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Abstract

Heterogeneous-ISA processor designs have attracted con-
siderable research interest.However,unlike theirhomogeneous-
ISA counterparts, explicit software support for bridging ISA
heterogeneity is required. The lack of a compilation toolchain
ready to support heterogeneous-ISA targets has been a major
factor hindering research in this exciting emerging area. For
any such compiler “getting right” the mechanics involved in
state transformationuponmigration anddoing this e�ciently
is of critical importance. In particular, any runtime conversion
of the current program stack fromone architecture to another
would be prohibitively expensive. In this paper, we design
and developUnifico, a newmulti-ISA compiler that gener-
ates binaries that maintain the same stack layout during their
execution on either architecture. Unifico avoids the need
for runtime stack transformation, thus eliminating overheads
associated with ISA migration. Additional responsibilities
of the Unifico compiler backend include maintenance of a
uniform ABI and virtual address space across ISAs. Unifico
is implemented using the LLVM compiler infrastructure, and
we are currently targeting the x86-64 andARMv8 ISAs. We
have evaluated Unifico across a range of compute-intensive
NAS benchmarks and show its minimal impact on overall
execution time, where less than 6% overhead is introduced
on average. When compared against the state-of-the-art Pop-
corn compiler,Unifico reduces binary size overhead from
∼200% to ∼10%, whilst eliminating the stack transformation
overhead during ISAmigration.
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1 Introduction

Heterogeneity in computing hardware (CPUs,GPUs, TPUs,
andFPGAs) is commonpractice today inamultitudeofdeploy-
ments and con�gurations [46, 49, 69]. This has been driven
by the ever-increasing computational demands of workloads,
whose data-processing requirements boomed recently [52].
Yet, processing (large amounts of) data across heterogeneous
processing units poses several problems, like hindering pro-
grammability.
Classical software compilation, targeting a single instruc-

tion set architecture (ISA) and the related programming mod-
els, e.g., shared memory programming, is not applicable as-is
to heterogeneous-ISA platforms. Instead, the state-of-the-
practice is to isolate (or mark) a set of functions to be run on
a processing unit di�erent from the main central processing
unit (CPU), compile them for the speci�c ISA, and o�oad
them at runtime. Bespoke programming frameworks exist to
support the application programmer (e.g., OpenCL, CUDA),
and include development and runtime environments [48].

To improve the programmability of such platforms, di�er-
ent solutionshavebeen introduced, like thereuseofdatapoint-
ers across CPUs and heterogeneous processing units. These
required hardwarememorymanagement per processing unit,
and motivated the introduction of coherent shared memory
between thehostCPUandheterogeneous processingunits, ei-
ther on the same chip [1], or via the peripheral bus [5, 7, 9, 13].
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Emerging heterogeneous-ISA platforms. At the same
time, the landscape of heterogeneous hardware computing
is widening. While classical heterogeneous-ISA platforms,
comprising a single general-purpose CPU and multiple spe-
cial-purpose processing units (GPUs, TPUs, and FPGAs), are
widely available, platforms with multiple general-purpose di-
verse-ISAprocessingunits are emerging. Similarly to classical
heterogeneous hardware, emerging heterogeneous-ISA plat-
forms are also going to o�er shared memory amongst ISAs.

While academia proposed single-chip, cache-coherent het-
erogeneous-ISACPUs, e.g., BYOC [23] –which never reached
themarket,newperipheral interconnects likeCXL [7]promise
to enable coherent shared memory between the main CPU
and the processing units of peripheral devices, such as Smart-
NICs [3, 37] or SmartSSDs [24, 64] (ARM- or RISC-V- based).
Also, CXLwill accommodate memory expansion cards that
will likely integrate general- and special-purpose processing
units for near-data processing (NDP) [59], as in UPMEM [35]
processing-in-memory (PIM), where such processing units
directly access the same memory as the main CPU.
Programming emerging platforms. Classic heteroge-

neous computing runs an application on theCPU and o�oads
a speci�c part of it to special-purpose processing units. How-
ever, when multiple CPUs of diverse ISAs lie on the same
platform, thread migration has been shown to be more ben-
e�cial than o�oading, enabling decisions at runtime rather
than statically deciding on the function to o�oad at compile
time [27, 28, 36, 54].
While earlier works on heterogeneous-ISAmigration [47,

60] require the transformation of the entire application state
before execution on another ISA, recent approaches trans-
formonlypart of the state (e.g., the registers and stack), guided
by metadata derived during compilation. Despite that, the
transformation step and relatedmetadata still incur execution
timeandbinary sizeoverheads, respectively,whicharemostly
linear to the number and size of active stack frames when
migrating [27, 36]. Both overheads impact migration time,
potentially hindering its bene�ts. Lastly, although outside the
scope of this work, state transformation approaches consti-
tute a potential attack surface for the binaries [30], e.g., by
exposing the return addresses of functions that can be lever-
aged to create return-oriented programming (ROP) gadgets.
Unifico. Motivated by the emerging heterogeneous-ISA

platforms with shared memory, with the goal of making pro-
grammability as simple as homogeneous-ISA platforms, and
removing execution time and code size overheads of state
transformation, we proposeUnifico.Unifico is a compila-
tion technique thatgeneratesmulti-ISAbinarieswithauni�ed
address space layout and application state (including stack,
heap, thread-local storage, etc.) across di�erent ISAs, enabling
threadmigrationwithout transformations.We achieve this by
rethinking how compiler backends generate code, extending
the code generation passes that impact the application state

to adhere to a common set of rules, without the need to graft
any metadata in the binary.

