

fashion.

In this direction, we construct a novel Bayesian model which combines

normalization, parameter estimation, and clustering, and integrates multiple

datasets through a hierarchical framework for shared clustering across datasets.

In particular, we build on the bayNorm model (Tang et al., 2020), which

directly accounts for the count nature and overdispersion of the data through
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a negative-binomial model and addresses normalization and imputation by

estimating the capture efficiencies through an empirical Bayes approach.

Specifically, we extend bayNorm to incorporate clustering through mixture

models and integrate multiple datasets for shared clustering with a hierarchical

framework based on the hierarchical Dirichlet process (HDP, Teh et al., 2006).

This allows us to identify potential cell types and infer varying cell-type

proportions across datasets in a principled fashion. Moreover, cells are

clustered based on both mean expression and dispersion, allowing us to

directly account for the mean-variance relationship, which provides robust

estimates, particularly for sparse data and/or small clusters (Eling et al.,

2018).

An important aspect of clustering scRNA-seq data is the discovery and

identification of genes that distinguish one cluster from the others, often

referred to as marker genes (Petegrosso et al., 2020). Most methods identify

marker genes after clustering, by performing some statistical tests, e.g. Satija

et al. (2015) identify marker genes by applying the Wilcoxon rank-sum test

to the expression values and Guo et al. (2015) use a mixture of the rank-

sum test and Welch’s t-test depending on the sample size. Motivated by

Vallejos et al. (2016), we go beyond simple comparison of mean expression

levels; specifically, marker genes that characterize differences between cell

subpopulations are detected based on the log-fold change (LFC) of expression

values and dispersions across subpopulations. Other methods identify marker

genes simultaneously within the clustering process (e.g. Zeisell et al., 2015;

Olsson et al., 2016; Zhang et al., 2018).

In summary, we develop a novel Bayesian model (Section 2) that simulta-
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neously normalizes the data, infers cell subtypes with unique mean expression

and dispersion patterns, and integrates multiple datasets for shared cluster-

ing. A posterior inference scheme that copes with the high-dimensionality

of scRNA-seq through consensus clustering (Coleman et al., 2022), as well

as marker gene detection and posterior predictive checks are developed and

described in Section 3. The effectiveness and robustness of the proposed

model and probabilistic tools for detection of marker genes are demonstrated

on simulated datasets in Section 4, and results on the motivating experimental

data to examine how cell-type proportions change with PAX6 is deleted are

presented in Section 5.

2. The Model

To introduce notation, we observe multiple scRNA-seq datasets over the

same genes, and the raw RNA counts for each dataset d are collected in

the matrix Yd for d = 1, . . . D. Each Yd has elements yc,g,d, with rows

representing cells c = 1, . . . , Cd and columns representing genes g = 1, . . . , G.

The number of genes G is common across the datasets, while the number of

cells Cd is dataset-specific.

2.1. The bayNorm Model

In this work, we build on bayNorm (Tang et al., 2020), an integrated

modelling approach to address simultaneously normalisation (correcting for

variability in capture efficiencies), imputation (accounting for dropouts), and

batch effects. Specifically, bayNorm assumes a binomial likelihood for the

observed raw counts, given the unobserved true latent counts, denoted by
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y0c,g,d, and the cell-specific capture efficiencies, denoted by βc,d:

yc,g,d | y0c,g,d, βc,d
ind∼ Bin(y0c,g,d, βc,d).

The binomial distribution is a simple model for the transcript capture in

scRNA-seq data, assuming the the observed count is obtained through indepen-

dent Bernoulli experiments determining whether each of the true transcripts

is captured, with a constant cell-specific probability (or capture efficiency).

The latent counts are modelled with a negative-binomial distribution:

y0c,g,d | µg, ϕg
ind∼ NB(µg,d, ϕg,d), (1)

with gene-specific mean expression level µg,d and dispersion parameter ϕg,d.

The negative-binomial, which can be represented as a Poisson-gamma mixture,

is required when modelling RNA counts to capture the burstiness and excess

variability observed, compared with a Poisson model. The latent counts can

be marginalized to obtain the model:

yc,g,d | µg,d, ϕg,d, βc,d
ind∼ NB(µg,dβc,d, ϕg,d). (2)

We remark that potential identifiability issues are apparent in the marginalized

model in eq. (2); specifically, if all capture efficiencies are multiplied by a

common factor and all mean expressions are divided by that same factor,

the model is unchanged. To address this, an informative approach is used

to estimate the capture efficiencies, which assumes they are proportional to

cell-specific scaling factors times the estimated global mean capture efficiency

across all cells for each experiment (See Supplementary Note 1, Tang et al.,

2020). We also note that batch effects are mitigated by allowing both the

capture efficiencies and mean expression and dispersion to be batch-specific.
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An important aspect of bayNorm is that it allows imputation of the latent

counts by computing the posterior of y0c,g,d, which is shown to be a shifted

negative-binomial distribution:

y0c,g,d = yc,g,d + ζc,g,d,

where ζc,g,d represents the lost count, which has a negative-binomial distribu-

tion with mean µg,d(1−βc,d)(yc,g,d+ϕg,d)/(µg,dβc,d+ϕg,d) and size yc,g,d+ϕg,d.

This accounts for dropouts through imputation of y0c,g,d, in contrast to other

normalization schemes (e.g. Finak et al., 2015; Kharchenko et al., 2014; L. Lun

et al., 2016), which simply rescale the raw data by the estimated cell-specific

scaling factors (i.e. zero counts remain zero after rescaling).

2.2. The NormHDP model

We develop a novel model (NormHDP) that extends bayNorm to incorpo-

rate shared clustering across multiple datasets through a hierarchical Bayesian

framework. Specifically, we allow for cell-specific mean expression µc,g,d and

dispersion ϕc,g,d in eq. (1) and assume that they are generated from unknown,

discrete, data-specific distributions Pd for d = 1, . . . D, which are modelled

with a hierarchical Dirichlet process (HDP, Teh et al., 2006):

yc,g,d | µc,g,d, ϕc,g,d, βc,d
ind∼ NB(µc,g,dβc,d, ϕc,g,d),

(µc,d,ϕc,d)|Pd
ind∼ Pd, Pd|P

iid∼ DP(αP ) and P ∼ DP(α0P0),

where µc,d = (µc,1,d, . . . , µc,G,d)
T ∈ RG

+ and ϕc,d = (ϕc,1,d, . . . , ϕc,G,d)
T ∈ RG

+

collect the mean expression and dispersion parameters for the c-th cell in

dataset d across all genes; α > 0 and α0 > 0 are the concentration parameters

and P0 is the base measure of the HDP; and DP denotes the Dirichlet process

(Ferguson, 1973) discussed below.
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2.2.1. The Hierarchical Dirichlet Process

The HDP (Teh et al., 2006) defines a distribution over a set of exchangeable

random probability measures and is a widely adopted nonparametric prior due

to its large support, interpretable parameters, and tractability. Realisations

of the HDP are discrete with probability one, and an explicit construction is

provided by the stick-breaking representation:

Pd =
∞∑
j=1

pj,dδθ∗
j
,

with θ∗
j = (µ∗

j ,ϕ
∗
j) and θ∗

j
iid∼ P0,

pj,d = vj,d
∏
j′<j

(1− vj′,d), vj,d|(p1, . . . , pj) ∼ Beta

(
αpj, α

(
1−

j∑
j′=1

pj

))
,

pj = vj
∏
j′<j

(1− vj′) and vj ∼ Beta(1, α0).

Notice that the probability measures Pd share a common set of atoms θ∗
j ,

representing different cell subtypes with unique expression levels µ∗
j and

dispersion ϕ∗
j , but have cell-subtype proportions pj,d that differ across datasets.

The discrete nature will induce ties in the cell-specific values of θc,d =

(µc,d,ϕc,d) with positive probability, and thus a random clustering of the

cells is obtained, where two cells belong to the same cluster if they share the

same expression level µ∗
j and dispersion ϕ∗

j . Moreover, clusters can be shared

across multiple datasets. In fact, the law of this random clustering can be

analytically obtained and described by the hierarchical Chinese restaurant

franchise (Teh et al., 2006). The HDP is a nonparametric prior that avoids

pre-specifying a finite number of cell subtypes and instead assumes the number

of cell subtypes in any finite sample is data-driven and grows with the number

of cells.
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The HDP can also be constructed as the limit of a finite-dimensional HDP

defined as

P J
d =

J∑
j=1

pJj,dδθ∗
j
, (3)

with θ∗
j

iid∼ P0,

(pJ1,d, . . . , p
J
J,d)|(pJ1 , . . . , pJJ) ∼ Dir(αpJ1 , . . . , αp

J
J) (4)

and

(pJ1 , . . . , p
J
J) ∼ Dir

(α0

J
, . . . ,

α0

J

)
. (5)

Here, J represents the truncation level of the finite-dimensional approximation.

As shown in Teh et al. (2006) and from the results of Kingman (1975), it

follows that P J
d ⇒ Pd.

Figure 1 illustrates a simulation from the model in a simple setting with

only one gene and a truncation at J = 5 cell subtypes. On the left, the

mean and dispersion for each cell subtype is depicted, with size reflecting the

cell-subtype proportion pj of the base measure. The concentration parameter

of the base measure is α0 = 5; as α0 →∞, the Dirichlet prior degenerates to

a point mass at (1/J, . . . , 1/J), while as α0 → 0, the Dirichlet prior places

all mass on the vertices of the simplex. Thus, large values of α0 favor equal

cell-subtype proportions in the base measure and small values of α0 result

in a large proportion for a single cell subtype. On the right of Figure 1,

the cell-subtype proportions across two datasets are depicted for varying

values of the HDP concentration parameter α, which controls the similarity

of the data-specific cell-subtype proportions pj,d to the overall cell-subtype
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Figure 1: Simulation from the finite-dimensional HDP model, with G = 1 genes and J = 5

cell subtypes. Left: illustration of the mean and dispersion for each cell subtype, with size

reflecting the cell-subtype proportion in the base measure. Right: cell-subtype proportions

across two datasets for varying values of α. For a large value of α = 100, the cell-subtype

proportions for both datasets are similar to those of the base measure. As α decreases, the

cell-subtype proportions become more distinct across datasets and degenerate to a single

cell subtype per dataset as α→ 0.

proportions pj of the base measure. For a large value of α = 100, the cell-

subtype proportions for both datasets are similar to those of the base measure.

As α decreases, the cell-subtype proportions become more distinct across

datasets, and each dataset will contain only a single cell subtype in the limit

as α→ 0. Based on initial discussions with neuroscientists, such clustering

structure reflects the anticipated clustering in the motivating data; specifically,

we anticipate similar cell-subtypes, with some difference across control and

mutant conditions, and possibly the presence of small unique cell-subtypes.
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2.2.2. Prior Specification

The NormHDP model is completed with prior specification for the other

parameters, namely, the base measure P0 of the HDP, the capture efficiencies

βc,d and additional hyperpriors (e.g. for α, α0).

The base measure P0. The prior for the atoms θ∗
j , which characterize the

different cell subtypes, is determined by the base measure P0 of the HDP. One

main difference with other proposals in literature (e.g. Wu and Luo (2019))

is that our model allows both the mean expression and dispersion to be cell

subtype-specific, i.e. the atoms are θ∗
j = (µ∗

j ,ϕ
∗
j). The motivation for this is

two-fold; it allows 1) more general patterns to characterize differences between

cell subpopulations and 2) inclusion of prior dependence between expression

levels and dispersions to account for the mean-variance relationship. Recent

studies have demonstrated the utility of exploring more general patterns,

beyond focusing solely on differential expression (Korthauer et al., 2016). For

example, Vallejos et al. (2015) and Vallejos et al. (2016) develop tools to assess

differential variability, which has led to novel biological insights (Martinez-

Jimenez et al., 2017). Moreover, a strong relationship is typically observed

between mean expression and variability (Brennecke et al., 2013), suggesting

that marker genes which are differentially expressed across subpopulations

tend also to be differentially dispersed. Also, including prior dependence

between expression levels and dispersions has shown to be important for

sparse data and/or small sample sizes (Eling et al., 2018); for our motivating

dataset, we show that gene counts are truly sparse (Appendix C). Based on

preliminary analysis of our motivating dataset (Appendix C), a parametric

linear dependence appears sensible (in contrast to the nonlinear dependence
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in Eling et al. (2018)). Thus, the base measure is assumed to have the form:

P0(dµ
∗) =

G∏
g=1

log-N(µ∗
g|mu, a

2
u)

and

P0(dϕ
∗|µ∗) =

G∏
g=1

log-N(ϕ∗
g|b0 + b1 log(µ

∗
g), a

2
ϕ). (6)

To enhance flexibility and assess robustness, we also consider a simple ex-

tension of eq. (6) based on a quadratic prior relationship between the mean-

dispersion parameters.

Hyperparameters of P0. For the hyperparameters of the mean-dispersion

model b = (b0, b1) and a2ϕ, we set b|a2ϕ ∼ N(mb, a
2
ϕVb) and a2ϕ ∼ IG(ν1, ν2),

with default values of mb = 0 , Vb = I, ν1 = 2, and ν2 = 1 (Eling et al.,

2018). We also consider an empirical prior by setting the values of mb, v1 and

v2 based on the estimated linear relationship using the bayNorm estimates

of the mean and dispersion parameters. The parameters mu and a2u and can

also be set to default values of mu = 0 and a2u = 0.5 (Eling et al., 2018) or set

empirically based on the mean and range of the mean expression estimates

from bayNorm.

