
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The 1000 Mitoses Project: A Consensus-Based International
Collaborative Study on Mitotic Figures Classification

Citation for published version:
Kendall, T 2024, 'The 1000 Mitoses Project: A Consensus-Based International Collaborative Study on
Mitotic Figures Classification', International Journal of Surgical Pathology.
https://doi.org/10.1177/10668969241234321

Digital Object Identifier (DOI):
10.1177/10668969241234321

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
International Journal of Surgical Pathology

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 11. May. 2024

https://doi.org/10.1177/10668969241234321
https://doi.org/10.1177/10668969241234321
https://www.research.ed.ac.uk/en/publications/ae937f43-7588-48db-83f4-66d0e2338aca


The 1000 Mitoses Project: A Consensus-Based International Collaborative Study on

Mitotic Figures Classification



Abstract

Introduction

The identification of mitotic figures is essential for the diagnosis, grading, and classification of

various different tumors. Despite its importance, there is a paucity of literature reporting the

consistency in interpreting mitotic figures among pathologists. This study leverages publicly

accessible datasets and social media to recruit an international group of pathologists to score an

image database of more than 1000 mitotic figures collectively.

Materials and Methods

Pathologists were instructed to randomly select a digital slide from The Cancer Genome Atlas

(TCGA) datasets and annotate 10-20 mitotic figures within a 2 mm2 area. The first 1010

submitted mitotic figures were used to create an image dataset, with each figure transformed into

an individual tile at 40x magnification. The dataset was redistributed to all pathologists to review

and determine whether each tile constituted a mitotic figure.

Results

Overall pathologists had a median agreement rate of 80.2% (range 42.0% to 95.7%). Individual

mitotic figure tiles had a median agreement rate of 87.1% and a fair inter-rater agreement across

all tiles (kappa = 0.284). Mitotic figures in prometaphase had lower percentage agreement rates

compared to other phases of mitosis.

Conclusion

This dataset stands as the largest international consensus study for mitotic figures to date and can

be utilized as a training set for future studies. The agreement range reflects a spectrum of criteria



that pathologists use to decide what constitutes a mitotic figure, which may have potential

implications in tumor diagnostics and clinical management.

Keywords:Mitotic Figures, Mitotic Figure Mimics, Digital Pathology, International

Collaboration, Social Media



Introduction

The identification and enumeration of mitotic figures are essential for diagnosing,

classifying, and grading of various tumor types. Mitotic figures are routinely assessed in tumor

types that include neuroendocrine tumors,1,2 breast carcinomas,3 soft tissue sarcoma,4

gastrointestinal stromal tumors (GIST),5,6 cutaneous melanoma,7,8 and thyroid tumors,9 among

others. Visual quantification of mitotic figures on hematoxylin and eosin (H&E) stained

histologic sections serves as a surrogate measure for the proliferative capacity of tumors and has

been shown as an independent prognostic factor of outcome in many cancer types.10–12 Mitotic

counts, traditionally quantified per high-powered microscope field, have evolved to standardized

area measurements in the most current classification systems in order to address the variability

with different microscope lenses.13 Therefore, mitotic counts are typically defined as the number

of mitotic figures in a given unit area and are expressed in discrete ranges that are used to guide

clinical decision-making and risk stratification of patients.

The identification and quantification of mitotic figures can be both subjective and

time-consuming, with poor reproducibility.2,14,15 Previous studies have shown moderate

agreement rates for mitotic counts, even within a standard area.16–18 While pathologists are not

required to characterize mitotic figures into various phases on histologic tumor slides in routine

practice, the morphologies of mitotic figures may vary widely, with distinct appearances at each

phase. A deeper understanding of these variations could lead to more accurate mitotic counts.