We prototyped Unificowithin the LLVM compiler, target-
ing the 64-bit versions of the ARM and x86 ISAs, and stud-
ied its e�cacy on di�erent benchmarks. Comparing against
binaries generated using previous heterogeneous-ISA CPU
migration projects, we demonstrate that Unifico adds on
average no more than 6% execution time overheads and no
more than 10% code size increases. We envision Unifico be-
ing integrated in existing compiler frameworks, and used in
modern heterogeneous hardware platforms.
Wemake the following contributions:

• We introduce Unifico, a compilation technique that en-
ables thread migration amongst heterogeneous-ISA CPUs
without state transformation, removing its initialization,
runtime, and code overheads.

• We prototyped Unifico within the LLVM compiler, tar-
geting the x86 and ARM backends, and validate migra-
tion on the NAS Parallel Benchmarks (NPB) suite, utilizing
the CRIU checkpoint and restore software.Unifico is re-
leased as open source software (OSS) ath�ps://github.com/

systems-nuts/unifico.
• We evaluated Unifico on di�erent benchmarks, showing

that heterogeneous-ISACPUmigrationworks, and demon-
strate on average no more than 10% binary size overhead,
no more than 6% overhead on execution time (without
migration).
The rest of the paper is structured as follows: Section 2 sets

the background and motivation for our approach, Section 3
provides an illustrative example of the current limitations
and our solution; Sections 4 to 6 present Unifico’s design,
implementation and evaluation, respectively; we highlight
related work in Section 7 and conclude in Section 8.

2 Background andMotivation

2.1 Heterogeneous-ISAArchitectures

This work is motivated by the emerging compute hetero-
geneity, i.e., heterogeneous ISAs [23, 27, 28, 33, 36, 51, 65],
coupled with next-generation memory architectures materi-
alized by new interconnect technologies [5, 9, 13, 38, 50, 62],
e.g.,CXL [7, 20]. In such con�gurations, threadmigration has
been shown to bemore advantageous than the traditional and
prevalent o�oading techniques [28, 36].
In particular, we focus on a combination of x86 andARM

CPUs inspired by a family of emerging platforms closely re-
lated to NDP [12, 25, 35, 59, 61]. These usually accommodate
a brawny host processor (e.g., x86) plus one or more simpler
reduced instruction set computer (RISC) processors (usually
of di�erent ISAs, e.g.,ARM) near the memory, to avoid data
movement and increase bandwidth utilization. Memory-in-
tensive applications that exhibit weak locality are well suited
for these architectures [42]. Their dominant programming
paradigm is o�oading.
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1 queue.push(root)

2 while len(queue) > 0:

3 for src in queue:

4 for dst in out_edges(src):

5 # Can migrate here with UNIFICO

6 if parent[dst] == -1:

7 parent[dst] = src

8 queue.push(dst)

Figure 1. Pseudo-code of a queue-based BFS application. The
for-loops cannot be used directly as o�oad kernels without
major modi�cations.

2.2 ThreadMigration Techniques

Dynamic software thread migration is the act of moving a
thread’s execution context (e.g., register state, stack contents,
page mappings, etc.) between di�erent processing units in
a system [21, 39, 47, 60]. In shared-memory programming
(SMP) systems, this can be achieved through hardware and
operating system (OS) mechanisms. However, in the case of
heterogeneous-ISA systems, additional compiler and runtime
support is needed, since the thread state needs to be trans-
formed in order to match the architecture-speci�c details of
the target processor [26–28, 33, 36, 65, 67].
There are three main axes to consider when performing

thread migration: First,migration granularity, which denotes
where the program is able to migrate (e.g., function bound-
aries [27, 33, 66]). This property directly a�ects programma-
bility and performance, as we explain in Section 2.3 and Sec-
tion 2.4. Second, state transformation cost, which is incurred
at runtime before the migration. This a�ects the overall per-
formance of the migration. Finally, compiler support, which
describes the changes made to the compiler in order not only
to enablemigration (i.e., generate code for both ISAs), but also
control the granularity ofmigration and transformation costs.
Unfortunately, trying to improve on two of the axes, means
that compromise or more e�ort should be placed on the third
one. For example, in order to maximize granularity but with-
out modifying extensively the compiler, binary translation
can be employed to a thread trying to migrate to another ar-
chitecture but hasn’t reached a valid migration point [36, 66].
However, this incurs extra overhead to the overall execution.
It is our belief, that in order to maximize programmabil-

ity and performance in heterogeneous-ISA systems, more
weight should be put in the compiler support, as described in
the following sections.

2.3 The Programmability Problem

Utilizing o�oading commonly requires modi�cations at
the source code level of an application in order to use a spe-
ci�c supported applicationprogramming interface (API). This
mainly involves i) the setup/teardownof communicationwith
the accelerator device, and ii) code segmentation and data
movement for the computation to be o�oaded. This approach
is inherently in tensionwith ease of programming, portability
and programmer productivity [68].
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Figure 2. Stack frame size and count distribution for
benchmarks on ARM. Larger, more complex applications
like those in SPEC CPU2017 also have higher frame sizes and
frame counts and will bene�t more from the elimination of
stack transformation during migration by Unifico.

Figure 1 shows the main part of a small fragment of the
breadth-�rst search (BFS) algorithm, as taken from [43]. Port-
ing the algorithm to an o�oading-based programmingmodel,
e.g., the recently introducedUPMEM PIM architecture [35],
requires substantial modi�cations to the code and replicating
the data structures among all processing units [6, 42]. How-
ever, with thread migration, there is no need of replicating
data structures because threads can migrate where the data
is, and Unifico also enables �ner-grained migration, beyond
just the function boundaries.