Capture efficiencies. Vallejos et al. (2017b) acknowledge the inherent random-

ness in the capture efficiencies; if cells were processed twice, the related scaling

factors would vary. Thus, instead of using fixed estimates as in bayNorm,

we model the capture efficiencies as βc,d
iid∼ Beta(aβd , b

β
d) to account for their

randomness. However, as highlighted in Section 2.1, identifiability issues exist.

Interestingly, parallels can be made with other domains, namely, the bias
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issues in scRNA-seq due to dropouts are akin to under-reporting of events

for economic, health, and social indicators (Lopes de Oliveira et al., 2022).

In this field, compound models are considered, which involve modelling the

latent true event count (similar to the latent count y0c,g,d) and associated

reporting probabilities (related to the capture efficiencies). To mitigate iden-

tifiability issues, introducing prior information on the reporting probabilities

is necessary. One approach is to make use of a validation dataset on the

reporting process (Whittemore and Gong, 1991; Stamey et al., 2006; Dvorzak

and Wagner, 2016), however this is rarely available. Alternatively, informative

priors based expert knowledge have been successful (Moreno and Giron, 1998;

Schmertmann and Gonzaga, 2018), as well as a more recent hierarchical

approach with an informative prior on only the mean reporting probability

(Stoner et al., 2019). Following this framework, we employ informative priors

by setting aβd and bβd empirically based on the mean and variance of the β̂c,d

obtained from bayNorm. As suggested by one reviewer, the capture efficiencies

also play an interesting role in inducing dependence across the genes, and a

further discussion on this is provided in Appendix A.1.

Concentration parameters. The HDP concentration parameters influence the

overall number of cell subtypes and the amount of information borrowed

across datasets. Thus, we infer and account for their uncertainty through the

hyperpriors: α ∼ Gam(1, 1) and α0 ∼ Gam(1, 1).

3. Posterior Inference

Due to the infinite number of parameters, inference schemes for HDP

models often rely on an approximation based on a finite truncation to J <∞
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components. Truncations based on the stick-breaking construction (Ishwaran

and James, 2001) are widely used but can suffer from an inflated proportion pJ

for the last atom if the truncation level is not sufficiently large. Alternatively,

the finite-dimensional construction in eq. (3) can be used, which provides

a good approximation of the HDP for sufficiently large J (see Ishwaran

and Zarepour (2002) for thorough study of the finite-dimensional Dirichlet

approximation to the DP); moreover, it has the nice feature of exchangeability

of the proportions pj. We further note that finite-dimensional Dirichlet

approximations belong to the class of over-fitted or sparse mixtures, which

have shown to be consistent for the true number of clusters, when this

number is finite but unknown (Rousseau and Mengersen, 2011). In contrast,

DP mixtures can lead to posterior inconsistency for the number of clusters,

if the true number of clusters (in an infinite sample) is finite. However,

this consistency requires correct specification of local likelihood (Miller and

Dunson, 2015).

Thus, focusing on the finite-dimensional approximation of the HDP in eqs.

(3)-(5) and introducing the latent allocation variables zc,d, where zc,d = j if

θc,d = θ∗
j , we define the augmented model:

yc,g,d | zc,d = j, µ∗
j,g, ϕ

∗
j,g, βc,d

ind∼ NB(µ∗
j,gβc,d, ϕ

∗
j,g),

zc,d|(pJ1,d, . . . , pJJ,d)
ind∼ Cat(pJ1,d, . . . , p

J
J,d),

(pJ1,d, . . . , p
J
J,d)|(pJ1 , . . . , pJJ) ∼ Dir(αpJ1 , . . . , αp

J
J),

(pJ1 , . . . , p
J
J) ∼ Dir

(α0

J
, . . . ,

α0

J

)
,

µ∗
j,g

iid∼ log-N(mu, a
2
u), ϕ∗

j,g|µ∗
j,g

ind∼ log-N(b0 + b1 log(µ
∗
j,g), a

2
ϕ),

βc,d
iid∼ Beta(aβd , b

β
d)
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Figure 2: Graphical model of NormHDP with two datasets. Observed gene counts are

shown in grey circles and latent genes counts are shown in circles with dashed outlines.

Shapes with white fills are for global parameters, and shapes with yellow and blue fills

are specific to dataset 1 and 2, respectively. Circles denote parameters of interest, and

diamonds denote fixed hyperparameters.

and hyperpriors: α ∼ Gam(1, 1); α0 ∼ Gam(1, 1); and (b, a2ϕ) ∼ NIG(mb,Vb, ν1, ν2).

A graphical representation of the NormHDP model is shown in Figure 2.

A Markov chain Monte Carlo (MCMC) algorithm is developed for full pos-

terior inference. The algorithm is a Gibbs sampler which produces asymptoti-

cally exact samples from the posterior by iteratively sampling the parameters

in blocks. For the allocation variables (zc,d), mean-dispersion hyperparameters

(b, α2
ϕ) and dataset-specific component probabilities (pd = (pJ1,d, . . . , p

J
J,d)),

the full conditional distributions correspond to standard distributions and

can be sampled from directly. For the remaining variables, samples are ob-

tained via adaptive Metropolis-Hastings (Griffin and Stephens, 2013). Full

implementation details are provided in Appendix A. We note that each

iteration of the Gibbs sampling algorithm has a computational complexity of
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O((C1 + · · ·+ CD)JG).

However, while in theory, running a single long MCMC chain provides

convergence to the posterior of interest, in practice, this produces unsat-

isfactory results, due to the computational issues that arise in clustering

high-dimensional data (Celeux et al., 2019), such as sRNA-seq. Namely, in

high-dimensions, MCMC chains are highly sensitive to initialization and tend

to get trapped very quickly in local modes, with little to no movement in

the cluster allocations after the burn-in period. To overcome such issues and

reduce computational cost, Coleman et al. (2022) develop a general scheme

to explore the posterior based on an ensemble of Bayesian clustering results.

The basic idea is to run a large number of chains (referred to as the width)

and a small number of iterations (called the depth ). Following Coleman et al.

(2022), the width and depth are selected by monitoring the mean absolute

difference in the posterior similarity matrix (see Section 3.2), comparing suc-

cessive iterations for fixed width to determine when the chains have reached

the local modes and successive widths for fixed depth to understand if the

uncertainty in the clustering has stabilized. Figure 3 provides an example

for the data in Section 5, highlighting the utility of this approach to improve

exploration of the posterior. After combining the MCMC draws across the

multiple chains, in the following, we use T to denote the total number of

MCMC draws and use the superscript notation z
(t)
c,d to denote the t-th sample.

The MCMC is re-run conditional on the clustering estimate from consensus

clustering to make further inference on the patterns within each cluster; it is

important to note that these inferences are conditioned on the fixed clustering

and thus do not account for its uncertainty.

18



Figure 3: The mean absolute difference between the sequential consensus matrices for the

experimental scRNA-seq data, for different chain widths of 10, 30, 50, 70, 80, 100 and chain

depths of 10, 20, . . . , 100. The mean absolute difference levels off before 100 iterations.

3.1. Latent Counts

To estimate the normalized count of gene g in cell c, we report the posterior

mean of the latent count y0c,g,d, along with posterior summaries to characterize

uncertainty. Following Tang et al. (2020), it can be shown the posterior of

the latent count given the allocation variables, capture efficiencies and unique

parameters has a shifted negative-binomial distribution:

y0c,g,d = yc,g,d + ζc,g,d,

where ζc,g,d represents the lost count, which has a negative-binomial distri-

bution with mean µ∗
zc,d,g

(1− βc,d)(yc,g,d + ϕ∗
zc,d,g

)/(µ∗
zc,d,g

βc,d + ϕ∗
zc,d,g

) and size

yc,g,d+ϕ∗
zc,d,g

. Thus, the posterior mean of the latent count given the allocation

variables, capture efficiencies and unique parameters can be written as:

E[y0c,g,d|yc,g,d, zc,d = j, βc,d,µ
∗
j ,ϕ

∗
j ] = yc,g,d

µ∗
j,g + ϕ∗

j,g

µ∗
j,gβc,d + ϕ∗

j,g

+ µ∗
j,g

ϕ∗
j,g(1− βc,d)

µ∗
j,gβc,d + ϕ∗

j,g

,

19



and the posterior mean of the latent counts can be approximated by the

MCMC average:

E[y0c,g,d|Y] ≈ 1

T

T∑
t=1

E[y0c,g,d|yc,g,d, z
(t)
c,d = j, β

(t)
c,d,µ

∗ (t)
j ,ϕ

∗ (t)
j ],

where Y = (Y1, . . . ,YD). We can also examine the full posterior of the latent

counts and compute credible intervals by imputing multiple values of y0c,g,d

from the shifted negative-binomial distribution at each MCMC draw.

3.2. Clustering

To summarize the posterior of the allocation variables and uncertainty in

the clustering structure, we construct the posterior similarity matrix (PSM)

to measure the similarity between individual cells, both within and across

datasets. In particular, each element of the posterior similarity matrix,

PSMc,c′ , represents the posterior probability that cells c and c′ are clustered

together, which is approximated by

PSMc,c′ ≈
1

T

K∑
t=1

I(z(t)c = z
(t)
c′ ).

Cells are ordered in blocks corresponding to the different datasets; thus,

the diagonal blocks represent the posterior similarity matrix within each

dataset and the off-diagonal blocks represent the posterior similarity matrix

across datasets. Within each block, cells are sorted based on hierarchical

clustering to improve visualization. Based on the posterior similarity matrix,

we obtain a point estimate of the clustering structure by minimizing the

posterior expected variation of information (Wade and Ghahramani, 2018).

To subsequently, analyze the patterns and uncertainty within each cluster for
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this optimal clustering, an additional MCMC draws values of all parameters

with the allocation variables fixed at the optimal clustering (see Appendix

A).

3.3. Detecting Marker Genes

Motivated by Vallejos et al. (2016), probabilistic tools are developed based

on the LFC to detect marker genes that distinguish between different cell

types. Vallejos et al. (2016) focus on comparing two cell populations; thus, a

simple extension is proposed which takes all clusters into consideration. Going

beyond comparison of mean expression levels, we aim to detect marker genes

both in terms of differential mean expression (DE) and differential dispersion

(DD). For example, DD allows identification of genes whose expression may

be less stable in one cell subtype.

We define two types of marker genes; global marker genes differ between

at least two clusters, whereas local marker genes for a given cluster differ

compared with all other clusters.

Given the clustering allocation Z = (zc,d)
Cd,D
c=1,d=1 of all cells across all

datasets, we first focus on comparing the mean expression and dispersion

across two clusters j and j′. We highlight that different dispersion param-

eters quantify changes in heterogeneity across cell subpopulations, while

also accounting for the well-known mean-variance relationship in count data

(Vallejos et al., 2016). Figure 4 depicts four scenarios for a single gene: on

the top right, cells are differently expressed across the cell types with similar

heterogeneity; on the bottom left, overall expression levels are similar but less

stable with varying heterogeneity; and on the bottom right, cell types differ

in both overall expression and heterogeneity. The mean-variance relationship
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(a) Density of hypothetical latent counts

(b) Different types of global marker genes

Figure 4: Top: Density of hypothetical latent counts across the four combinations of

non-DE/DE and non-DD/DD genes. For illustration, we have assumed a total of 2 clusters.

Bottom: a demonstration of four different types of global marker genes with 3 clusters.

induces apriori correlation in the chance of DE and DD, i.e. genes that are

DE tend also to be DD, but Figure 4 demonstrates how the other cases also

occur.

To measure these changes, the posterior probability associated with the

LFC decision rule is computed for each pair of clusters j and j′ and each gene

g. Specifically, let Pg(j, j
′) and Lg(j, j

′) be the posterior tail probabilities that

the absolute LFC of the mean expression and dispersion between clusters j
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and j′ is greater than the threshold τ0 and ω0, respectively;

Pg(j, j
′) = Pr

(∣∣∣∣∣log
(

µ∗
j,g

µ∗
j′,g

)∣∣∣∣∣ > τ0 | Z,Y

)

and

Lg(j, j
′) = Pr

(∣∣∣∣∣log
(

ϕ∗
j,g

ϕ∗
j′,g

)∣∣∣∣∣ > ω0 | Z,Y

)
.

In light of the correlation between the unique parameters, we also developed

tools to compare the LFC in the residual overdisperion (Eling et al., 2018)

(method outlined in Appendix A.6).

3.3.1. Global Marker Genes

Global marker genes are identified by considering the maximum of the

posterior tail probabilities across all pairs of clusters:

P ∗
g = max

(j,j′)
Pg(j, j

′) and L∗
g = max

(j,j′)
Lg(j, j

′).

Genes with high values of P ∗
g or L∗

g have a high posterior probability that the

LFC in the mean expression or dispersion is greater than a threshold across

at least two clusters. Formally genes are classified as DE if the maximum

probability, P ∗
g , is greater than the threshold value αM , and genes are classified

as DD if the maximum probability, L∗
g, is greater than the threshold value αD.