Donovan et al. defined morphologies of various phases of prophase, metaphase, anaphase, and

telophase that occur during mitosis. Additionally, the authors described atypical mitotic figures,

and potential mitotic figure mimics.19 Examples of mitotic figure mimics include apoptotic

figures, hyperchromatic or deformed nuclei, karyorrhectic debris, inflammatory cells, and tissue

artifacts.19,20 The process of distinguishing mitotic figures and atypical mitotic figures from
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mitotic figure mimics is challenging and is often subject to inter-observer variability.19,21

Inaccuracies in mitotic figure interpretation and quantification of mitotic counts may lead to

misdiagnoses and ultimately result in inaccurate classifications of tumors in clinical practice.14

Thus, to produce consistent and reproducible mitotic counts, it is critical for pathologists to

distinguish mitotic figures and atypical mitotic figures from mitotic figure mimics, and to

recognize common pitfalls encountered in making this distinction.

There is increasing interest in developing AI-assisted computational pathology tools that

can automate subjective and time-consuming tasks in current pathology workflows.22 One such

potential tool would identify and count mitotic figures across a whole-slide image, resulting in a

holistic measure of mitotic count, in contrast to the current method of generating a mitotic count

from a limited set of areas selected by the pathologist. Given the prevalence of mitotic figure

datasets from grand challenges,23 automated systems are well positioned to solve the challenges

of counting mitotic figures. However, their performance has been shown to decline in varied

clinical settings due to the challenges in differentiating between mitotic figures and their mimics,

which often have differing sizes, shapes, and structural elements.24 One limitation in developing

robust machine learning applications that can accurately enumerate mitotic figures across a

whole-slide image (WSI) is the lack of comprehensive diverse properly labeled datasets scored

by a diverse panel of expert pathologists.25

There exists a paucity of data documenting the consistency in interpreting a large dataset

of mitotic figures among pathologists from diverse backgrounds and clinical practice settings.

With the availability of publicly accessible datasets and the increasing popularity of professional

social media use among pathologists, we identified a unique opportunity to foster research

collaborations extending beyond geographical and institutional barriers in order to generate

novel insights and robust datasets. These datasets could then support the training of robust
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artificial intelligence-based tools within pathology workflows promising to automate tedious and

error-prone tasks that can ultimately impact patient care. In this study, we leveraged publicly

accessible datasets and social media to recruit an international group of 85 pathologists to

collectively generate and score an image database of 1010 mitotic figures.

Design

Study Cohort

The study was announced (July 13, 2022) on Twitter (currently known as X) to recruit practicing

pathologists across the world. Participants were screened based on their online professional

profile and confirmed by their institutional affiliation to ensure they were at the level of a staff

pathologist. No other exclusion criteria were utilized and pathologists from around the world

were included.

Collection of 1000 Mitotic Figures

Each pathologist who completed the survey was sent a comprehensive protocol detailing the

instructions for submitting their mitotic figures. Using the online dataset from The Cancer

Genome Atlas (TCGA), each participant randomly selected a diagnostic slide from the dataset of

their choosing. The selection criteria was open to all available datasets available on the TCGA

and not limited to specific tumors where mitotic counts are routinely assessed in clinical practice.

Using QuPath, an open-source bioimage analysis tool, the pathologist annotated a 2 mm2 area of

tumor with the highest proliferative capacity on the tumor.26 Within this defined area, the

pathologist annotated 10-20 mitotic figures that would have been included in a mitotic count to

be used for patient care in their clinical practice. The first 1000 submitted mitotic figures (with
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10 extra tiles included for redundancy) were used to create an image dataset, with each figure

transformed into an individual tile at 40x magnification.

Scoring of Mitotic Figures

The dataset was split into four equal parts based on the order in which the tiles were submitted

and uploaded into four separate Google Forms. For each tile, participants were asked whether the

tile constituted a mitotic figure (Yes/No). At the end of each of the four surveys, participants

were asked to provide qualitative feedback on tiles with uncertainty. The dataset was split into

parts to create a workflow that saved the rater’s progress and did not need to be completed in a

single setting.