2.4 The State Transformation Overhead Problem

Related work shows that for a set of applications from the
NPB, the cost of stack transformation is not signi�cant [27].
However, since state transformation requires traversing all
the stack frames for migrating between ISAs, overheads are
proportional to the number of variables, the number of stack
frames, and their sizes, therefore other applications might ex-
hibit higher overheads. To this end,we examine the stack sizes
and stack frame count of a wide range of high-performance
computing (HPC) and compute-intensive benchmarks from
theNPB [22] and SPECCPU2017 [32] suites in Figure 2, show-
ing their 5-point summary (min/max, lower/upper quartile,
median values).

We observe that larger andmore complex applications also
have higher frame sizes and frame counts on average, e.g, up
to 30 times more when comparing SPEC CPU2017 against
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1 int i;

2 double x = 0, sum = 0;

3

4 for (i = 0; i < 16; ++i)

5 sum += hot_func(&x);

6

7 ...

8 // x also accessed here

9

(a) Code snippet in C.

1 push Rcs // spill

2 load Rcs, xaddr // hoisted

3 Rtmp1 = 1

4 jmp end if Rtmp1 > 15

5 loop:

6 call hot_func() // arg: Rcs

7 Rtmp1++

8 jmp loop if Rtmp1 < 16

9 end:

(b) x86 pseudo-assembly code for (a).

1 Rtmp1 = 1

2 jmp end if Rtmp1 > 15

3 loop:

4 // address recalculation

5 load Rtmp2, FP + 3

6 call hot_func() // arg: Rtmp2

7 Rtmp1++

8 jmp loop if Rtmp1 < 16

9 end:

(c)ARM pseudo-assembly code for (a).

x86

x

i

old FP

return address

offset of x: 4

offset of i: 3

1

2

3

4

5

ARM

xaddr

i

RegistersStack

FP

Rtmp2
Rtmp1
RFP

Rcs

Static Metadata

xaddr

i

Registers

FP

Rcs
Rtmp1
RFP

Rtmp2 x

i
old Rcs

old FP

return address

offset of x: 5

offset of i: 4

1

2

3

4

5

PCRPC PC RPC

required by
state-of-the-art
for migration

{
(d) Unaligned stack layout for (a).

x

i

old FP

return address

Common Stack

xaddr

i

ARM
Registers

FP

Rtmp2
Rtmp1
RFP

Rcs

PC RPC

x86/ARM

- no metadata required
- identical stack layout for both architectures

     R: register
    PC: program counter
    FP: frame pointer
 xaddr: address of var x
    cs: callee-saved

Legend

1

2

3

4

5
xaddr

i

x86
Registers

FP

Rtmp2
Rtmp1
RFP

PCRPC

Rcs

this work

(e) Unifico aligned stack layout for (a).

Figure 3. Execution snapshot of the stack layout of a simple loop (a) on x86 (b) and ARM (c) ISAs just before a function call.
Red highlighted areas in (d) show the di�erences and their required bookkeeping to enable migration using a state-of-the-art
technique [27]. Unifico (this work) enforces a common layout (e) with minimal overhead for heterogeneous migration.

NPB applications. For example, xalancbmk can have up to
40 stack frames with an average stack frame size of 500 bytes,
amounting to a stack size of ∼20KB. If we conservatively as-
sume 8 byte variables, the runtime stack transformation will
need to convert the state of 2500 variables. This is an order of
magnitude larger when compared to the worst case of bt in
NPBwith only 6 frames, 120 bytes stack size, and 90 variables
on average. Moreover, we see that there is a direct correspon-
dence between the number of stack frames and the frame size.
Lastly, frame count and size variability depend on the appli-
cation and there is no correlation between programs even
within the same benchmark suite. We conclude that larger
applications can incur a higher overhead in execution time
duringmigration. Finally, stack transformation also increases
binary size due to additional metadata required (Section 6.2).
Both costs are completely avoided by Unifico.

3 The Stack Layout Problem

Consider the top left-hand side of Figure 3 where a simple
loop in C which accumulates the result of calls to function
hot_func using as input local variable x passed by reference.
We assume an ARM and x86 hardware setup which can fa-
cilitate migration and that hot_func represents a computa-
tionally intensive series of operations of a program which
typically resides on the low-powerARM processor since it is
not demanding outside of this function. Then, the function
call boundary represents a natural point for migrating the

long-running computation to the more powerful x86 proces-
sor which would signi�cantly reduce the overall execution
time of this program [29].
Despite its simplicity, this code snippet results in di�er-

ent stack layouts on x86 and ARM ISAs that would inhibit
heterogeneous process migration. Figures 3(b) and 3(c) show,
respectively, the simpli�ed x86 andARM pseudo-assembly
generated for Figure 3(a) by the LLVM compiler backend code
generators. The main di�erence between the two versions
relates to the treatment of the pass-by-reference parameter.
On x86, the compiler decides to hoist the load frommemory
operation outside the loop (Figure 3(b), line 2) since it is ex-
pensive to perform at every iteration, based on the compiler
cost model for this ISA. This is done using a callee-saved reg-
ister since the value of x needs to be preserved across calls to
hot_func, which in turn forces its prior contents to be spilled
on the stack (Figure 3(b), line 1). OnARM the compiler decides
the opposite; the address is deemed cheap and hence kept in
the loop and recalculated (i.e., rematerialized) using the frame
pointer FP at every iteration (Figure 3(c), line 5).
Figure 3(d) shows a snapshot of the register �le state and

the top-most stack frame for each process when execution
reaches the call to hot_func. It also shows the bookkeeping
information required by the state-of-the-art Popcorn com-
piler [27] to perform heterogeneous migration. The main
di�erences are highlighted in red. Comparing the two ISA
execution states, we note the following:
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i) the stack slot contents di�er,
ii) the registers assigned to program variables di�er, and
iii) the state-of-the-art Popcorn compiler [27] requires

metadata embedded in the binaries to track di�erences
for correct transformation during migration.