By default, these threshold values (αM , αD) are set to control the expected

false discovery rate (EFDR) to 5 percent (Vallejos et al., 2016). In our context,

these are given by:

EFDRαM
(τ0) =

∑G
g=1

(
1− P ∗

g (τ0)
)
I(P ∗

g (τ0) > αM)∑G
g=1(1− P ∗

g (τ0))

23



and

EFDRαD
(ω0) =

∑G
g=1

(
1− L∗

g(ω0)
)
I(L∗

g(ω0) > αD)∑G
g=1(1− L∗

g(ω0))
.

Global marker genes can be computed by conditioning on the clustering

estimate to detect important genes that distinguish between the identified

cell subpopulations. Alternatively, uncertainty in the clustering structure can

also be incorporated by integrating the maximum probability P ∗
g or L∗

g with

respect to the posterior of Z, which can be approximated by averaging P ∗
g or

L∗
g across the MCMC samples.

3.3.2. Local Marker Genes

While global marker genes distinguish between at least two cell subtypes,

one might also be interested in identifying local marker genes, or cluster-

specific marker genes, with unique expression or dispersion for a specified

cell-subtype j in comparison with all others. In this case, the minimum of

the posterior tail probabilities is computed:

P ∗
g,j = min

j′ ̸=j
Pg(j, j

′) and L∗
g,j = min

j′ ̸=j
Lg(j, j

′).

For cluster j, genes with high values of P ∗
g,j or L∗

g,j have a high posterior

probability that the LFC in the mean expression or dispersion is greater than

a threshold between cluster j and any other cluster. If the minimum posterior

tail probability is greater than a threshold (calibrated through EFDR), the

gene is detected as locally DE or DD for the specified cluster. Figure 5

illustrates the hypothetical latent count density for two genes and four cell

subtypes. Both genes are global markers, but the gene on the left is a local

marker for cell-subtypes 3 and 4 only, while the gene on the right is not a

local marker for any cell subtype.
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Figure 5: Density of hypothetical latent counts across four cell subtypes for two genes.

Both genes are global markers, while the gene on the left is a local marker for cell-subtypes

3 and 4 and the gene on the right is not a local marker for any cell subtype.

3.4. Detecting Differences in Datasets

From NormHDP, it is possible to investigate if differences exist between

the dataset-specific component probabilities. Specifically, given the clustering

estimate, for each cluster j and for each pair of datasets d and d′, we compare

their component probabilities, pj,d and pj,d′ , by computing the posterior

probability

π(pj,d > pj,d′ | D) ≈
1

T

T∑
t=1

1(p
(t)
j,d > p

(t)
j,d′).

In the scRNA case, if the posterior probability is less than 0.05, we classify the

cluster as being over-represented in the mutant group. If the posterior proba-

bility is greater than 0.95, we classify the cluster as being under-represented

in the mutant group. The remaining clusters are the stable clusters.

3.5. Posterior Predictive Checks

Posterior predictive checks are used to assess the fit of the model together

with the inferred parameters to the observed data. In particular, we generate

replicated datasets from the posterior predictive distribution (approximated
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based on the MCMC draws) and compare key statistics between the observed

and replicated data, such as the mean and standard deviation of the log counts

(shifted by 1) and the dropout probabilities. Following Lewin et al. (2007) in

the context of gene expression data, we employ mixed posterior predictive

checks, where the posterior is used to simulate a subset of parameters and the

prior is used to simulate the remaining variables. In particular, we generate

replicated datasets after first simulating dispersions (ϕ) from their log-normal

prior given the posterior samples of b, α2
ϕ and µ. Pseudo-code for generating

replicated datasets is given in Appendix A.5.

4. Simulation Study

We consider three simulated scenarios to examine different aspects of our

model. In Simulation 1, data is simulated based on the proposed model,

and we investigate the ability of the model to recover the true parameters

and clustering. In Simulation 2, we study robustness of the model under

misspecification of the true mean-variance relationship. In Simulation 3,

we assume that only a fraction of genes distinguish between clusters to

demonstrate the effectiveness of the proposed probabilistic tools for detecting

global marker genes. For each of the simulated scenarios, we run 100 parallel

chains, each with 100 iterations to obtain the clustering estimate; in all runs,

the algorithm is able to find the correct clustering in less than four iterations.

The subsequent MCMC with fixed clustering is run for T = 8, 000 iterations,

following a burn-in of 5, 000 and using thinning of 5; traceplots (shown in

Appendix B.4) suggest convergence.
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4.1. Simulation 1 and 2

In Simulation 1, we assume the true relationship between the mean-

dispersion parameters is linear on the log-scale, while in Simulation 2, we

assume it is non-linear and non-quadratic, but monotonically increasing on

the log-scale (Figure 6). For both, we simulate data with C1 = 50 cells in

dataset 1 and C2 = 100 cells in dataset 2, with G = 50 genes. We assume

there are 3 clusters, with true cell proportions (p1,1, p2,1, p3,1) = (0.6, 0.4, 0) for

dataset 1 and (p1,2, p2,2, p3,2) = (0.4, 0, 0.6) for dataset 2; simulation details

are provided in Appendix B.1 and Appendix B.2.

Note that to avoid simulating datasets with empty cells and genes that are

not expressed, we generate the true capture efficiencies with a mean of 0.70

which is much higher than the default value of 0.06 for droplet based protocol

(Klein et al., 2015). The capture efficiencies in bayNorm are estimated as

proportional to cell-specific scaling factors with the global mean set to this

default value (Supplementary Note 1 of Tang et al., 2020, and also detailed

in Appendix A.4); thus, the empirical prior based on the bayNorm capture

efficiencies estimates has prior mean equal to the default value. Due to

the identifiability issues discussed in Section 2, recovery of the true capture

efficiencies is difficult if the true mean is far from the prior. Hence, for this

task, we employ more informative priors by setting the global mean capture

efficiency in bayNorm to 0.70. In Appendix B.6, we demonstrate good

recovery of the true mean capture efficiencies under our Bayesian approach

even when the prior mean is slightly misspecified, which is instead problematic

for bayNorm.
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4.1.1. Results

For both simulations, we investigate prior sensitivity by comparing general

priors based on standard hyperparameter values with empirical priors based

on hyperparameters specified using initial bayNorm estimates (as described in

Section 2.2.2). In addition, to enhance flexibility, we consider both linear and

quadratic relationships in the prior model for the mean-variance relationship.

Results presented focus on the quadratic model with empirical priors (the

remaining results are shown in Appendix B.4). But, we highlight that

recovery of the true clustering is robust to the choice of priors and model

specification (Table 1); for Simulation 2, however, the quadratic model is

better in recovering the true mean-dispersion relationship in comparison to

the linear model. In Table 1, we also compare the clustering solutions based

on our proposed model (and under the different settings) to three competing

methods for clustering scRNA-seq data: 1) Seurat (Satija et al., 2015), 2)

CIDR (Lin et al., 2017), and 3)TSCAN (Ji and Ji, 2016). The VI and

adjusted Rand index (ARI) are used to compare the clustering solutions with

Table 1: Comparison of the different clustering solutions based on the VI and ARI to

measure distance between the true and estimated clustering for Simulations 1 and 2.

General Empirical
Seurat CIDR TSCAN

Linear Quadratic Linear Quadratic

Simulation 1 - VI 0.00 0.00 0.00 0.00 0.31 1.30 0.58

Simulation 2 - VI 0.00 0.00 0.00 0.00 0.31 1.38 0.75

Simulation 1 - ARI 1.00 1.00 1.00 1.00 0.87 0.28 0.72

Simulation 2 - ARI 1.00 1.00 1.00 1.00 0.87 0.26 0.63
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Figure 6: Summary of Simulation 1 (top row) and 2 (bottom row). Left: the true (red) and

posterior (grey) relationship between mean-dispersion parameters on the log-scale. Middle:

true similarity matrix. Right: posterior similarity matrix.

the truth, where a small value of VI and large value of ARI indicate good

performance. In both simulations, NormHDP performs the best, followed by

Seurat, TSCAN and CIDR.

Posterior predictive checks are presented in Figure 7 and 8 for Simulation

1 and 2, respectively. For the simulated and replicated datasets, we use kernel

density estimation (KDE) to estimate densities of key statistics, namely the

1) mean of log shifted counts, 2) the standard deviation of log shifted counts

and 3) the dropout probabilities of each gene. The KDE of the simulated

dataset is similar to the KDEs of the replicated datasets, highlighting the

sensible fit of the proposed model.
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Figure 7: Posterior predictive checks for Simulation 1. Grey and red lines are the KDEs of

the replicated and true simulated datasets, respectively. Left to right: the density of mean

of log shifted counts, standard deviation of log shifted counts and dropout probabilities.

4.2. Simulation 3

For Simulation 3, we generate 20 replicated sets of data, with C1 = 300

and C2 = 400 cells, for dataset 1 and 2, respectively, with G = 150 genes. We

assume a total of 3 cell subtypes, with proportions (p1,1, p2,1, p3,1) = (0.8, 0.2, 0)

and (p1,2, p2,2, p3,2) = (0.8, 0, 0.2) for dataset 1 and 2, respectively. In addition,

we assume that the first 70 percent of the genes are both DE and DD,

and remaining genes are both non-DE and non-DD. Unique parameters and

allocation variables used to simulate each set of data are identical across

replicates. We also assume that the mean expressions (µj,g) for DE genes

follows a log-normal distribution with log-mean mj for each cluster j and

m1:J = (−3, 5, 8). The true relationship between mean and dispersions is
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Figure 8: Posterior predictive checks for Simulation 2. Grey and red lines are the KDEs of

the replicated and true simulated datasets, respectively. Left to right: the density of mean

of log shifted counts, standard deviation of log shifted counts and dropout probabilities.

assumed to be linear on the log-scale. Simulation details are provided in

Appendix B.3. In this case, we focus on the linear model with empirical priors.

Figure 9 shows that NormHDP recovers well the true mean and dispersion

parameters (result based on single set of data). In addition, heat-maps for

the true and estimated latent counts show similar patterns (Appendix B.5).

Using the global marker gene detection method proposed in Section 3.3,

the range of the false discovery rate (FDR), across the 20 replicated sets of

data, corresponding to the mean expressions is (0, 0.019) and dispersions is

(0, 0.045), hence NormHDP is sufficient in detecting the true global marker

genes. Relationships between mean absolute LFCs and tail probabilities for a

single set of data are shown in Figure 10, in which case the FDR is 0 and
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Figure 9: Simulation 3: heat-maps for true and estimated mean expressions and dispersions.

0.028 for the mean expression and dispersion, respectively. The thresholds τ0

and ω0 for computing the LFC are set to 1 for both DD and DE.

5. Experimental Data on Embryonic Cell Development

The experimental scRNA-seq datasets (Manuel et al., 2022) analyzed in

this paper were collected and prepared by Dr. Tan Kai Boon and the research

group lead by Prof. D. Price and Prof. J. Mason at the Centre for Discovery

Brain Sciences, University of Edinburgh. The study aims to shed light on

the importance of the transcription factor PAX6 in the development and

fates of embryonic cells. Tamoxifen administration was carried out at day
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Figure 10: Simulation 3: relationship between the mean absolute LFC and tail probability

for Simulation 3. The horizontal dashed lines represent the threshold for classifying DE

and DD based on the tail probabilities. True DE or DD genes are represented in red and

true non-DE or non-DD genes coloured grey.

E9.5, with mouse embryos sacrificed and dissected at day E13.5. Thus, the

resulting scRNA-seq data, collected at day E13.5, is obtained under control

(HET) and mutant (HOM) conditions in which PAX6 has been deleted.

Standard pre-processing for scRNA-seq is carried out, following procedures

in (Hoffman, 2023), to remove non-informative genes and cells from the raw

datasets to improve model performance and avoid misinterpretation; pre-

processing details are included in Appendix C.1, which involves selecting cells

and genes based on quality control metrics (Stuart et al., 2019). After pre-

processing, the HET and HOM datasets contain C1 = 3, 096 and C2 = 5, 282

cells, respectively, both with G = 2, 529 genes. To investigate the role of

PAX6 and differences when PAX6 is not present, the proposed NormHDP

model is employed for integrative clustering across the control and mutant

datasets. This allows for identification of cell subtypes, that can be shared

across datasets, and detection of differences in cell-subtype proportions when
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PAX6 is knocked out, providing an understanding of how PAX6 influences

the presence/absence of cell subtypes.

For inference, we run consensus clustering with 100 parallel chains and 100

iterations in each chain, which as shown in Figure 3, is sufficient to explore

the posterior clustering structure. After obtaining a point estimate of the

clustering by considering MCMC draws from all chains, we run an additional

MCMC chain to infer the remain parameters with T = 8, 000 iterations,

burn-in of 5000, and thinning of 5. For robustness to non-linearity, we focus

on the quadratic model for the mean-variance relationship with empirical

priors and fix the truncation level to J = 30. Traceplots demonstrating

mixing and convergence are shown in Appendix C.2. In all chains, less

than 30 components are occupied, thus J = 30 provides a sufficient level of

truncation.