Determination of Mitotic Phase and Mitotic Figure Mimics

Each submitted mitotic figure was classified as the most probable phase of mitosis by a

pathologist ([REDACTED]). Identification of cells in prophase is challenging with light

microscopes, given the subtle morphologic changes in this phase. Cells in mitosis that appear as

dark chromosome aggregates are most likely in the final stages of prophase, commonly referred

to as prometaphase.19 The term prometaphase will be used going forward to denote mitotic

figures in the later phase of prophase that can be reliably identified on histologic sections. During

the review by [REDACTED], a potential mitotic figure mimic was assigned descriptively to a

subset of the tiles. Given the lack of a gold standard for what constitutes a mitotic figure from a

mimic, it is not possible to definitively enumerate the exact number of tiles in these categories.

This descriptive analysis provides insight into the distribution of potential mimics in each phase

of the cell cycle.

Statistics
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Descriptive statistics were calculated at both the pathologist and tile level. At the pathologist

level, an agreement rate was calculated by the proportion of tiles classified as positive over the

total number of tiles rated. At the tile level, an agreement rate was calculated by the proportion

of pathologists that classified the tile as a mitotic figure over the total number of ratings. Fleiss’s

kappa (κ) was used as a statistical measure of inter-rater agreement, where kappa values can be

interpreted as poor agreement (<0), slight agreement (0-0.2), fair agreement (0.2-0.4), moderate

agreement (0.4-0.6), good agreement (0.6-0.8), and almost perfect agreement (>0.8).27 Further,

we utilized a one-way ANOVA and a subsequent Tukey’s post-hoc test to evaluate pathologist

agreement rates based on the phases of mitosis. Additional unsupervised hierarchical clustering

analysis was performed for both mitotic figures and pathologists and corresponding heatmap

denograms were generated.

Results

Study Description

A group of 55 international staff pathologists from around the globe contributed to the mitotic

figures dataset consisting of 1010 tiles, and 85 international staff pathologists scored the dataset.

The group had varying years of practice and were from 24 countries (Figure 1). The dataset

spans 19 distinct disease sites from the TCGA open-source database, with the largest

contributors being cervical squamous carcinoma (120 tiles), sarcoma (104 tiles), and colorectal

adenocarcinoma (91 tiles), followed by lung squamous cell carcinoma and breast carcinoma

(both 80 tiles each) (Figure 2). The study spanned a total of 57 days from conceptualization and

mitotic figure collection to scoring of the dataset.

Assessment of Interobserver Variability
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At the pathologist level, there was a median agreement rate of 80.2% of the mitotic figure tiles

(mean 78.5 ± SD 12.4), with an agreement range of 42.0 to 95.7% (Figure 3a). At the tile level,

there was a median agreement rate of 87.0% (mean 78.5 ± SD 22.2) with an agreement range of

1.2 to 100%, reflecting a subset of tiles with mixed or low agreement. Of all tiles submitted,

41.6% had a high agreement score in the 90-100% category. (Figure 4b). The average kappa

value of 0.284 indicates fair inter-rater agreement across all tiles.

Agreement Rate and Potential Mimics Based on Phase of Mitosis

Mitotic figures in prometaphase showed lower agreement rates (median 81.2%) compared to

mitotic figures in metaphase (median 89.4, p<0.0001), and anaphase/telophase (median 85.9%,

p<0.0001), with no differences between other groups (Figure 4). In order to better understand the

variability in mitotic figure enumeration, each mitotic figure was assessed for potential mimics.

A potential mimic was assigned in 467 out of 1010 (46.2%) tiles within the dataset. Mitotic

figures with low agreement rates were most likely to resemble mitotic figure mimic, with the

most common mitotic figure mimic being karyorrhectic debris, immune cells, stromal cells, and

two cells in close proximity. All phases of mitosis could mimic karyorrhectic debris, whereas

lymphocytes were most likely to resemble mitosis in prometaphase, and stromal cells were likely

to mimic mitosis in metaphase (Figure 5).