Popcorn Linux uses a runtime library to perform the trans-
formation of the stack, guided by the metadata embedded in
the binaries during their compilation.
Conversely, Unifico generates code that preserves the

same stack layout across ISAs as seen in Figure 3(e). Hence, a
binary compiled withUnifico does not require anymetadata
toaccount for thedi�erencesduringheterogeneousmigration.
This obviates the stack transformation costs by signi�cantly
reducing binary size and state transformation overheads.

4 UnificoDesign
Our goal is to provide the automatic generation of a uni�ed

memory stack layout that will simplify programming and
allow faster heterogeneous migration without the associated
overheads of metadata-dependent approaches. To this end,
we have developedUnifico, a compiler backend technique
which imposes auniformstack layoutbetween the targetedar-
chitectures and eliminates the need for stack transformation
during migration.
We chose the 64-bit x86 and ARM ISAs as targets, being

the most widespread architectures. Moreover, their primary
application binary interface (ABI) properties partially overlap
(e.g., alignment, register width, pointer size, endianness, etc.),
simplifying an initial prototype.

A high-level overview of our approach is shown in Figure 4,
where a modern modular compiler structure is assumed. The
intermediate representation (IR) of the program is given as
input to both compiler backends, in order to be lowered to the
target assembly. By extending each of the backend passes, we
mitigate the di�erences in the �nal stack layout. The code is
lowered in every phase of the backend, so that the �nal binary
(one for each architecture),when executed,will have the same
stack layout for both architectures. Therefore, no metadata
will be needed, as there will be no stack transformation.

The rest of the section presents the main design challenges
of Unifico. First, we decompose the variations related to
each architecture’s ABIs. These are mostly straightforward
to �x, since they are clearly documented as speci�cations
and solving them �rst will also ease mitigating the rest of the
di�erences. Then, we examine the di�erences that arise from
the di�erent instructions o�ered by each ISA. Finally, in every
compiler implementation, certain decisions have gone into it
that re�ect tacit knowledge based on practice and experience,
which is challenging to identify.

4.1 ABI Treatment

The �rst fundamental factor that causes stack layout mis-
match is the register �le. The number of registers is �nite, so
any values that the registers cannot hold need to be stored

Addressing Modes
Immediate Encoding
Materializing Values

LICM
Data Layout Alignment

Register Specifications
Register Costs

LICM
Rematerialization

Stack Object Alignment
Calling Conventions Callsite Padding

Assembly
Emitter

Frame
Lowering

Register
Allocation

Pre-Register
Allocation

Instruction
Selection

Post-Register
Allocation

Figure 4. High-level design of Unifico. Each backend
compilation stage shows the code generation passes that
Unifico extends for both architectures.

(spilled) on the stack. Also, if a register is callee-saved, it needs
to be pushed to the stack before being used by a function,
a�ecting the stack layout (contrary to a caller-saved or tem-

porary).
One of Unifico’s guiding principles is to use the samenum-

ber of registers between the architectures, while mapping the
registers to the same functionality (we assume that suchmap-
ping exists, e.g., if one architecture supports 256-bit vector
registers, the other one should support them too). However,
removing registers that have a dedicated purpose in the ISA is
challenging. For instance, inARM, the registers r16 and r17
can be used to support long branches, and the register r18
can be used to carry inter-procedural state (e.g., the thread
context) [11]. Therefore, we give priority to those registers
and keep them in the ISA, whereas we can freely remove
others with no special use, e.g., simple temporary registers.
For the calling conventions [11, 53], we need to maintain:

i) the same number of registers for function arguments since
the extra arguments are passed through the stack, ii) the same
return value registers, and iii) match the callee-saved regis-
ters which are also pushed on the stack.We apply this to both
general-purpose and �oating-point (FP) registers.
Table 1 shows the register sets of x86 andARM after our

mapping.Overall,we reduced thenumberof theARMgeneral-
purpose and FP registers from 32 to 16, per category, which is
compatible with x86, andmodi�ed the usage of a series of reg-
isters. For the callee-saved registers,we also ensured that they
are saved in the sameorderon the stackby the called functions.

Moreover, if a register has a special use in one architecture
(e.g., r16–r18 inARM), we preserve it andmap the register to
its counterpart in the other architecture, as long as there are
no incompatibilities between the registers (e.g., if they both
need to be reserved for a di�erent purpose).

4.2 Instruction Treatment

Anothercontributing factor to stack layoutmismatchstems
from the instructions o�ered by each architecture. For exam-
ple, loading a constant frommemory inx86 andARM requires
di�erent number of instructions (Figure 5). x86 calculates the
address of the constant and loads the value from memory
in one instruction. On the other hand, ARM calculates the
address using a separate instruction and then loads the value
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Table 1. Unifico’s mapping between x86 andARM register
�les which ensures a low execution-time impact. The table
shows the callee-saved, the return value, the parameter
passing, and the temporary registers. This is both for
general-purpose and FP/vector registers.