A heatmap of the posterior similarity matrix in Figure 11 provides a

visualization of the clustering structure and its uncertainty, both within and

across the control and mutant datasets. The estimated clustering which

minimizes the variation of information contains 22 clusters, 19 of which are

shared between HET and HOM; while this clustering estimate is clearly

observed in Figure 11, there is also some apparent uncertainty on whether

to further split some clusters. In the following, we examine the patterns

within each cluster based on the subsequent MCMC run with fixed clustering;

however, we note that this does not account for uncertainty in the clustering.

To further study the clustering estimate and its differences between the

control and mutant groups, we determine which cell subtypes have a high

posterior probability of differing in the proportions (Section 3.4). Specifically,
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Figure 11: Left: posterior similarity matrix without distinguishing between cells from

different datasets. Right: posterior similarity matrix, grouped by HET and HOM.

we define as cell subtype as stable if no difference is detected, over-represented

in the mutant group if the proportion is larger in the mutant group with high

posterior probability, and under-represented in the mutant group if the propor-

tion is smaller in the mutant group with high posterior probability. Following

this approach, cell subtypes 1, 3, 5, 7, 8, 10, 11, 15, 18 are over-represented in

the mutant group, cell subtypes 13, 14, 16, 20, 22 are stable and cell subtypes

2, 4, 6, 9, 12, 17, 19, 21 are under-represented in the mutant group. Figure 12

provides a visualization of the mean absolute difference in the cell-subtype

proportions against the posterior probability of having a larger proportion

when PAX6 is present. We note that although several cell subtypes are either

over or under represented when PAX6 is deleted, the mean absolute difference

in the proportions tends to be small. This suggests that PAX6 may play a

smaller role at this early stage in the development (day E13.5).

Additional figures examining the posterior relationship between the mean
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Figure 12: Detecting differences in cell-subtype proportions between the control and

mutant groups. The x-axis shows the posterior mean absolute difference in the cell-subtype

proportions. The y-axis shows the posterior probability of having a larger proportion

when PAX6 is present. Horizontal red dashed lines are the thresholds for cell-subtype

classification as stable, under or over represented when PAX6 is deleted.

expressions and dispersions for each cell subtype are provided in Appendix

C.2. The following subsections provide a further analysis of the patterns that

characterize each cell subtype.

5.1. Posterior Estimated Latent Counts

We compute the posterior estimated latent counts for all cells and compare

between cell subtypes. Figure 13 provides a heat-map of the estimated

latent counts; cells are ordered by the cell subtypes, with solid vertical lines
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Figure 13: Heat-map of posterior estimated latent gene-counts for HET and HOM. Genes

are reordered by global DE tail probabilities and genes above the red horizontal line are

global DE. Cells for reordered by the cell subtype, with cells from different subtypes

separated by solid lines and cells from different datasets separated by dashed lines.

separating cells from different subtypes and dashed vertical lines separating

HET and HOM within cell subtype. Genes are reordered by global DE tail

probabilities, with global DE genes above the horizontal line. Corresponding

figures for the observed counts are shown in Appendix C.3. For each gene,

posterior estimated latent counts and observed counts for cells within each

cell subtype are similar, and clear differences are observed across cells from

different subtypes.

In addition, we use t-SNE (a commonly used dimensional reduction method

for visualising gene expressions) to visualize similarities between cells within

each subtype and differences across sybtypes (Figure 14). Applying t-SNE to

the posterior estimated latent counts for genes which are global DE and DD

shows a clear separation between cell subtypes (Appendix C.3).
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Figure 14: t-SNE plot for the posterior estimated latent counts (left) and observed counts

(right). Cells from different subtypes are shown in different colours.

5.2. Global Marker Genes

The detected global marker genes for differential expression and dispersion

(with τ0 = 2.5 and ω0 = 2.5) are summarized in Figures 15 and 16 and

Appendix C.3. In this case, 57% of genes are global markers for DE and

24% of genes are global markers for DD. To visualize the detected global

marker genes across cell subtyes, we include heat-maps of the posterior mean

of the subtype-specific parameters, with rows representing genes (reordered

by gene-wise tail probabilities) and columns representing cell subtyes. We

observe that the rare cell subtypes, namely the over-represented cluster 18,

the under-represented cluster 21, and the stable clusters 20 and 22, have

slightly higher expression levels for genes that are lowly expressed in other

cell subtypes and, in general, higher dispersion parameters across most of the

the global DD genes and some of the global non-DD genes.
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Figure 15: Relationship between mean absolute LFCs and tail probabilities, and a summary

of the number of genes that are global markers.

Figure 16: Heat-maps of estimated unique parameters (mean expression on the left and

dispersion on the right) on the log scale, with columns representing cell subtypes and rows

representing genes. Genes are reordered by tail probabilities; tail probabilities decrease as

we move down the rows, with the horizontal dashed lines separating global marker genes

from non-marker genes.

5.3. Local Marker Genes

For each cell subtype, we detect local marker genes to identify distinct

gene expression patterns in the current cell subtype in comparison with all

other subtypes. Threshold values for the LFC are set to 0.8. Figure 17 plots
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the absolute LFC against tail probabilities together with summary plots.

We observe that the over-represented cell subtypes 3, 8, 15 and the rare cell

subtypes 18, 20, 21, 22 have high numbers of local marker genes in terms of

both DE and DD. For DE, 1752 genes are classified as local DE genes for

more than one cell subtype and gene Neurod4 is classified as a local DE

gene for the most cell subtypes (16 cell subtypes). For DD, 1234 genes are

classified as local DD genes for more than one cell subtype and genes Kcnma1

and Scgn are classified as a local DD gene for the most cell subtypes (18 cell

subtypes). Heat-maps of the estimated mean expressions and dispersions for

local marker genes are shown in Appendix C.4. We observe that the local

marker DE genes for the over-represented cell subtype 15 tend to be more

highly expressed in this subtype. For the rare cell subtypes 18− 22, the local

DE genes tends to be lowly expressed in all other cell subtypes, with slightly

higher expression in cell subtype 15, and most of the local DD genes have

higher dispersions (less over-dispersion). In addition, for the remaining cell

subtypes 1 − 14, 16 and 17, most local DD genes have smaller dispersions,

thus, these genes are over-dispersed in the corresponding cell subtypes.

Further findings and discussions on specific important genes provided by

the research group of Prof. Price can be found in Appendix D.

5.4. Posterior Predictive Checks

To assess the fit of the proposed NormHDP model to the experimental

data, we carry out mixed posterior predictive checks, as described in Section

3.5. For a single replicated dataset, we compare key statistics, namely, the

mean and standard deviation of the log shifted counts and the proportion of

dropouts for each gene. The statistics of the replicated dataset match well the
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Figure 17: Detection of local marker genes. Top rows: plots of tail probabilities against

mean absolute LFCs for each cell subtype, with mean expression in the top row and

dispersion in the middle row. Bottom row: a summary of the number of local DE (left)

and DD genes (right).

observed data, highlighting the sensible fit of the model to the data (Figure

18). For multiple replicates, we compare the KDEs of these statistics between

the observed dataset and replicated datasets; the KDEs are similar, further

supporting the model fit (Figure 19).
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Figure 18: Posterior predictive checks for the experimental data. Comparing the re-

lationships between key statistics (namely, the mean, standard deviation, and dropout

probability) for the observed dataset (in red) and the replicated dataset (in black).

Figure 19: Comparison of the KDE of statistics from the observed and replicated datasets,

with observed dataset in red and replicated datasets in grey.
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6. Discussion

In this article, we constructed a novel hierarchical Bayesian model that

integrates multiple RNA-seq datasets for shared clustering and identification

of cell types. Moreover, it addresses the challenges of normalization and

imputation in scRNA-seq by building on the bayNorm model. In this high-

dimensional setting, the proposed model allows borrowing of information

and detection of differences in cell-type proportions across datasets as well

as measures of uncertainty in the estimated clustering and detection of

marker genes to characterize the patterns within each cell type. In simulated

datasets, our proposed NormHDP model is robust and able to recover the

true parameters and clustering, as well detect correctly the marker genes.

Our work was motivated by experimental scRNA-seq data collected to shed

light on the role of PAX6 in prenatal development. By applying NormHDP,

we can identify cell types that form in this early stage of development and

gain an understanding of the differences in cell type presence/absence when

PAX6 is deleted. In the experimental data, the model estimates a total of

22 cell types, with four rare cell types. Among the identified cell types, nine

are over-represented and seven are under-represented when PAX6 is deleted.

However, although differences between the control and mutant groups are

detected with a high posterior probability, the posterior mean absolute value

of the difference tends to be small, suggesting that PAX6 plays a smaller role

at this early stage in the development (E13.5). Following this, our colleagues

at the Centre for Discovery Brain Sciences have collected additional data at

day E14.5. In ongoing work, initial results suggest a stronger role of PAX6

at this slightly later stage of development, and a comprehensive analysis
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will be conducted in future work to integrate all datasets. More generally,

experiments now routinely collect multiple scRNA-seq datasets, and the

proposed model is relevant in such applications for shared clustering and

borrowing of information and understanding differences across datasets.

For posterior inference, we have developed a Gibbs sampling algorithm,

which produces asymptotically exact posterior samples. However, in high-

dimensional settings, such as scRNA-seq, where the number of cells and genes

are typically in the thousands, such algorithms suffer from convergence issues.

To combat this and improve computational speed, we have employed a parallel

consensus clustering approach. This relies on combining multiple short chains

to explore the clustering, followed by a long chain with fixed clustering to infer

all other parameters. While the first phase provides uncertainty in clustering,

the second phase only considers uncertainty in parameters conditional on

clustering estimate. This motivated to balance speed, mixing, and uncertainty

quantification, and in ongoing work, we are also developing a variational Bayes

approximation (Hughes et al., 2015) for faster, approximate inference that

provides uncertainty estimates unconditional on clustering structure (although

this comes with other assumptions on the form of the approximate posterior).

Other potential model extensions of interest include cluster-specific mean-

dispersion relationships for increased flexibility and incorporation of covariate

information (such as cell-specific latent time) (Bergen et al., 2020), as well as

priors for clustering beyond the HDP (Argiento et al., 2020).
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Supporting Information

Appendices referenced in Sections 2, 3, 4, 5, and 6 are available online.

All code for model implementation and analysis is publicly available through

the Github repository (https://github.com/jinluliu550/normHDP), along

with the simulated data (Section 4).
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In Appendix A, we provide further model insights on the capture ef-

ficiencies, describe the MCMC algorithm for posterior inference, explain

the derivation of bayNorm estimates of the capture efficiencies, and provide

pseudo-code for replicating data from the mixed posterior predictive. In

Appendix B, we include the details of simulated examples, including data

generation, results and additional experiment to investigate misspecification of

the mean capture efficiency. In Appendix C, we provide further details on the

PAX6 data analysis, including the the filtering process; MCMC summaries;

global marker genes; local marker genes; t-SNE plots and posterior predictive

checks. In Appendix D, we show the results corresponding to the set of

important genes.

Appendix A. Posterior Inference and Model Insights

Appendix A.1. Gene Dependence through Capture Efficiencies

The cell-specific capture efficiencies play an important role in normalization

and imputation to obtain the latent counts y0c,g,d. Following other fields, where

under-reporting of counts also occurs, we alleviate identifiability issues by

employing an informative, empirical prior based on the bayNorm estimates

and global mean capture efficiency. As suggested by one reviewer, the capture

efficiencies also play an interesting role in inducing dependence across the

genes. Specifically, for each cell, dependence across genes is obtained after

integrating over the capture efficiency βc,d:

p(yc,·,d | zc,d,µj,ϕj) =

∫ G∏
g=1

p(yc,g,d | zc,d, µj,g, ϕj,g, βc,d)π(βc,d)dβc,d,
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where βc,d ∼ Beta(aβd , b
β
d). While the integral above is not available in closed

form, we can simulate to understand better the induced dependence. For

two genes with mean expression and dispersion set to (40, 10) and (50, 20)

respectively, we simulate yc,g for C = 2, 000 cells and under different scenarios

for the hyperparameters aβd and bβd . The results are shown in Figure A.20, with

rows corresponding to increasing prior mean of the capture efficiencies, equal

to 0.06, 0.12, 0.2, and columns corresponding to increasing prior variance,

equal to 0, 0.0004, 0.05. For larger variance, higher dependence is evident, but

we note that for the middle column (with variance similar to the empirical

variance from the bayNorm estimates), no clear dependence structure is

observed.
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(a) Independent: E(βc) =

0.06

(b) E(βc) = 0.06, V(βc) =

0.0004

(c) E(βc) = 0.06, V(βc) =

0.05

(d) Independent: E(βc) =

0.12

(e) E(βc) = 0.12, V(βc) =

0.0004

(f) E(βc) = 0.12, V(βc) =

0.05

(g) Independent: E(βc) =

0.2

(h) E(βc) = 0.2, V(βc) =

0.0004

(i) E(βc) = 0.2, V(βc) =

0.05

Figure A.20: Simulated counts for C = 2, 000 cells and two genes to examine dependence

induced through the capture efficiencies. Rows correspond to increasing prior mean of the

capture efficiencies, and column correspond to increasing prior variance.
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Appendix A.2. MCMC