Cluster Analysis of Pathologist Agreement in Mitotic Figure Classification

To better understand the clustering of mitotic figures and pathologists, heatmap

dendrograms following unsupervised hierarchical clustering were performed (Supplemental

Figures 1 and 3). Representative mitotic figures from the clusters are included in Supplemental

Figure 2 and 4. Additional analysis of the results from the hierarchical clustering showed no



association between the clusters of pathologists and their subspecialty, region of practice, or

years of practice that was previously collected in the study.

Discussion

This study leveraged a social media platform to recruit a large cohort of pathologists to

generate and score the largest dataset of mitotic figures to date, 1010 proposed mitotic figures.

This approach allows for rapidly generating robust datasets generated by an international cohort

of pathologists. In this study, we were able to move from conceptualization through recruitment,

onboarding, and complete primary data collection in 57 days. The use of public datasets

minimized barriers for data sharing, such as data transfer agreements and multi-institutional

ethics approval. To our knowledge, this is the largest international consensus study for mitotic

figures to date, with the overall goal of examining the consistency in interpreting mitotic figures

among pathologists.

We found a spectrum of opinions on what constitutes a mitotic figure, which is consistent

with existing literature.15,16,19 A key finding was the lower agreement for prometaphase mitotic

figures compared to other phases of mitosis. As all of the mitotic figures within the dataset were

entities pathologists would classify as mitotic figures in their clinical practice, it is unsurprising

that a vast majority of the dataset is in the upper agreement range (>80%). A subset of mitotic

figures in the intermediate agreement range highlights the subjectivity of the task of identifying

mitotic figures (Supplemental Figure 1). Individual pathologists also have a spectrum of

agreement rates, with clusters of pathologists having variable thresholds for what constitutes a

mitotic figure (Supplemental Figure 3). Despite having 85 pathologists that served as raters, the

study was insufficiently powered to determine if this varying threshold was influenced by

subspecialty, region of practice, or years of practice.

https://www.zotero.org/google-docs/?umqBG2


Pathologists' interpretation of mitotic figures is inherently variable and previous studies

have documented intermediate agreement rates for mitotic counts (κ = 0.34-0.64).17,28,29 Our

study presented a lower kappa value (κ = 0.284), indicating fair agreement. One possible

explanation for this lower agreement rate is the vast diversity of our sample of pathologists

compared to previous studies. A second explanation, highlighted by participant feedback, is the

unique challenge of interpreting mitotic figures on WSI due to limitations of scan quality and the

inability to refocus the specimen—a functionality that is possible on analog microscopes. Studies

have previously documented the decrease in accuracy in detecting mitoses using WSI rather than

microscopy.30,31 Distinguishing mitotic figures and atypical mitotic figures from mitotic figure

mimics, which include apoptotic bodies, hyperchromatic nuclei, karyorrhectic debris,

inflammatory cells, two cells in close proximity, and tissue artifacts,2,19 is one of the most

error-prone steps in determining mitotic count.

Due to the pitfalls surrounding the identification and enumeration of mitotic figures,

other means of obtaining proliferation markers have been variably utilized.

Immunohistochemistry with phosphorylated histone H3 (pHH3), a marker highly specific to

mitotic figures, can yield improved mitotic figure counting accuracy and efficiency.32 However,

implementation is not practical in routine practice as this added step lends itself to diagnostic

pitfalls with immunohistochemistry, increases in operational costs, and further delays in slide

preparation. Further, studies defining the use of mitotic figures in grading and diagnosing cancers

may need to be repeated to account for changes in the threshold for classification. The Ki67

proliferation index is routinely used in tumors, such as non-pulmonary neuroendocrine tumors,

and is a more general marker of proliferation in which expression is not limited to cells

undergoing mitosis.33,34 However, Ki67 indices are not predictive for all cancer types, and there
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are similar challenges with the lack of standardization and variation in quantification and

staining methodologies.34,35

With major advancements in computational tools, automated mitotic figure detection and

enumeration have garnered significant research interest. However, proposed models for

automated mitotic figure classification have room for improvement and tend to lack

generalizability in different disease sites and clinical settings.25,36–38 A majority of these models

are trained by limited publicly available mitosis detection datasets from grand challenges such as

MITOS,39 AMIDA,40 MITOS-ATYPIA41, TUPAC42, and MIDOG23, that provides standardized

whole slide images for researchers to train and test automated mitoses detection models, with

recent models adopting increasingly complex neural networks using a combination of these

datasets. Models are only as good as the data they are trained on, and datasets are often limited in

the breadth of disease types and in selection of mitotic figures by a small number of observers.