Registers Usage

x86 ARM

Callee-saved

rsp SP Stack pointer
– r30 Link register
rbp r29 Frame pointer
rbx, r15 r19, r20 General purpose

Caller-saved

rax, rdx r8, r2 Return
rdi r0 Arg #1/return
rsi,rdx,rcx,r8,r9 r1–r5 Args #2–#6
r10–r14 r6, r7, r16–r18 Temp registers
xmm0–xmm1 v0–v1 FP args/return
xmm2–xmm7 v2–v7 FP args
xmm8–xmm15 v8–v15 Temp FP registers

1 R0 = constant

2

(a)

R0 = addressof(constant)

R1 = load R0

(b)

Figure 5. Pseudo-assembly for loading a constant value
on x86 (left) and ARM (right). ARM requires an additional
instruction for the same high-level operation.

in a subsequent instruction. Therefore,ARM requires an ad-
ditional register and may spill one more value to the stack
compared to x86.In addition,ARM uses two instructions to
complete this behavior, which a�ects the register allocation
regions and, hence, indirectly the stack layout.
These di�erences are tightly coupled with two important

compiler problems: register allocation and instruction selec-
tion. The register allocator determines which values reside
in registers, and which registers will hold these values. For
di�erent architectures, the register allocator might utilize a
di�erent number of registers for a speci�c operation, while
keeping other values in memory. The instruction selection
lowers the IR code into machine instructions. For each ar-
chitecture, the instruction selection may choose di�erent
instructions for the same high-level operation, depending on
the capabilities of the architecture, or implementation-spe-
ci�c decisions (Sections 4.3 and 5).

4.3 Compiler Backend Treatment

Finally, independently of the ABI or the instructions of an
ISA, there are some di�erences caused by the manner the
code is generated and optimized in the compiler. As shown
in Figure 3, the code motion caused by the compiler re�ects
speci�c implementation decisions in the backend, a�ecting

Table 2.Unifico’s code generation extensions to theARM
and x86 backends maintaining a uni�ed stack layout.

Category &Description x86 ARM

Alignment (§ 5.1.1)

Align symbols in code & data sections Ë Ë

Align return addresses after call sites Ë Ë

Allocate emergency spill slot Ë Ë

Align local stack objects to at least 4 bytes Ë

Align callee-saved registers to 8 bytes Ë

AddressingModes (§ 5.1.2)

Do not encode complex addressing Ë

Match legal address immediates Ë Ë

Immediate Encoding (§ 5.1.3)

Do not encode immediates in multiplication Ë

Encode same immediates for data-processing Ë

Do not materialize non-zero FP constants Ë

Register Allocation (§ 5.1.4)

Match register cost and allocation order Ë Ë

Hold the zero constant in temp registers Ë

Optimized two-address format
for integer instructions

Ë

Match instruction input/output operand size Ë Ë

Rematerialization &CodeMotion (§ 5.1.5)

Rematerialize local variable loads Ë

Do not rematerialize movss/movsd Ë

Rematerialize lea Ë

Rematerialize adrp Ë

Reuse constants instead of rematerializing Ë

Other Optimizations

Disable heuristic for frame object ordering Ë

Match optimization of special constants Ë

Lower conditional select similarly Ë Ë

Vectorize pairs of double Ë

the stack layout even when the ABI di�erences between ISAs
have been bridged.

Thesedi�erencescomprisealignmentdecisions (apart from
the ABI speci�cations), register allocation decisions, and a
series of optimizations, like rematerialization [31] and code
motion (Section 5). We make up for the di�erences described
in the last two sections bymodifying the instruction selection
(to select instructions with similar behavior), the register allo-
cation, and other phases, like the optimizations of constants.
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5 Implementation

5.1 TheUnifico Backend

We implemented Unifico by extending theARM and x86
backends of LLVM. Having demonstrated how code gener-
ation can a�ect the stack layout, Table 2 enumerates howwe
implemented Unifico based on the LLVM backend infras-
tructure, in order to achieve a uni�ed address space layout
and application state. We have grouped the various backend
parts based on their functionality and describe them in the
following sections.

5.1.1 Alignment

Symbol alignment. Similarly to relatedwork [27, 36], the
symbols of the program, namely the functions and the data,
need to lie on the samevirtual addresses for botharchitectures.
This way, accesses to global data will be consistent between
the architectures, and the functionswill be aliased to the same
address,which isnecessarywhencopying thememory images
between ISAs. Therefore,we align the symbols in the code and
data sections, by having one symbol per section and by adding
padding between these sections during linking. The result is
shown for main in the �rst lines in the snippets of Figures 6(a)
and 6(b), which are all aligned to the address 1000.
Call site alignment. Whencalling a function, the address

of the instruction after the call is pushed to the stack (at least
for the calling conventions in question). Typically, the return
addresses pushed will di�er for the two architectures, so if a
migrationhappens inside a function the destination processor
will return to a wrong address after the function returns. As
shown in Figures 6(a) and 6(b), in the original version of the
assembly, the instructions that follow the call to hot_func
di�er by three bytes (o�set 1104 vs o�set 1107).
To address this issue, we align the call sites like we did

with the program symbols, using nop instructions. Before the
call instructions, we emit nop instructions to pad the return
addresses (Figures 6(c) and 6(d)).

Stack object alignment. We ameliorate the alignment
di�erences for the objects in the stack of the two architec-
tures. These include the use of an emergency spill slot and
the alignment of local stack objects and callee-saved registers,
as listed in Table 2. To elaborate on the emergency spill slot,
the ARM backend will scavenge an extra register in case it
needs to materialize large stack o�sets (i.e., more than 255

bytes), which do not �t in one instruction. If a register can-
not be found, a special spill slot is reserved. For simplicity,
Unifico conservatively reserves this slot and places it after
the callee-saved registers for both architectures.