In this section, we describe the MCMC algorithm for posterior inference

with the NormHDP model. In the following, we assume the relationship

between the mean and dispersion parameters is linear on the log scale. Let Z =

(zc,d)
Cd,D
c=1,d=1; Y = (yc,d,g)

Cd,D,G
c=1,d=1,g=1; pd = (pJ1,d, . . . , p

J
J,d); p = (pJ1 , . . . , p

J
J);

β = (βc,d)
Cd,D
c=1,d=1. The posterior of interest is:

π(Z,pd,p,µ
∗
1:J ,ϕ

∗
1:J ,β, α, α0,b, a

2
ϕ|Y) ∝

J∏
j=1

∏
(c,d):zc,d=j

G∏
g=1

NB(yc,d,g | µ∗
j,gβc,d, ϕ

∗
j,g)

∗
J∏

j=1

D∏
d=1

p
Nj,d

j,d ∗
D∏

d=1

Dir(pd | αp) ∗Dir
(
p | α0

J
, . . . ,

α0

J

)
∗

J∏
j=1

G∏
g=1

LN(µ∗
j,g | mu, a

2
u)LN(ϕ

∗
j,g | b0 + b1 log(µ

∗
j,g), a

2
ϕ)

∗
D∏

d=1

Cd∏
c=1

Beta(βc,d | aβd , b
β
d) ∗Gam(α | 1, 1) ∗Gam(α0 | 1, 1)

∗ N(b |mb, a
2
ϕVb) ∗ IG(a2ϕ | ν1, ν2),

where Nj,d =
∑Cd

c=1 1(zc,d = j) is the number of cells in component j in

dataset d. A Markov chain Monte Carlo (MCMC) algorithm is developed for

full posterior inference. The algorithm is a Gibbs sampler which produces

asymptotically exact samples from the posterior by iteratively sampling the

parameters in blocks corresponding to the:

• allocation variables Z|pd,µ
∗
1:J ,ϕ

∗
1:J ,Y,β,

• dataset-specific component probabilities pd|Z,p, α,

• component probabilities p|p1:D, α0,
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• unique parameters µ∗
j ,ϕ

∗
j | Z,b, a2ϕ,Y,β,

• concentration parameters α|p1:D,p and α0|p,

• mean-dispersion hyperparameters b, a2ϕ|µ∗
1:J ,ϕ

∗
1:J ,

• capture efficiencies β|Y,Z,µ∗
1:J ,ϕ

∗
1:J .

The complexity of the algorithm is dominated by the update of the allocation

variables, which is of order O(sum(C)JG). In the following subsections, we

describe the update for each block of parameters.

Appendix A.2.1. Mean-dispersion Hyperparameters

The full conditional distribution for the mean-dispersion hyperparameters

in the linear case is:

π(b, α2
ϕ|µ∗

1:J ,ϕ
∗
1:J) ∝ N(b|mb, α

2
ϕVb) ∗ IG(α2

ϕ|v1, v2) ∗
J∏

j=1

G∏
g=1

logN(ϕ∗
j,g|b0 + b1 log(µ

∗
j,g), α

2
ϕ)

∝

(
1

α2
ϕ

)v1+2+JG
2

exp

(
− 1

α2
ϕ

[
1

2

J∑
j=1

G∑
g=1

(ln(ϕ∗
j,g)− b0 − b1 log(µ

∗
j,g))

2 + v2

+
1

2
[(b0 −mb0)

2 + (b1 −mb1)
2]

])
. (A.1)

Following eq. (A.1), the full conditional for b conditioning on α2
ϕ is:

π(b|µ∗
1:J ,ϕ

∗
1:J , α

2
ϕ) ∝ exp

(
− 1

2α2
ϕ

[
J∑

j=1

G∑
g=1

(ln(ϕ∗
j,g)− b0 − b1 log(µ

∗
j,g))

2

+ [(b0 −mb0)
2 + (b1 −mb1)

2]

])
.

Hence we have the full conditional:

b|µ∗
1:J ,ϕ

∗
1:J , α

2
ϕ ∼ N(m̃b, α

2
ϕṼb), (A.2)
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where

m̃b =

(
J∑

j=1

µ̃T
j µ̃j + I

)−1( J∑
j=1

µ̃T
j ln(ϕ∗

j) +mb

)
,

Ṽb =

(
J∑

j=1

µ̃T
j µ̃j + I

)−1

,

and

ln(ϕ∗
j) =


ln(ϕ∗

j,1)
...

ln(ϕ∗
j,G)

 , µ̃j =


1 log(µ∗

j,1)
...

...

1 log(µ∗
j,G)

 .

And following eq. (A.1), the full conditional for α2
ϕ is:

π(α2
ϕ|µ∗

1:J ,ϕ
∗
1:J) =

∫
π(b, α2

ϕ|µ∗
1:J ,ϕ

∗
1:J) db

∝
∫ (

1

α2
ϕ

)v1+1

exp

(
− v2
α2
ϕ

)(
1

α2
ϕ

)JG/2(
1

α2
ϕ

)

∗ exp

(
− 1

2α2
ϕ

[
(b− m̃b)

T Ṽ−1
b (b− m̃b)− m̃T

b Ṽ
−1
b m̃b +

J∑
j=1

ln(ϕ∗
j)

T ln(ϕ∗
j) +

∑
m2

b

])
db.

Thus, we have:

α2
ϕ|µ∗

1:J ,ϕ
∗
1:J ∼ IG (ṽ1, ṽ2) , (A.3)

where

ṽ1 = v1 + JG/2,

ṽ2 = v2 +
1

2

(
J∑

j=1

ln(ϕ∗
j)

T ln(ϕ∗
j)− m̃T

b Ṽ
−1
b m̃b +

∑
m2

b

)
.

For Gibbs sampling, at each iteration, we first simulate α2
ϕ from the Inverse-

Gamma distribution in eq. (A.3) and then conditioned on this value, simulate

b from the Normal distribution in eq. (A.2). Details are given in Algorithm

1.
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Algorithm 1 Simulation of Mean-dispersion Hyperparameters

Require: µ∗
1:J ,ϕ

∗
1:J

Ensure: α2
ϕ,b

A← Identity matrix of dimension 2;

B ← Matrix of mb;

C ← 0;

for j = 1, . . . , J do

A = A+ µ̃T
j µ̃j; B = B + µ̃T

j ln(ϕ∗
j); C = C + ln(ϕ∗

j)
T ln(ϕ∗

j);

end for

Ṽb ← A−1; m̃b ← ṼbA; ṽ1 ← v1 + JG/2; ṽ2 ← v2 + 1/2 ∗ (C −

m̃T
b Ṽ

−1
b m̃b +

∑
m2

b);

Simulate α2
ϕ and b from the NIG in eq. A.3 and A.2 using the above

parameters.

Appendix A.2.2. Allocation Variables

The full conditional for the allocation variables is:

π(Z|P1:D,µ
∗
1:J ,ϕ

∗
1:J ,y,β) ∝

J∏
j=1

∏
(c,d):zc,d=j

G∏
g=1

NB(yc,g,d|µ∗
j,gβc,d, ϕ

∗
j,g)

J∏
j=1

D∏
d=1

p
Nj,d

j,d ,

where Nj,d is the total number of cells in component j in dataset d. Thus, since

the allocations are conditionally independent, we have the full conditional of

z for cell c in dataset d as:

zc,d ∼ Cat (πc,d,1, . . . , πc,d,J) , (A.4)

where πc,d,j = π(zc,d = j|P1:D,µ
∗
1:J ,ϕ

∗
1:J ,Y,β). To avoid numerical errors,

we employ the log-sum trick to compute the probabilities:

πc,d,j =
exp(log(π̃c,d,j) + log(K)∑J

j=1 exp(log(π̃c,d,j) + log(K))
.
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where

π̃c,d,j =
G∏

g=1

NB(yc,g,d|µ∗
j,gβc,d, ϕ

∗
j,g)pj,d,

log(K) = −max
j

log(π̃c,d,j).

Details are given in Algorithm 2.

Algorithm 2 Simulation of Allocation Variables

Require: P1:D,µ
∗
1,J ,ϕ

∗
1,J ,y,β

Ensure: Z

Z ← a list of length D;

for d = 1, . . . , D and c = 1, . . . , Cd do

Compute π̃c,d,j for each j; and K,

Use π̃c,d,j and K to compute πc,d,j and simulate zc,d from the Categorical

distribution in eq. (A.4).

end for

Appendix A.2.3. Dataset-specific Component Probabilities

The full conditional distribution for the dataset-specific component proba-

bilities is:

π(pd|Z,p, α) ∝
J∏

j=1

p
Nj,d

j,d Dir(pd|αp) ∝
J∏

j=1

p
Nj,d+αpj−1

j,d .

Hence, pd|Z,p, α follows a Dirichlet distribution with parameters equals to

Nj,d + αpj, for j = 1, . . . , J . Details are given in Algorithm 3.
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Algorithm 3 Simulation of Dataset-specific Component Probabilities

Require: Z,P, α

Ensure: p1:D

p1:D ← Matrix with J rows and D columns;

for d = 1, . . . , D do

α̃← table(Zd) + αp

Simulate pd from the Dirichlet distribution using the updated parame-

ters α̃.

end for

Appendix A.2.4. Component Probabilities

The full conditional distribution for the component probabilities is:

π(p|p1:D, α0, α) ∝ Dir(p|α0

J
, . . . ,

α0

J
) ∗

D∏
d=1

Dir(pd|αp)

∝

[
J∏

j=1

p
α0
J

−1

j

]
D∏

d=1

1

B(αp)

J∏
j=1

p
αpj
j,d ∗ 1

(
pj > 0,∀j,

J∑
j=1

pj = 1

)
.

(A.5)

As the full conditional distribution has no closed-form, we will use adaptive

Metropolis-Hastings (Griffin and Stephens, 2013) to obtain posterior samples

of p. The log of the full conditional in eq. (A.5) can be written as:

log π(p| . . . ) =
J∑

j=1

[(α0

J
− 1
)
log(pj)

]
+

D∑
d=1

J∑
j=1

[αpj log(pj,d)− log Γ(αpj)] + const.

Adaptive Metropolis-Hastings for p. In the following, we describe the steps

of the adaptive Metropolis-Hastings algorithm.

1. Note that since pj > 0 for all j = 1, . . . , J and
∑J

j=1 pj = 1, we apply
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the following transformation:

p ∈ △J−1 7→ x ∈ RJ−1

where

xj = t(pj) := log

(
pj
pJ

)
, j = 1, . . . , J − 1.

Note that the reverse of the transformation is:

pj =
exj

1 +
∑J−1

j=1 e
xj

, j = 1, . . . , J − 1.

2. For t ≤ 100, xnew is simulated from N(xold, Id). If t > 100, xnew is

simulated from N(xold, 2.4
2/d ∗ (Σt−1 + ϵId)), where Σt−1 is the current

estimate of covariance structure of x based on the first t− 1 samples;

d is the length of the parameters of interest, i.e. d = J − 1; and an

epsilon is small constant, i.e. ϵ = 0.01.

3. To avoid re-computing Σt at each iteration, we compute Σt based on

two statistics: S̃t and mt, which can be sequentially updated. These

statistics are defined as:

S̃t =


∑t

i=1 x
2
1,i

∑t
i=1 x1,ix2,i · · ·

∑t
i=1 x1,ixJ−1,i

...
...

. . .
...∑t

i=1 xJ−1,ix1,i

∑t
i=1 xJ−1,ix2,i · · ·

∑t
i=1 x

2
J−1,i

 ,

mt = [
t∑

i=1

x1,i, . . . ,

t∑
i=1

xJ−1,i]
T .

We can express Σt as:

Σt =
1

t− 1
S̃t −

t

t− 1
mtm

T
t ,
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where we sequentially update the required statistics:

S̃t = S̃t−1 + xtx
T
t ;

mt =

(
1− 1

t

)
mt +

1

t
xt.

4. To evaluate the proposal distribution, we are required to compute the

Jacobian of the transformation. More specifically, the proposal is:

qn(pnew|pold) = qn (t(pnew)|t(pold)) |Jt(pnew)|,

where

Jt(p) =


dt1
dp1

dt2
dp1

· · · dtJ−1

dp1
...

...
. . .

...

dt1
dpJ−1

dt2
dpJ−1

· · · dtJ−1

dpJ−1



=


1
pJ

. . . 1
pJ

...
. . .

...

1
pJ

. . . 1
pJ

+


1
p1

0 . . . 0

0 1
p2

... 0
...

...
. . . 0

0 0 . . . 1
pJ−1

 = B + A.

Since det(A + B) = det(A) + det(B) + Tr(A−1B) det(A), and in our

case, we have det(B) = 0 and det(A) =
∏J−1

j=1
1
pj
, hence det(A+B) =∏J−1

j=1
1
pj

+ [1− pJ ]
∏J

j=1
1
pj

=
∏J

j=1
1
pj
. And taking the log of the deter-

minant of the Jacobian, we have

log det Jt(P) = log

[
J∏

j=1

1

pj

]
= −

J∑
j=1

log(pj).