Ideally, automated mitotic figure models should be developed with datasets that account for

mitotic figures within different disease sites, include mitotic figures in different phases of cell

division, account for variations in tissue processing that may lead to staining variability, and

allow variations in slide scanning quality. Previous datasets present binary information: each cell

is classified as either a mitotic figure or not. Our dataset is unique as we have 85 observers,

allowing for an agreement or consensus rate for each cell. Instead of training models with a

simple binary system, our dataset affords a way for weighted confidence to be integrated into the

training set, with high agreement mitotic figures given proportionally more weight.

Our study has several limitations. We recognize the challenge with assigning binary

values to mitotic figures where uncertainty is present. In order to limit the number of repetitive

inputs from staff pathologists who volunteered their time to contribute to this study, we did not

capture confidence levels from pathologists when scoring the mitotic figures. Moreover, as there
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is no gold standard for what definitively does and does not constitute a mitotic figure, we were

unable to include true negatives in our dataset which would have increased the robustness of the

collected data and reduced bias when scoring the dataset. Further, it is possible that providing a

dataset of images that other colleagues have denoted as mitotic figures might influence scorers to

agree when evaluating tiles containing mitotic figures with non-specific features. During the

collection of mitotic figures, pathologists were instructed to choose a histologic slide from a

disease site of their choosing. The use of TCGA slides was both a limitation and advantage for

this study. Slides were prepared and scanned at various institutions, resulting in heterogeneous

H&E appearance and scanning preparation.43 This heterogeneity may have made the

identification of mitotic figures more challenging for participants, but it also helped provide a

more diverse data set that can be utilized in subsequent training systems.

The field of pathology is becoming increasingly digitized, allowing pathologists novel

ways to rapidly share data and contribute to international research collaborations with the

promise of furthering patient care.44 In this study, we leverage an extensive international

professional network of pathologists on social media to develop and score the largest dataset of

mitotic figures to date and to capture the subjectivity in interpreting mitotic figures. This project

stands as an example of providing equitable and inclusive opportunities for research amongst a

group of scholars connected through social media. We anticipate the increasing adoption of

technology-driven approaches to generate robust datasets that can fuel

artificial-intelligence-based applications in pathology and drastically reduce the number of

subjective and time-consuming tasks for pathologists. Initiatives, such as these, can assist in

implementing well-defined guidelines to standardize mitotic counts and assist pathologists in

tumor assessment.

https://www.zotero.org/google-docs/?SbeXXX
https://www.zotero.org/google-docs/?8QKMCc


References

1. Travis WD, Rush W, Flieder DB, et al. Survival Analysis of 200 Pulmonary Neuroendocrine
Tumors With Clarification of Criteria for Atypical Carcinoid and Its Separation From Typical
Carcinoid: Am J Surg Pathol. 1998;22(8):934-944.
doi:10.1097/00000478-199808000-00003

2. Baak JPA. Mitosis counting in tumors. Hum Pathol. 1990;21(7):683-685.
doi:10.1016/0046-8177(90)90026-2

3. Ibrahim A, Lashen AG, Katayama A, et al. Defining the area of mitoses counting in invasive
breast cancer using whole slide image. Mod Pathol Off J U S Can Acad Pathol Inc.
2022;35(6):739-748. doi:10.1038/s41379-021-00981-w

4. Guillou L, Coindre JM, Bonichon F, et al. Comparative study of the National Cancer Institute
and French Federation of Cancer Centers Sarcoma Group grading systems in a population
of 410 adult patients with soft tissue sarcoma. J Clin Oncol Off J Am Soc Clin Oncol.
1997;15(1):350-362. doi:10.1200/JCO.1997.15.1.350