5.1.2 AddressingModes. ARM does not support address-
ing modes of the form [base + scaled register + o�set] for in-
dexing arrays. When the x86 backend uses this mode, the
ARM backend needs to reserve an extra register for the same
operation. Usually, theARM backend keeps the address of the
array, i.e., [base + o�set], in a separate callee-saved register, to

1 1000: main:

2 1000: SP = SP - 32

3 ...

4 1100: call hot_func()

5 1104: // after call

(a)

1000: main:

1000: push FP

...

1102: call hot_func()

1107: // after call

(b)

1 1000: main:

2 1000: SP = SP - 32

3 ...

4 1100: four_byte_nop

5 1104: call hot_func()

6 1108: // after call

(c)

1000: main:

1000: push FP

...

1102: one_byte_nop

1103: call hot_func()

1108: // after call

(d)

Figure 6. Call site alignment in pseudo-assembly before
(top) and after (bottom)Unifico’s operation forARM (left)
and x86 (right). The main symbol is placed at the same
address (o�set 1000) for both ISAs. Highlighted lines in top
�gures show the di�erence in return addresses, while in
bottom �gures show the code emitted afterUnifico adds nop
instructions for padding, resulting in same return address.

be able to reuse it for indexing the array multiple times. This
usage of one extra callee-saved register may introduce extra
spills, hence, we disable the former complex addressingmode
in x86, to get the same behaviour inARM.

5.1.3 Immediate Encoding. The two ISAs do not support
the same set of immediates. Due to smaller instruction size,
ARM instructions can encode explicitly up to 21 bits of imme-
diates for pc-relative addressing [4], 12 bits (with an optional
shift of 12) for arithmetic operations [55], and up to 64-bit
logical immediates [45]. Finally, the ISA allows moving up to
16-bit immediates, optionally shifted, to registers. Unifico
keeps the same immediate encoding in x86.

5.1.4 Register Allocation. To limit possible overheads,
we have kept the default greedy register allocator [10], which
uses global live range splitting, minimizing the cost of spilled
code. However, we need to make sure that the allocator will
take the same decisions when assigning registers for the two
backends, despite the heuristics it uses internally. Expanding
on the �rst two corresponding entries of the table, we �rst as-
sign the sameorder of preference to the registers. For example,
r15 is more expensive on x86 than rbx, due to encoding rea-
sons, so we do the same forARM’s x20 and x19, even though
their cost is the same, to achieve similar allocation. Also, since
ARM has a dedicated zero register that is not callee-saved,
we avoid using callee-saved registers for x86 to hold the zero
constant, as this would require extra spills in memory.

5.1.5 Rematerialization andCodeMotion. Most of the
changes in this category are related to how the compiler gen-
erates code for getting the values or the addresses of variables.
As we showed in Section 3 and break down in Figure 7, we
instruct the compiler to rematerialize the load instructions,
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1 push Rcs

2 load Rcs, xaddr

3 Rtmp1 = 1

4 jmp end if Rtmp1 > 15

5 loop:

6

7 // arg: Rcs

8 call hot_func()

9 jmp loop if Rtmp1 < 16

(a)

Rtmp1 = 1

jmp end if Rtmp1 > 15

loop:

load Rtmp2, xaddr

// arg: Rtmp2

call hot_func()

jmp loop if Rtmp1 < 16

(b)

Figure 7. x86 pseudo-assembly from Figure 3with (left) and
without (right) rematerialization of &x using load. In (a) the
address calculation is hoisted out of the loop (highlighted),
occupying a callee-saved register whose contents are spilled
to the stack. In (b), Unifico does not hoist the calculation,
keeping the stacks among ISAs aligned.

Table 3.Accessing values (x) and references (&x) of variables
per architecture.

Scope Access x Access &x

ARM
Local simple load simple add/sub

Global adrp + load adrp

x86
Local simple load lea

Global rip-relative mov rip-relative lea

leading to the code in Figure 7(b), where load is kept inside
the loopwithout the need for a callee-saved register. Thisway
the address is calculated at every iteration (line 6) and passed
to the �rst argument register (line 7). In general, there are
eight di�erent cases (Table 3).
Ge�ing values of variables. Getting the value of local

variables is done similarly in both architectures, with simple
loads from the stack frame. For the case of global variables,
x86 needs only one instruction (a rip-relative mov), whereas
ARM requires two instructions (one to calculate the global
address and one to load from it. Since LLVM cannot currently
rematerializemultiple instructions,whenARMneeds to reuse
a global variable it will spill it in the stack, while for x86 it
su�ces to recompute the rip-relative mov. Regardless, we
ensure that x86will also spill the value in this case.
Ge�ing references of variables. Getting the reference

(i.e., address) of a local variable is done inARM using simple
arithmetic (add/sub) with the frame pointer, as we showed
in Figure 3, whereas in x86 using lea instructions (termed
load in our pseudo-assembly) in Figures 3 and 7. The add/sub
instructions are usually not hoisted out of loops by the com-
piler, whereas the lea instruction is, since it is a little more
expensive in the general case [2, 40]. Hoisting the instruction
may consume a callee-saved register so, instead, our com-
piler rematerializes these instructions if it needs to reuse their
result. Since we are not hoisting lea instructions, however,
we need to do the same for the adrp instructions (theARM

counterpart), to also have an aligned behavior for the case
of global variables (adrp vs rip-relative lea). Therefore, we
additionally rematerialize adrp instructions.

Reusing constants. When the same constant is usedmul-
tiple times inARM, the compiler tries to place its value in a
register. Instead, x86 tries to materialize the constant again
by encoding it separately for every instruction. Unifico em-
ulates the �rst behavior for x86.