5. Next, we compute the acceptance probability:

α(pnew,pold) = min{1, exp(α̃(pnew,pold))},
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where

α̃(pnew,pold) = log

[
π(pnew)

π(pold)

qn(pold|pnew)

qn(pnew|pold)

]
= log

[
π(pnew)

π(pold)

|Jt(pold)|
|Jt(pnew)|

]

= log

[
π(pnew)

π(pold)

]
−

J∑
j=1

log(pold,j) +
J∑

j=1

log(pnew,j),

and π(·) is the density of the target distribution.

Appendix A.2.5. Concentration Parameters

The full conditional distribution for α is:

π(α|p1:D,p) ∝ Gam(α|1, 1) ∗
D∏

d=1

Dir(pd|αp) ∝ exp(−α)
D∏

d=1

1

B(αp)

J∏
j=1

p
αpj
j,d

∝ exp(−α)
D∏

d=1

Γ(α)∏J
j=1 Γ(αpj)

J∏
j=1

p
αpj
j,d ∗ 1(α > 0). (A.6)

The full conditional distribution for α0 is:

π(α0|p) ∝ Gam(α0|1, 1) ∗Dir
(
p|α0

J
, . . . ,

α0

J

)
∝ exp(−α0)

1

B(α0

J
)

J∏
j=1

p
α0
J
j

∝ exp(−α0)
Γ(α0)

[Γ(α0

J
)]J

J∏
j=1

p
α0
J
j ∗ 1(α0 > 0). (A.7)

We obtain no closed-form distributions for both concentration parameters

α and α0, hence we apply adaptive Metropolis-Hastings to obtain posterior

samples. The log of the full condition in eq. (A.6) is:

log π(α|p1:D,p) = −α +D log(Γ(α)) +
D∑

d=1

J∑
j=1

[αpj log(pj,d)− log(Γ(αpj))] + const.,

and in eq. (A.7) is:

log π(α0|p) = −α0 + log(Γ(α0))− J log(Γ(
α0

J
)) +

J∑
j=1

α0

J
log(pj) + const.
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Adaptive Metropolis-Hastings for α.

1. Since α is always greater than zero, we apply the following transforma-

tion to map α to the real axis:

α ∈ R+ 7→ x ∈ R,

where x = t(α) = log(α).

2. We apply an adaptive random walk in the transformed space, where the

variance of proposal is adapted in similar fashion to Appendix Appendix

A.2.4, with the sample variance computed by sequentially updating the

required statistics.

3. To compute the Jacobian of the transformation, we differentiate t(α)

with respect to α:

dt(α)

dα
=

d log(α)

dα
=

1

α
.

4. Hence the acceptance probability simplifies to:

α(αnew, αold) = min{1, α̃(αnew, αold)},

where

α̃(αnew, αold) = log

[
π(αnew)

π(αold)

qn(αold|αnew)

qn(αnew|αold)

]
= log

[
π(αnew)

π(αold)

αnew

αold

]
.

Appendix A.2.6. Unique Parameters

The full conditional distribution for µ∗ and ϕ∗ is:

π(µ∗
j ,ϕ

∗
j |Z,b, α2

ϕ,Y,β) ∝
G∏

g=1

logN(µ∗
j,g|mu, α

2
µ) logN(ϕ

∗
j,g|b0 + b1 log(µ

∗
j,g), α

2
ϕ)

∗
∏

(c,d):zc,d=j

G∏
g=1

NB(yc,g,d|µ∗
j,gβc,d, ϕ

∗
j,g).
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Since the genes are conditionally independent, we can write the full condition

for µ∗
j,g and ϕ∗

j,g as:

π(µ∗
j,g, ϕ

∗
j,g|Z,b, α2

ϕ,Y, β) ∝∏
(c,d):zc,d=j

(
yc,g,d + ϕ∗

j,g − 1

ϕ∗
j,g − 1

)(
ϕ∗
j,g

µ∗
j,gβc,d + ϕ∗

j,g

)ϕ∗
j,g
(

µ∗
j,g

µ∗
j,gβc,d + ϕ∗

j,g

)yc,g,d

(
1

µ∗
j,gϕ

∗
j,g

)
exp

(
− 1

2α2
µ

(lnµ∗
j,g −mu)

2 − 1

2α2
ϕ

(lnϕ∗
j,g − (b0 + b1 log µ

∗
j,g))

2

)
.

(A.8)

The full conditional distribution has no closed-form, hence we apply adaptive

Metropolis-Hastings to obtain posterior samples. We first compute the log-

likelihood of eq. (A.8):

log π
(
µ∗
j,g, ϕ

∗
j,g| . . .

)
= − log(µ∗

j,gϕ
∗
j,g)−

1

2α2
µ

(lnµ∗
j,g −mu)

2

− 1

2α2
ϕ

(lnϕ∗
j,g − (b0 + b1 log µ

∗
j,g))

2

+
∑

(c,d):zc,d=j

[
log

(
yc,g,d + ϕ∗

j,g − 1

ϕ∗
j,g − 1

)
+ ϕ∗

j,g log

(
ϕ∗
j,g

µ∗
j,gβc,d + ϕ∗

j,g

)

+ yc,g,d log

(
µ∗
j,g

µ∗
j,gβc,d + ϕ∗

j,g

)]
+ const.

Adaptive Metropolis Hastings for µ and ϕ.

1. Since (µ∗, ϕ∗) are always positive, we transform to the real axis:

(µ∗, ϕ∗) ∈ R2
+ 7→ x ∈ R2,

where t1(µ
∗, ϕ∗) = x1 = log(µ∗) and t2(µ

∗, ϕ∗) = x2 = log(ϕ∗).

2. We apply an adaptive random walk in the transformed space, where the

covariance matrix of proposal is adapted in similar fashion to Appendix
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Appendix A.2.4, with the sample covariance matrix computed by

sequentially updating the required statistics.

3. The Jacobian matrix of the transformation is:

Jt(µ∗,ϕ∗) =

 dt1
dµ∗

dt1
dϕ∗

dt2
dµ∗

dt2
dϕ∗

 =

 1
µ∗ 0

0 1
ϕ∗

 ;

and the log determinant of the Jacobian is:

log det Jt(µ∗,ϕ∗) = log

[
1

µ∗ϕ∗

]
= − log(µ∗)− log(ϕ∗).

4. The corresponding acceptance probability is given by:

α((µ∗, ϕ∗)new,(µ
∗, ϕ∗)old) = min{1, exp[α̃((µ∗, ϕ∗)new, (µ

∗, ϕ∗)old)]},

where

α̃((µ∗, ϕ∗)new, (µ
∗, ϕ∗)old) = log

[
π((µ∗, ϕ∗)new)

π((µ∗, ϕ∗)old)

]
− log(µ∗

old)

− log(ϕ∗
old) + log(µ∗

new)− log(ϕ∗
new).

The above process is repeated for all unique parameters corresponding

to occupied components. For non-occupied components, we can sample

directly from the prior.

Note the random walk used here is specific to each cluster and gene (j, g).

For empty components, i.e. in the case when
∑D

d=1 Nj,d = 0, we sample the

mean expression and dispersion from the prior. The adaptive covariance

matrix is updated in either case.
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Appendix A.2.7. Capture Efficiencies

The full conditional distribution for β is:

π(β|Y,Z, µ∗
1:J , ϕ

∗
1:J) ∝

J∏
j=1

∏
(c,d):zc,d=j

G∏
g=1

NB(yc,g,d|µ∗
j,gβc,d, ϕ

∗
j,g)

∗
D∏

d=1

Cd∏
c=1

Beta(βc,d|aβd , b
β
d).

Since all β are conditionally independent, they can be sampled in parallel,

and we can write the full conditional distribution for cell c and gene g as:

π(βc,d|Y,Z, µ∗
1:J , ϕ

∗
1:J) ∝ Beta(βc,d|aβd , b

β
d)

G∏
g=1

NB(yc,g,d|µ∗
j,gβc,d, ϕ

∗
j,g)

∝

[
G∏

g=1

(
1

ϕ∗
j,g + µ∗

j,gβc,d

)ϕ∗
j,g+yc,g,d

(βc,d)
yc,g,d

]

∗ (βc,d)
aβd−1(1− βc,d)

bβd−1 1(βc,d ∈ [0, 1]).

As no closed-form is obtained, we apply adaptive Metropolis-Hastings to

obtain posterior samples. First, the full-conditional on the log-scale is:

log π(βc,d| . . . ) = (aβd − 1) log(βc,d) + (bβd − 1) log(1− βc,d)

−
G∑

g=1

(ϕ∗
j,g + yc,g,d) log(ϕ

∗
j,g + µ∗

j,gβc,d)− yc,g,d log(βc,d) + const.

Adaptive Metropolis-Hastings for β.

1. We apply a logit transformation to transform β into x, where x belongs

to the real axis:

β ∈ [0, 1] 7→ x ∈ R,

where t(β) = log( β
1−β

) = x.
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2. We apply an adaptive random walk in the transformed space, where the

variance of proposal is adapted in similar fashion to Appendix Appendix

A.2.4, with the sample variance computed by sequentially updating the

required statistics.

3. To Jacobian of the transformation is:

dt(β)

dβ
=

d

dβ
(log(β)− log(1− β)) =

1

β(1− β)
,

and the log of the determinant of the Jacobian is:

log

(
1

β(1− β)

)
= − log(β)− log(1− β).

4. The acceptance probability is given by:

α(βnew, βold) = min{1, exp[α̃(βnew, βold)]},

where

α̃(βnew, βold) = log

[
π(βnew)

π(βold)

]
+ log(βnew) + log(1− βnew)

− log(βold)− log(1− βold).

Appendix A.3. MCMC with Fixed Clustering

After obtaining the optimal clustering which minimizes the posterior

expected VI, we subsequently rerun the MCMC algorithm described above,

but omitting the step described in Appendix A.2.2 and fixing the allocation

variables to the optimal estimate. This allows us to analyze the patterns

and uncertainty within each cluster. We note that updating the allocation

variables is the most expensive step in the MCMC algorithm; thus, this

subsequent run is much faster.
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Appendix A.4. bayNorm Estimates of the Capture Efficiencies

In the bayNorm approach, capture efficiencies are estimated using the

following approach:

β̂bay
c,d =

∑G
g=1 Yc,g,d

1
Cd

∑Cd,G
c=1,g=1 Yc,g,d

× λ,

where λ is the mean of estimated capture efficiencies. Under the default

setting of bayNorm, λ = 0.06. The estimates are used to construct empirical

priors for the capture efficiencies in our NormHDP model.

Appendix A.5. Mixed Posterior Predictive Checks

The pseudo-code below demonstrates the steps taken to replicate data

from the mixed posterior predictive.
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Algorithm 4 Replicating data for mixed posterior predictive checks

Require: Number of replicated datasets M , Cell allocations Z, Posterior

draws (µ
∗ (t)
1:J ,β(t),b(t), a

2 (t)
ϕ ) for t = 1, . . . , T .

for m = 1, . . .M do

Index tm ← randomly sampled from 1 : T .

Set parameters based on the tth posterior draw:

µ∗
1:J = µ

∗ (tm)
1:J ,β = β(tm),b = b(tm), α2

ϕ = a
2 (tm)
ϕ .

for j = 1, . . . , J and g = 1, . . . , G do

Simulate ϕ∗
j,g ∼ logN(b0 + b1 log(µ

∗
j,g), α

2
ϕ).

end for

for c = 1, . . . , Cd, g = 1, . . . , G and d = 1, . . . , D do

Simulate replicated data: yrep,mc,g,d | zc,d = j
ind∼ NB(µ∗

j,gβc,d, ϕ
∗
j,g).

end for

end for

Appendix A.6. Compare LFC in the residual overdispersion

We can also classify global marker genes based on the residuals of disper-

sions (Eling et al., 2018), where the residual ϵj,g is defined as the difference

between estimated dispersion ϕj,g and the fitted dispersion based on the

regression trend, i.e.: in the linear case, we have

ϵj,g = ϕj,g − (b0 + b1 log µ
∗
j,g)

and the conditionally differentially dispersed genes are the ones with a large

proportion of |ϵj,g − ϵj′,g| being greater than a threshold value between some

cluster pairs (j, j′).
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Appendix B. Simulations

Appendix B.1. Simulation 1: Data Generation

In the first simulation, the two datasets are simulated using the following

model:

yc,g,d|zc,d = j, µ∗
j,g, βc,d, ϕ

∗
j,g ∼ NB(µ∗

j,gβc,d, ϕ
∗
j,g),

zc,d|(pJ1,d, · · · , pJJ,d) ∼ Cat(pJ1,d, · · · , pJJ,d),

µ∗
j,g ∼ logN(0, α2

µ),

ϕ∗
j,g|µ∗

j,g ∼ logN(b0 + b1 log(µ
∗
j,g), α

2
ϕ),

βc,d ∼ Beta(aβd , b
β
d),

where we set b1 = 0; b2 = 3;α2
µ = 1;α2

ϕ = 1 and aβd = 1; bβd = 0.5 for both

datasets. The first dataset contains C1 = 50 cells and the second contains

C2 = 100 cells, with G = 50 genes. We assume there are J = 3 clusters,

with true cell proportions (p1,1, p2,1, p3,1) = (0.6, 0.4, 0) for dataset 1 and

(p1,2, p2,2, p3,2) = (0.4, 0, 0.6) for dataset 2.