5. Parab TM, DeRogatis MJ, Boaz AM, et al. Gastrointestinal stromal tumors: a
comprehensive review. J Gastrointest Oncol. 2019;10(1):144-154.
doi:10.21037/jgo.2018.08.20

6. Singer S, Rubin BP, Lux ML, et al. Prognostic value of KIT mutation type, mitotic activity,
and histologic subtype in gastrointestinal stromal tumors. J Clin Oncol Off J Am Soc Clin
Oncol. 2002;20(18):3898-3905. doi:10.1200/JCO.2002.03.095

7. Marsch AF, McKee RM, Hinds BR. Morphologic Forms and Classification of Dermal Mitotic
Figure Density in Primary Cutaneous Melanoma: A Retrospective Study. Am J
Dermatopathol. 2020;42(1):35-40. doi:10.1097/DAD.0000000000001453

8. Keung EZ, Gershenwald JE. The eighth edition American Joint Committee on Cancer
(AJCC) melanoma staging system: implications for melanoma treatment and care. Expert
Rev Anticancer Ther. 2018;18(8):775-784. doi:10.1080/14737140.2018.1489246

9. Baloch ZW, Asa SL, Barletta JA, et al. Overview of the 2022 WHO Classification of Thyroid
Neoplasms. Endocr Pathol. 2022;33(1):27-63. doi:10.1007/s12022-022-09707-3

10. Olar A, Wani KM, Sulman EP, et al. Mitotic Index is an Independent Predictor of
Recurrence-Free Survival in Meningioma. Brain Pathol Zurich Switz. 2015;25(3):266-275.
doi:10.1111/bpa.12174

11. Thompson JF, Soong SJ, Balch CM, et al. Prognostic significance of mitotic rate in localized
primary cutaneous melanoma: an analysis of patients in the multi-institutional American
Joint Committee on Cancer melanoma staging database. J Clin Oncol Off J Am Soc Clin
Oncol. 2011;29(16):2199-2205. doi:10.1200/JCO.2010.31.5812

12. Medri L, Volpi A, Nanni O, et al. Prognostic Relevance of Mitotic Activity in Patients with
Node-Negative Breast Cancer. Mod Pathol. 2003;16(11):1067-1075.
doi:10.1097/01.MP.0000093625.20366.9D

13. Cree IA, Tan PH, Travis WD, et al. Counting mitoses: SI(ze) matters! Mod Pathol.
2021;34(9):1651-1657. doi:10.1038/s41379-021-00825-7

14. Yigit N, Gunal A, Kucukodaci Z, Karslioglu Y, Onguru O, Ozcan A. Are we counting mitoses
correctly? Ann Diagn Pathol. 2013;17(6):536-539. doi:10.1016/j.anndiagpath.2013.05.005

15. Zhang R, Chen H jiao, Wei B, et al. Reproducibility of the Nottingham modification of the
Scarff-Bloom-Richardson histological grading system and the complementary value of Ki-67
to this system. Chin Med J (Engl). 2010;123(15):1976-1982.

16. Coindre JM, Trojani M, Contesso G, et al. Reproducibility of a histopathologic grading
system for adult soft tissue sarcoma. Cancer. 1986;58(2):306-309.
doi:10.1002/1097-0142(19860715)58:2<306::AID-CNCR2820580216>3.0.CO;2-7

17. Frierson HF, Wolber RA, Berean KW, et al. Interobserver reproducibility of the Nottingham
modification of the Bloom and Richardson histologic grading scheme for infiltrating ductal
carcinoma. Am J Clin Pathol. 1995;103(2):195-198. doi:10.1093/ajcp/103.2.195

https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o


18. Garbe C, Eigentler TK, Bauer J, et al. Mitotic rate in primary melanoma: interobserver and
intraobserver reliability, analyzed using H&E sections and immunohistochemistry: Mitotic
rate in primary melanoma - reliability. JDDG J Dtsch Dermatol Ges. 2016;14(9):910-915.
doi:10.1111/ddg.12797