5.1.6 Verifying Stack Layout. In order to verify that the
stack layout between an x86 and anARM binary is the same
and, hence, thatmigrationwill be successful,weuse theLLVM
StackMaps [17] to track the location of values in the stack.
These are inserted in a separate Executable and Linkable For-
mat (ELF) section, which is cross-checked after compilation
for both binaries and then discarded. Compilation correctness
is ensured by the LLVM backend tests, after they are ported
to the new Unifico changes.

5.2 Other Considerations and Limitations

Libraries. First, we currently only support static linking
for the libraries, to simplify the engineering e�ort required to
align all the symbols, and to create consistentmemory images
of the binaries between the machines.

Also,wearenotmigrating inside librarycalls, so theydonot
needa consistent layout.However, some functions in themusl
libc library (e.g., setjmp/longjmp) use inline assemblywhen
handling signals/exceptions. In this case, we modi�ed their
inline assembly to obeyour newABIs for binary compatibility.

Interaction with the OS. We assume a replicated-kernel
OS, where there is a kernel per core and each kernel loads
the address space of the respective binary [27]. The address
space of each binary has an identical layout, but the .text is
natively compiled, and then aligned ( Section 5.1.1), so each
function in the two ISAs will have the same virtual address.
The OS-speci�c details (e.g., page mapping, process sched-
uling, view of the OS by di�erent processors, etc.) are out of
scope and can be found in related work [28].
Backend and optimization flags. Regarding the back-

end infrastructure, we are not using the machine instruction
scheduler since it can lead to instruction reorderings that
invert the order of spilling. Identifying a good compromise be-
tween allowingmachine scheduling and getting a predictable
order of spilled values is left for future work.
Moreover, although the ARMv8 architecture is bi-endian,

we keep the (default) little-endian setting to match with x86.
The technical e�ort to support di�erent endianness is outside
the scope of this work.

Finally, migration is supported currently for up to the -O1
�ag. An open issue in the LLVM code generator1 makes the
allocator run out of registers for most of the NPB in -O2/-O3,
when using stackmaps. Therefore, we cannot verify Unifico
for the full suite in -O2 or higher, althoughwe areworking on

1https://github.com/llvm/llvm-project/issues/56880
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an LLVM patch to �x that. However, since the LLVM backend
enables optimizations for any optimization level other than
-O0, having supported -O1 should cover from the outset many
programs compiled with higher �ags.
Applicability to other architectures. Even though the

details described in this section are speci�c to x86 andARM,
our technique provides a blueprint and the high-level ideas
for supporting other combinations of general-purpose proces-
sors (e.g., x86 andRISC-V). Much of the target-speci�c details,
e.g., unifying the ABIs, the instruction formats, the register al-
location costs, the rematerialization properties of values, etc.,
are usually encoded easily as a backend speci�cation, e.g., in
LLVM’s TableGen [18] orGCC’s Machine Description [15].
More elaborate implementation, e.g., which address immedi-
ates are legal, can be guided using the insights gleaned from
this section and our OSS artifact. For target features not cov-
ered in this work, these can be detected through the stackmap
machinery, e.g., a constant optimized speci�cally in one archi-
tecture will appear as a di�erent architecture-speci�c value
(or values) in the stackmaps.

Multithreading andmemory consistency. Our evalua-
tion is for a single thread, however Unifico’s design is or-
thogonal to multithreaded execution. Since Unifico is based
on a uni�ed address space between the architectures, and
the evaluated architectures support di�erent memory consis-
tency models [34, 56], an inter-device coherence protocol is
assumed (e.g., CXL [7]), along with a fused memory model
(e.g., compound models [41]) between the two architectures.
In our setup, we assume that upon migration all threads are
stopped and bu�ers/caches are �ushed to memory, therefore
migration points act as memory barriers. Investigating mul-
tithreaded execution for Unifico is left as future work.

5.3 Migration

There is noplatformavailable todaywithx86 andARM that
share memory. Therefore, to validate migration under our
approach, we are using CRIU [8] for a prototype. CRIU o�ers
a checkpoint-restore mechanism in user space, by dumping
a multi-�le image of the application when pausing it, and
restoring the state later, continuing the execution.
However, in our prototype, we are leveraging multi-ISA

binaries, so we dump the state of the binary in the starting
processor, rewrite the necessary CRIU images to be consis-
tent with the target machine, transfer the images (via SSH),
and continue execution of the other binary by restoring the
rewritten state.

Contrary to related work [26, 27, 65], we do not transform
the state at all, but only rewrite images like core [8], which
contain core process and architecture-speci�c state informa-
tion, e.g., the registers. For example, based on our mapping
in Table 1, we need to simply copy the value of rdi to r0, if we
are migrating from x86 toARM. Rewriting happens through
a script invoked by a simple runtime, but in our ideal use-case
scenario, e.g., an x86/ARM machine with coherent shared
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Figure 8. Size breakdown of binaries and their contents
generated with static linking (unmodi�ed LLVM), the Pop-
corn compiler, and Unifico, for x86 (top) andARM (bottom)
using the NPB suite. Unlike the Popcorn compiler, Unifico
requires no metadata and its size overhead is minimal, within
10% of statically linked binaries generated with LLVM.

memory, this is facilitated by a user- or kernel-space service
without the need to transfer the state between the machines.