Appendix B.2. Simulation 2: Data Generation

In the second simulation, we assume a non-linear relationship between the

mean expressions and dispersions, to assess robustness to misspecification.

The two datasets are generated as in Simulation 1 (Appendix B.1), however,

we assume the following relationship:

ϕ∗
j,g|µ∗

j,g ∼ logN(4− 2/µj,g, α
2
ϕ),

and values of α2
µ; α

2
ϕ; a

β
d and bβd are set to be the same as in Simulation 1.
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Figure B.21: True mean-dispersion relationships for DE and DD genes (left) and non-DE

(also non-DD) genes (right). On the left, different colors are used to represent mean

expressions and dispersions from different clusters.

Appendix B.3. Simulation 3: Data Generation

In Simulation 3, we test the ability of our algorithm to detect global

differentially expressed and dispersed genes. In this case, we have G = 150

genes; C1 = 300 cells in dataset 1 and C2 = 400 cells in dataset 2. We assume

that there are J = 3 clusters, with dataset-specific allocation proportions

(0.8, 0.2, 0) and (0.8, 0, 0.2) for dataset 1 and 2, respectively. For simplicity,

we assume the first 70 percent of the genes are DD and DE, specifically, these

are the genes with indices 1 to 105.

Based on the results from the real data, non-DE genes tend to be highly

expressed. Thus, we set the true mean for non-DE genes µ∗
j,g to µ∗

g, with

µ∗
g ∼ logN(3.5, 0.5). Instead, for DE genes, we set the true mean µ∗

j,g ∼

logN(mj, 0.1), where m1:J = (−3, 5, 8). We assume all DE genes are also DD

and vice versa. For non-DD (and non-DE) genes, we set the true dispersion

ϕ∗
j,g = ϕ∗

g with ϕ∗
g ∼ logN(b0 + b1 log(µ

∗
g), 0.1), where b0 = −1 and b1 = 1. For

DD (and DE) genes, we set the true dispersion ϕ∗
j,g ∼ logN(b0+b1 log(µ

∗
j,g), 0.1).
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The true relationships between mean expressions and dispersions are shown

in Figure B.21.
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Appendix B.4. Simulations 1 and 2: Results

For both simulations, we investigate prior sensitivity by comparing general

priors based on standard hyperparameter values with empirical priors based

on hyperparameters specified using initial bayNorm estimates (as described in

Section 2.2.2). In addition, to enhance flexibility, we consider both linear and

quadratic relationships in the prior model for the mean-variance relationship.

This results in four settings for the proposed NormHDP model: linear model

with general priors (GL), quadratic model with general priors (GQ), linear

model with empirical priors (EL) and quadratic model with empirical priors

(EQ).

Traceplots of concentration parameters and α2
ϕ for Simulation 1 and

Simulation 2 provided in Figures B.22 and B.23 suggest convergence:

In Figure B.24 and B.25, we compare the true similarity matrix with

the posterior similarity matrix obtained from the different prior (general vs.

empirical) and model (linear vs. quadratic) choices, for Simulation 1 and

2 respectively. In all cases, the results highlight that the true clustering

structure is well recovered.

Figure B.26 and B.27 compares the true capture efficiencies with estimated

capture efficiencies for Simulation 1 and Simulation 2, respectively. The figures

highlight that the informative prior choice helps to mitigate indentifiability

issues.
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(a) Trace plot of α.

(b) Trace plot of α0.

(c) Trace plot of α2
ϕ.

Figure B.22: Traceplots of the concentration parameters and regression parameter α2
ϕ for

Simulation 1. Colors represent the chains under the different prior and model choices.
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(a) Trace plot of α.

(b) Trace plot of α0.

(c) Trace plot of α2
ϕ.

Figure B.23: Traceplots of the concentration parameters and regression parameter α2
ϕ for

Simulation 2. Colors represent the chains under the different prior and model choices.
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Figure B.24: Comparison of the true and posterior similarity matrix for Simulation 1, with

the true similarity matrix (left) and the posterior similar matrix with (a) the linear model

and general prior, (b) the linear model and empirical prior, (c) the quadratic model and

general prior, and (d) the quadratic model and empirical prior.
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Figure B.25: Comparison of the true and posterior similarity matrix for Simulation 2, with

the true similarity matrix (left) and the posterior similar matrix with (a) the linear model

and general prior, (b) the linear model and empirical prior, (c) the quadratic model and

general prior, and (d) the quadratic model and empirical prior.
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Figure B.26: Comparison between the true capture efficiencies and the posterior mean of

capture efficiencies for Simulation 1 with (a) the linear model and general prior, (b) the

linear model and empirical prior, (c) the quadratic model and general prior, and (d) the

quadratic model and empirical prior..
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Figure B.27: Comparison between the true capture efficiencies and the posterior mean of

capture efficiencies for Simulation 2 with (a) the linear model and general prior, (b) the

linear model and empirical prior, (c) the quadratic model and general prior, and (d) the

quadratic model and empirical prior..
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Figure B.28: Heat map of true latent gene-counts, with rows representing genes and

columns representing cells. Cells are reordered by the true clustering, with cells from

different clusters separated by vertical lines.

Appendix B.5. Simulation 3: Results

The true latent counts and the posterior estimated latent counts are illus-

trated in Figures B.28 and B.29, respectively, for Simulation 3. A comparison

of the figures demonstrates that the latent counts are well recovered.
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Figure B.29: Heat map of posterior estimated latent gene-counts, with rows representing

genes and columns representing cells. Cells are reordered by the posterior estimated

clustering, with cells from different clusters separated by vertical lines.
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Appendix B.6. Additional Simulations with Mis-specified Mean Capture Effi-

ciencies

In the previous simulations, we used an informative prior for the capture

efficiencies to mitigate identifiability issues. In addition, we carried out further

simulations to investigate the effect of misspecification of the mean capture

efficiency in our informative prior. Specifically, we set the true mean capture

efficiency for dataset 1 and 2 as 0.06 and 0.10, respectively, and simulate the

true unique parameters and capture efficiencies under the following model:

βc,1 ∼ Unif(0.04, 0.08),

βc,2 ∼ Unif(0.08, 0.12),

ϕg ∼ logN(3, 0.5),

µg ∼ logN(−1 + 0.5 log(ϕg), 0.1).

We compare the bayNorm estimates of the capture efficiencies and unique

parameters with our empirical Bayesian approach. Results for dataset 1

and 2 are shown in Figure B.30 and B.31, respectively. In the first dataset,

the mean capture efficiency is correctly specified and both approaches are

able to recover the true mean expression, dispersion, and capture efficiencies

(Figure B.30). However, in the second dataset, the mean capture efficiency

is misspecified; while bayNorm underestimates the capture efficiencies and

overestimates the mean expressions, our empirical Bayesian approach is more

robust to such minor misspecifications.
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Figure B.30: Comparison between our Bayesian approach (top row) and bayNorm (bottom

row) in recovering the mean-expression, dispersion and capture efficiency (left to right) for

dataset 1.
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Figure B.31: Comparison between our Bayesian approach (top row) and bayNorm (bottom

row) in recovering the mean-expression, dispersion and capture efficiency (left to right) for

dataset 2.
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Appendix C. PAX6 Data Analysis

Appendix C.1. Filtering Process

Similar to the approach taken in (Hoffman, 2023), we filter the raw dataset

based on empirical statistics to remove extreme observations, and we select

the top 2, 000 genes with the largest cell-to-cell variability:

1. Genes that are expressed by less than 5 cells are excluded (threshold

chosen to remove half of the genes).

2. Cells with less than 2000 expressed genes are excluded (threshold chosen

to remove cells with gene expressions less than 1.5 standard deviations

below the empirical mean).

3. Cells with greater than 3.7 percent mitochondrial counts are excluded

(threshold chosen to remove cells with mitochondrial counts greater

than 1.5 standard deviations above than the empirical mean).

4. Cells with gene counts greater than 17500 are excluded (threshold chosen

to remove cells with gene counts greater than 1.5 standard deviations

above than the empirical mean).

5. 2000 genes with the greatest variability are selected.

Finally, we use the union of genes remaining after applying all above filters

to each dataset to form the final processed data. Note that all the ‘important’

genes are also included for each dataset (Table D.6). The empirical relationship

between bayNorm estimates of the mean expressions and dispersions and the

distribution of log shifted counts based on the final processed data are shown

in Figure C.32.
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Figure C.32: Left two plots: empirical relationship between the log mean expressions and

log dispersions. Right two plots: histogram of shifted latent gene-counts.

Appendix C.2. Results

For the posterior estimate of clustering, we show the number of genes in

each cluster and the proportion of HET/HOM genes in each cluster in Figure

C.33. The traceplots of concentration parameters and hyperparameters are

shown in Figures C.34 and C.35, respectively, suggest convergence. The

posterior and prior distributions of these parameters are compared in Figures

C.36 and C.37, highlighting the influence of the data. The relationship between

the posterior estimated mean expressions and dispersions on the log-scale for

each cluster are shown in Figure C.38; the relationships are similar across

clusters. In addition, we compare the posterior estimated latent counts of two

selected genes, namely ‘Fabp5’ and ‘H2afz’ across different clusters in Wed

Figure C.39. For gene ‘Fabp5’, there are no evident differences between the

estimated latent counts across clusters, whereas for gene ‘H2afz’, differences

across clusters are more apparent. Within each cluster, we observe greater

variability of posterior estimated latent counts across cells for ‘H2afz’. For

the capture efficiencies, we compare the bayNorm estimates and NormHDP

posterior mean estimates of the capture efficiencies in Figure C.40 and present
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Figure C.33: Left: the number of cells within each cluster. Right: proportion of HET and

HOM cells within each cluster, the horizontal line indicates the overall proportion of HOM

cells across both datasets.

(a) Trace plot of α0. (b) Trace plot of α.

Figure C.34: Trace plot of concentration parameters.

boxplots of the posterior mean capture efficiencies for cells in each cluster

in Figure C.41. We observe that bayNorm tends to produce slightly larger

estimates of the capture efficiencies compared with our model (Figure C.40).

In addition, when comparing across clusters (Figure C.41), there is no evident

difference, with the exception of the small group of cells in cluster 20, which

have lower capture efficiencies. Another important aspect of our model is the

quantification of uncertainty in the estimated latent counts; we show for two

gene ‘Fabp5’ and ‘Ran’ the range of uncertainty in the posterior estimated

latent counts in Figures C.42 and C.43.
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(a) Trace plot of α2
ϕ. (b) Trace plot of b0.

(c) Trace plot of b1. (d) Trace plot of b2.

Figure C.35: Trace plot of regression parameters.

(a) Density of α (b) Density of α0 (c) Density of α2
ϕ

Figure C.36: Comparison between prior and posterior of α, α0 and α2
ϕ (left to right). Prior

densities are shown with black lines and posterior densities are shown with histograms.
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(a) Density of b0 (b) Density of b1 (c) Density of b2

Figure C.37: Comparison between priors and posteriors of b0, b1 and b2 (left to right). Prior

densities are shown with black lines and posterior densities are shown with histograms.

Figure C.38: Posterior estimated relationships between the mean expressions and dispersions

for each cluster. The posterior means of the mean expressions and dispersions are plotted.

The red dashed lines are the lower and upper bound of the 95 percent credible band

obtained by considering posterior estimates of regression parameters b and α2
ϕ. The red

solid line is the posterior estimated relationship.
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Figure C.39: Boxplots of posterior estimated latent counts across cells for genes Fabp5 and

H2afz.

Figure C.40: Comparison of the bayNorm and posterior mean of the capture efficiencies.

For the top two plots: bayNorm estimates are plotted against posterior estimates, and

the dashed lines represents when the two values are equivalent. For the bottom two plots:

histograms are drawn to compare distribution of the posterior mean capture efficiencies,

with the bayNorm and posterior estimates in blue and red, respectively.
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Figure C.41: box plots of the estimated capture efficiencies for cells in each cluster.

Figure C.42: Histograms of the posterior estimated latent counts for cell 1 to 10 for gene

’Fabp5’ in dataset 1. For each MCMC iteration, we compute the mean estimated latent

count. The red vertical line indicates the overall mean latent count, averaged across all

MCMC iterations, for a given gene and cell.
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Figure C.43: Histograms of the posterior estimated latent counts for cell 1 to 10 for gene

’Ran’ in dataset 1. For each MCMC iteration, we compute the mean estimated latent count.