19. Donovan TA, Moore FM, Bertram CA, et al. Mitotic Figures—Normal, Atypical, and
Imposters: A Guide to Identification. Vet Pathol. 2021;58(2):243-257.
doi:10.1177/0300985820980049

20. Al-Janabi S, van Slooten HJ, Visser M, van der Ploeg T, van Diest PJ, Jiwa M. Evaluation of
mitotic activity index in breast cancer using whole slide digital images. PloS One.
2013;8(12):e82576. doi:10.1371/journal.pone.0082576

21. Saygin I, Cakir E, Ercin ME. Interobserver Variability in Mitotic Count for Meningioma
Grading: How Can We Reduce It? Turk Neurosurg. 2020;30(5):643-650.
doi:10.5137/1019-5149.JTN.26252-19.2

22. Cui M, Zhang DY. Artificial intelligence and computational pathology. Lab Invest.
2021;101(4):412-422. doi:10.1038/s41374-020-00514-0

23. Aubreville M, Wilm F, Stathonikos N, et al. A comprehensive multi-domain dataset for mitotic
figure detection. Sci Data. 2023;10(1):484. doi:10.1038/s41597-023-02327-4

24. Mathew T, Kini JR, Rajan J. Computational methods for automated mitosis detection in
histopathology images: A review. Biocybern Biomed Eng. 2021;41(1):64-82.
doi:10.1016/j.bbe.2020.11.005

25. Mathew T, Ajith B, Kini JR, Rajan J. Deep learning‐based automated mitosis detection in
histopathology images for breast cancer grading. Int J Imaging Syst Technol.
2022;32(4):1192-1208. doi:10.1002/ima.22703

26. Bankhead P, Loughrey MB, Fernández JA, et al. QuPath: Open source software for digital
pathology image analysis. Sci Rep. 2017;7(1):16878. doi:10.1038/s41598-017-17204-5

27. Fleiss JL, Levin B, Paik MC. Statistical Methods for Rates and Proportions. 1st ed. Wiley;
2003. doi:10.1002/0471445428

28. Meyer JS, Alvarez C, Milikowski C, et al. Breast carcinoma malignancy grading by
Bloom-Richardson system vs proliferation index: reproducibility of grade and advantages of
proliferation index. Mod Pathol Off J U S Can Acad Pathol Inc. 2005;18(8):1067-1078.
doi:10.1038/modpathol.3800388

29. Rakha EA, Bennett RL, Coleman D, Pinder SE, Ellis IO. Review of the national external
quality assessment (EQA) scheme for breast pathology in the UK. J Clin Pathol.
2017;70(1):51-57. doi:10.1136/jclinpath-2016-203800

30. Tabata K, Uraoka N, Benhamida J, et al. Validation of mitotic cell quantification via
microscopy and multiple whole-slide scanners. Diagn Pathol. 2019;14(1):65.
doi:10.1186/s13000-019-0839-8

31. Lashen A, Ibrahim A, Katayama A, et al. Visual assessment of mitotic figures in breast
cancer: a comparative study between light microscopy and whole slide images.
Histopathology. 2021;79(6):913-925. doi:10.1111/his.14543

32. Ibrahim A, Toss MS, Makhlouf S, Miligy IM, Minhas F, Rakha EA. Improving mitotic cell
counting accuracy and efficiency using phosphohistone‐H3 ( PHH3 ) antibody counterstained
with haematoxylin and eosin as part of breast cancer grading. Histopathology.
2023;82(3):393-406. doi:10.1111/his.14837

33. Ahmed ST, Ahmed AM, Musa DH, Sulayvani FK, Al-Khyatt M, Pity IS. Proliferative Index
(Ki67) for Prediction in Breast Duct Carcinomas. Asian Pac J Cancer Prev APJCP.
2018;19(4):955-959. doi:10.22034/APJCP.2018.19.4.955