The red vertical line indicates the overall mean latent count, averaged across all MCMC

iterations, for a given gene and cell.
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Table C.2: Top 20 Global DE genes

Lhx1 1700063D05Rik Nr2f2 Lhx1os Trp73 Dlx2 Ppp2r2c Gpr88 Gm27199 Foxo1

Gm30648 Elfn2 Insm2 Psd Kcnj5 Ramp1 Lhx5 Mab21l1 Rspo2 AI593442

Table C.3: Top 20 Global DD genes

Ripor2 Spdl1 Trp73 Kif14 Wwtr1 Cxcl12 Ank3 Etv1 Cenpe Nrp1

Plk4 Mfng Zic1 Cdkn1a Nt5dc2 Nusap1 Rtn1 Elavl3 Neurod2 Eomes

Appendix C.3. Global Marker Genes

Based on the heat-maps, we show that the posterior estimated mean

expressions and dispersions tend to be lower for global DE and DD genes

in comparison to the non-DE and non-DD genes for each cluster, apart

from the small clusters 18 and 20 − 22 (Figure C.44, C.45 and C.46). In

addition, we compare the posterior of the mean expression and dispersion

within cluster for some global marker genes that are identified as DE or DD

in Figure C.47. Further, heatmaps of the observed gene-counts with genes

reordered by tail probabilities are presented in Figure C.48 and C.49 for DE

and DD, respectively; genes above the horizontal red line are identified as

global markers. t-SNE plots with only the global marker genes are shown

in Figure C.50 for both the observed and posterior estimated latent counts;

separation between clusters is more evident in the t-SNE plot based on the

latent counts.

88



Figure C.44: Heat-maps of estimated relative unique parameters on the log-scale, with

columns representing clusters and rows representing genes. Only global marker genes are

included in the heat-maps. The relative value is defined as the estimated value minus the

average across all clusters for that gene.

Figure C.45: Comparison of the posterior estimated log mean expressions between global

DE and non-DE genes for each cluster.
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Figure C.46: Comparison of the posterior estimated log dispersions between global DD

and non-DD genes for each cluster.
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Figure C.47: Posterior of the unique parameters of global marker genes. Lhx1 and

1700063D05Rik are examples of global DE genes. Ripor2 and Insm2 are examples of global

DD genes.
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Figure C.48: Heat-map of the observed counts for HET and HOM data. Cells from different

clusters are separated by yellow vertical lines. Cells from different datasets are separated

by yellow dashed lines. DE and non-DE genes are separated by the horizontal line such

that genes above the horizontal line are global marker genes.

Figure C.49: Heat-map of observed counts for HET and HOM data. Cells from different

clusters are separated by yellow vertical lines. Cells from different datasets are separated

by yellow dashed lines. DD and non-DD genes are separated by the horizontal line such

that genes above the horizontal line are global marker genes.
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Figure C.50: t-SNE plot based on the estimated latent counts (left) and the observed

counts (right) with global marker genes only. Cells are colored by cluster membership.

93



Table C.4: Top 5 local DE genes for each cluster.
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8

Arhgap29 Rit2 Smc6 Gm40421 Gsx2 Ifitm3 Cnih2 Mapk3

Ifi27 Prc1 Neto2 0610010F05Rik Hecw1 Gm36660 Rfc3 Ttk

1700093K21Rik Tenm2 Smim18 Cnih2 Srrm4 Gm28209 Hist1h1e Rab3a

Zfp935 1700093K21Rik Timeless Nlgn1 Mcm4 Msra Nav3 Smc6

Tmem150c Cdh4 Kcnk13 Brd8 Fzd1 Spock1 Mycbp2 Ina

Cluster 9 Cluster 10 Cluster 11 Cluster 12 Cluster 13 Cluster 14 Cluster 15 Cluster 16

Clic1 Comt Prokr2 Nup85 Clic1 Lrrc7 Agtr1a Txlnb

Nup62 Fbln1 Gm10457 1110017D15Rik Serp2 Nr2f1 Kif4 Dcaf17

Schip1 Mapk3 Smc4 Xlr3a Sobp Loxl2 Dct Snhg12

Mcm5 Tfap2c 1500035N22Rik Calb1 Zic4 Mcm7 Lamp5 Dkc1

Gm28196 Dsn1 Dll1 Nefm Reep2 Spag5 Syp Manf

Cluster 17 Cluster 18 Cluster 19 Cluster 20 Cluster 21 Cluster 22

Tagln2 Olfr655 Comt Fst Pcgf5 Pcgf5

Dusp6 Gm16152 Pcgf5 Igfbpl1 Syn1 Dusp4

Shb Gm29771 Timeless Cbfa2t3 Synpr Nek6

Efnb2 BC030500 Wnt7b Mt3 Spats2l Scg3

Foxm1 Khdrbs2 Gpsm2 Wnt10a Kcnh4 Shpk

Appendix C.4. Local Marker Genes

We present the heatmaps to compare estimated unique parameters of local

marker genes for each cluster are shown in Figure C.51 and C.52. Further,

we present the relationship between the mean expressions and dispersions

and highlight the local marker genes for each cluster in Figure C.53. No

clear pattern is observed between the local features of the genes and the

relationship between the unique parameters. In addition, we compare the

estimated unique parameters between local marker and non-marker genes

for each cluster; differences in the posterior estimated unique parameters are

evident for local marker genes in 18 out of 22 clusters. (Figure C.54 and

C.55).
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Figure C.51: Heat-maps to compare estimated unique parameters of local marker genes

for each cluster. Columns in each heat map represent clusters and rows represent genes.

The first two rows are the estimated mean expressions for the local DE genes and the last

two rows are the estimated dispersions for the local DD genes. For all heat-maps, rows are

reordered by local tail probabilities, hence genes on the top rows have a higher probability

of being locally DE.
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Figure C.52: Heat-maps to compare estimated unique parameters of local marker genes

for each cluster. Columns in each heat map represent clusters and rows represent genes.

The first two rows are the estimated mean expressions for the local DE genes and the last

two rows are the estimated dispersions for the local DD genes. For all heat-maps, rows are

reordered by local tail probabilities, hence genes on the top rows have a higher probability

of being locally DD.
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Figure C.53: Posterior estimated relationships between the mean expressions and dispersions

for each cluster. The posterior means of the mean expressions and dispersions are plotted.

To compare the local marker genes for each cluster, we highlight local DE and DD genes in

red, local DE and non-DD genes in green, and local DD and non-DE genes in blue.
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Figure C.54: Distribution of posterior estimates of mean expressions for local DE and

non-DE genes for each cluster.

Figure C.55: Distribution of posterior estimates of dispersions for local DD and non-DD

genes for each cluster.
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Table C.5: Top 5 local DD genes for each cluster.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8

Ntm Tenm2 Doc2b Gm40421 Fzd1 Gm28209 Tssc4 Glra1

1700093K21Rik 1700093K21Rik Numbl Gm13425 Gsx2 Ifitm3 Mgat4c Vit

Ifi27 Cnrip1 Fbln1 Nlgn1 Kcnb2 Msra Sobp 4430402I18Rik

Arhgap29 Gm48283 A830011K09Rik Cnih2 Mcm4 Spock1 Phf24 Calb1

Zfp935 Rgs8 Bnip3 Gabra2 Ppp2r2c Htra1 Lsm3 Rspo3

Cluster 9 Cluster 10 Cluster 11 Cluster 12 Cluster 13 Cluster 14 Cluster 15 Cluster 16

Gm17322 Fbln1 1500035N22Rik Nup85 Prim2 Tgfb2 Pcdhb6 Snhg12

Tenm1 Zcchc18 Prokr2 Ncapg2 Kif4 Lrrc7 Gfra4 Txlnb

Rhbdl2 Efnb1 Sfxn3 Atcay Cck Nr2f1 Suz12 Nlgn1

Zfpm2 Ccno Acss1 9330159F19Rik Sobp Mcm7 Hspa8 H19

Clic1 Ackr3 Zbtb20 Xlr3a Reep2 Gm13425 Chd5 Rec114

Cluster 17 Cluster 18 Cluster 19 Cluster 20 Cluster 21 Cluster 22

Tagln2 Pcgf5 Slc25a5 Igfbpl1 Srrm4 Traf4

Cdh10 Khdrbs2 Wnt7b Acrbp Syn1 Dusp4

Efnb2 Rbms1 Etv4 Wnt10a Tbx5 Rest

Dusp6 Tubb3 Nrcam Myl6b Bmp3 Spc25

Arhgap29 Gm16152 Mirt1 Bcl11a Abhd11 Arhgef25
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Appendix C.5. Posterior Estimated Latent Counts

We compute the posterior estimated latent counts for all cells and compare

between different clusters. Figure C.56 provides a heat-map of the estimated

latent counts; cells are ordered by the clustering estimate, with solid vertical

lines separating cells from different clusters and dashed vertical lines separating

HET and HOM within cluster. Genes are reordered by global DD tail

probabilities, with global DD genes above the horizontal line. Corresponding

figures for the observed counts are shown in Section Appendix C.3.

For each gene, posterior estimated latent counts and observed counts for

cells within each clusters are similar, and clear differences are observed across

cells from different clusters. In addition, we use t-SNE (a commonly used

dimensional reduction method for visualising gene expressions) to visualize

similarities between cells within each cluster and differences across clusters.

Applying t-SNE to the posterior estimated latent counts for genes which are

global DE and DD shows a clear separation between clusters.
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Figure C.56: Heat-map of posterior estimated latent gene-counts for HET and HOM. Genes

are reordered by global DD tail probabilities, genes above the red horizontal line are global

DD, and vice versa. Cells for reordered by the point estimate of posterior allocations. Cells

from different clusters are separated by solid lines and cells from different datasets are

separated by dashed lines.
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Figure C.57: Gene-wise comparison of the mean of the log shifted counts, standard deviation

of the log shifted counts and dropout probabilities for posterior predictive checks with

single replicate.

Appendix C.6. Posterior Predictive Checks

By comparing the observed and replicated statistics match gene-wise in

Figure C.57, we show the observed and replicated statistics are similar which

further supporting the model fit.
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Table D.6: List of important genes.

Dlx6os1 Sp9 Nrxn3 Dlx1 Ccnd2 Arx Dlx5 Top2a Rrm2 Pclaf

Hmgb2 Cdca7 Gm13889 Etv1 Cenpf Gm26917 Sp8 Gad2 Hmgn2 Cenpe

Insm1 Nusap1 Tpx2 Neurod6 Cntn2 Mef2c Mapt Tbr1 Nrp1 Wnt7b

Id2 Neurod1 Nrxn1 Satb2 Neurog2 Crabp1 Lhx2 Zic1 Mfap4 Nrp2

Ccnd2 Nhlh1 Plcb1 Nhlh2 Lhx9 Lmo4 Prdm13 Emx2 Cited2 Insm1

Ptn Cux2 Wnt7b Pou3f3 Cux1 Pou3f1 Zbtb20 Nfix Pfn2 Ube2c

Fezf2 Sox2 Neurod2 Sox5 Slain1 Fgfr1 Pou3f2 Robo2 Dlx2 Smc2

Appendix D. Important Genes

We were provided with a list of 70 important genes, that are of particular

interest for this experimental data. Information and summary statistics

including the posterior estimated mean expressions and dispersions and global

features of these important genes are shown below.

In the following, we present the list of important genes (Table D.6), and

those which are classified as global marker genes are shown in Table D.7 and

D.8. Further, we present the relationship between posterior estimated mean

expressions and dispersions with different local features in Figure D.58, D.59,

D.60 and D.61. Lastly, we show the heatmap of estimated unique parameters

for the important genes in Figure C.53.

Table D.7: List of important genes which are classified as DE.

Pou3f3 Satb2 Nrp2 Cntn2 Lhx9 Nhlh1 Cenpf Tbr1 Dlx1 Dlx2

Cdca7 Sp9 Neurod1 Gm13889 Nusap1 Plcb1 Insm1 Tpx2 Ube2c Arx

Sox2 Nhlh2 Neurog2 Cenpe Lmo4 Prdm13 Pou3f2 Smc2 Pou3f1 Dlx6os1

Dlx5 Ptn Neurod6 Ccnd2 Sox5 Cited2 Hmgb2 Nrp1 Crabp1 Pclaf

Zic1 Mfap4 Neurod2 Top2a Mapt Mef2c Rrm2 Id2 Etv1 Nrxn3

Sp8 Wnt7b Robo2 Nrxn1 Emx2
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Table D.8: List of important genes which are classified as DD.

Lhx9 Dlx2 Cdca7 Neurod1 Nusap1 Insm1 Arx Nhlh2 Cenpe Neurod6

Ccnd2 Hmgb2 Nrp1 Pclaf Zic1 Mfap4 Neurod2 Etv1 Nrxn3 Robo2

Gm26917 Nrxn1 Emx2

Figure D.58: Posterior estimated mean expressions and dispersions (on the log-scale) for

the important genes which are classified as both DE and DD. The dashed line shows the

posterior estimated relationship between the mean expressions and dispersions.
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Figure D.59: Posterior estimated mean expressions and dispersions (on the log-scale) for

the important genes which are classified as DE, but not DD. The dashed line shows the

posterior estimated relationship between the mean expressions and dispersions.
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Figure D.60: Posterior estimated mean expressions and dispersions (on the log-scale) for

the important genes which are classified as DD, but not DE. The dashed line shows the

posterior estimated relationship between the mean expressions and dispersions.

Figure D.61: Posterior estimated mean expressions and dispersions (on the log-scale) for

the important genes which are classified as both not DE and DD. The dashed line shows

the posterior estimated relationship between the mean expressions and dispersions.
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Figure D.62: Posterior means of the unique parameters of important genes for all clusters

for mean expression (left) and dispersion (right).
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