34. Tang LH, Gonen M, Hedvat C, Modlin IM, Klimstra DS. Objective Quantification of the Ki67
Proliferative Index in Neuroendocrine Tumors of the Gastroenteropancreatic System: A
Comparison of Digital Image Analysis With Manual Methods. Am J Surg Pathol.
2012;36(12):1761-1770. doi:10.1097/PAS.0b013e318263207c

35. Young HTM, Carr NJ, Green B, Tilley C, Bhargava V, Pearce N. Accuracy of visual

https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o


assessments of proliferation indices in gastroenteropancreatic neuroendocrine tumours. J
Clin Pathol. 2013;66(8):700-704. doi:10.1136/jclinpath-2012-201217

36. Malon C, Brachtel E, Cosatto E, et al. Mitotic figure recognition: agreement among
pathologists and computerized detector. Anal Cell Pathol Amst. 2012;35(2):97-100.
doi:10.3233/ACP-2011-0029

37. Albarqouni S, Baur C, Achilles F, Belagiannis V, Demirci S, Navab N. AggNet: Deep
Learning From Crowds for Mitosis Detection in Breast Cancer Histology Images. IEEE Trans
Med Imaging. 2016;35(5):1313-1321. doi:10.1109/TMI.2016.2528120

38. Mahmood T, Arsalan M, Owais M, Lee MB, Park KR. Artificial Intelligence-Based Mitosis
Detection in Breast Cancer Histopathology Images Using Faster R-CNN and Deep CNNs. J
Clin Med. 2020;9(3):749. doi:10.3390/jcm9030749

39. MITOS Dataset. MITOS Dataset. Accessed July 24, 2023.
http://ludo17.free.fr/mitos_2012/dataset.html

40. Veta M, Van Diest PJ, Willems SM, et al. Assessment of algorithms for mitosis detection in
breast cancer histopathology images. Med Image Anal. 2015;20(1):237-248.
doi:10.1016/j.media.2014.11.010

41. MITOS-ATYPIA-14 - Grand Challenge. grand-challenge.org. Accessed July 24, 2023.
https://mitos-atypia-14.grand-challenge.org/Dataset/

42. Veta M, Heng YJ, Stathonikos N, et al. Predicting breast tumor proliferation from whole-slide
images: The TUPAC16 challenge. Med Image Anal. 2019;54:111-121.
doi:10.1016/j.media.2019.02.012

43. Jahn SW, Plass M, Moinfar F. Digital Pathology: Advantages, Limitations and Emerging
Perspectives. J Clin Med. 2020;9(11):3697. doi:10.3390/jcm9113697

44. Baxi V, Edwards R, Montalto M, Saha S. Digital pathology and artificial intelligence in
translational medicine and clinical practice. Mod Pathol. 2022;35(1):23-32.
doi:10.1038/s41379-021-00919-2

https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o
https://www.zotero.org/google-docs/?k0ZD4o


Figure Legends

Figure 1. Demographics of pathologists scoring the mitotic figures dataset. Years of practice
among the staff pathologists (A) and location of practice categorized by continent (B).

Figure 2. Distribution of tumor types used in the 1010 mitotic figures dataset. Abbreviations:
Glioblastoma Multiforme (GBM), Head and Neck Squamous Cell Carcinoma (H&N SCC),
Hepatocellular Carcinoma (HCC), Diffuse Large B-cell Lymphoma (DLBC), Cervical Squamous
Cell Carcinoma (Cervical SCC).

Figure 3. (A) Agreement rates amongst pathologists across the overall dataset. (B) Mitotic figure
tiles categorized based on agreement rate from 85 pathologists.

Figure 4. Agreement rates with mitotic figures stratified based on phase of mitosis (A).
Representative images of different mitosis phases of high and low agreement (B, 40x
magnification).

Figure 5.Mitotic figures within the dataset characterized by potential mitotic figure mimics (A).
Representative microscopy images of mitotic figure mimics observed in the dataset (B).