Virtualaddress consistency. Wetake some further steps
to keep thememorymappings between the architectures con-
sistent. First, we disable address space layout randomization
(ASLR) on both machines, otherwise the start address of the
stack will be di�erent between the architectures, thus break-
ing the match of the stack layouts. We do this for simplicity
and leave the e�ort of assigning the same random stack start
address to both architectures as a future extension. Further-
more, by default, x86 programs map their stack to addresses
starting from0x800000000000,whereas inARM, frames start
from the address 0xffffffffffff [11, 53]. We modify the
startup function from the C library, so that the frame of the
main function starts from 0x800000000000 in bothmachines.
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6 Empirical Evaluation

6.1 Setup

Hardware. We use two hardware con�gurations for eval-
uation: i) (ARM) GIGABYTER181-T92-00 (SABER SKU), Dual
CaviumThunderX2©CPUCN9980v2.22.20GHz(32cores/128
threads), and ii) (x86) Dell PowerEdge R440, Intel © Xeon ©

Silver 4110 CPU 2.10GHz (8 cores/16 threads).
So�ware. Unifico extendsLLVMversion 9.0.1, consisting

of ∼3000 lines of code (LoC) (1400 and 800 LoC for the x86
and AArch64 backends respectively). The rest of the code
relates to target-independent functionality, including a few
changes on clang version 9.0.1. We reuse the modi�ed linker
and symbol aligner from the Popcorn compiler [16] (commit
4cc8805). Regarding themigrationmechanism,we prototype
a method usingHetCRIU[67], an extension of CRIU[14] at
version 3.17.1. Finally, we employ a modi�ed version of musl
libc version 1.1.22, which we statically link to the binaries
and release with our LLVMmodi�cations.

Benchmarks. We focus on compute- and memory-inten-
sive C benchmarks to explore the impact of Unifico’s code
modi�cations which may have been hidden otherwise (e.g.,
by system calls, I/O operations, etc.). In our experiments, we
used a C implementation [58] of the NPB suite [22] (input
classesA,B,C).All benchmarksare compiledwith the-O1�ag.
For the class C of the ft andmg benchmarks, the enormous
amount of static data declared lead to a relocation over�ow
error in ARM (hence we can’t compile also the aligned x86
binary), so we omit these results. This is under investigation
(e.g., using di�erent code models), but does not a�ect our
overall exploration in this section.
We will examine all the benchmarks for the binary sizes

and the architectural overhead, and for direct comparison
with the Popcorn Linux compiler toolchain, we migrate the
same subset as in previous state-of-the-art work [27]. How-
ever, although Popcorn and its compiler are open-source, we
were unable to set up any execution migration functionality.

6.2 Size Comparison

We explore the sizes for binaries compiled with the fol-
lowing di�erent methods: i) an unmodi�ed clang/LLVM
compiler (statically linkedwith theC library), ii) the Popcorn
compiler toolchain (statically linked with the C library), and
iii) Unifico (statically linked with the C library). We include
the unmodi�ed compiler in our evaluation to show the impact
of ourmodi�cations to the code section size. These are shown
in Figure 82. The binaries are for the class B of NPB, but the
trends are similar for the other classes.
Wemake three observations. First, in all the compilation

categories, the binaries of x86 are smaller than the binaries
of ARM. This can be attributed to the x86 being a complex
instruction set computer (CISC) ISA, encoding more complex
instructions that can lead to compact binaries. Second, in both

2
mg and ua cannot be compiled by Popcorn in -O1 due a register allocation

issue with the stackmaps, but this does not a�ect the overall analysis.
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Figure 9. Overall execution overhead of NPB benchmarks
compiled with Unifico over unmodi�ed code for input
classes A, B and C onARM (top) and x86 (bottom). Unifico
has on average low impact on the execution time of
applications on both ISAs.

architectures, thePopcorn binaries are up to 2G the size of the
statically compiled binaries of the unmodi�ed compiler. This
is caused by additional metadata, debug information, as well
as libraries (in the .text section) that are used to facilitate
migration and state transformation. Finally, we observe that
in both architectures Unifico leads to much smaller binaries
relatively to Popcorn, andwithin 10% of the unmodi�ed com-
piler. The size of the Unifico binaries is slightly larger than
those compiledwith the standardclangdue to theconstraints
we imposed to the code generation, visible in the code and
data sections. Overall, we reduced the binary size overhead
from ∼200% to ∼10%.

6.3 Impact per Architecture

For each architecture, we evaluate the impact of Unifico,
relative to the unmodi�ed compilation. We run each bench-
mark three times and all standard deviations were below 1%.
The results are shown as overhead percentages in Figure 9.

In the case of ARM, the performance has not noticeably
degraded, except for the cases of lu and sp. For sp, which has
the most overhead, the main code region that dominates the
runtime is a kernel with a deep-nested loop, manipulating 4-
dimensional global arrays. Materializing the global addresses
and getting the values of all elements before the calculations,
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introduces more loads inside the inner loops which increase
the overhead.
In the case of x86, almost all benchmarks compiled with

Unifico demonstrate less than 5% di�erence from the unmod-
i�ed compiler. The most noticeable outlier is cg for class B,
where a close to 12% overhead is observed. The code region
with the largest bottleneck is a sparse matrix computation
in the conjugate gradient function, with indirect (because of
the sparse representation) global array accesses inside nested
loops. The simpli�ed addressing in x86, with less available im-
mediates to represent global addresses, cause greater impact
in this case (similarly for ua). Interestingly, for the class C of
cg, our investigation concludes that, for themuch larger array
sizes, the computation dominates again these less e�cient
memory accesses, utilizing fully all the cache levels.
Discussion. Further tuning cross-architectural tradeo�s

is left as future work. For example, instead of imposing the
two-address format for FP instructions inARM, which was
needed because the architectures had misaligned spill slots
withFPvalues,we saw that padding the spill slots after the reg-
ister allocationwas su�cient, and causedmuch less overhead
for ARM. Nevertheless, we envision end-to-end bene�ts at
the system level enabled by �ner migration granularity with
no metadata and state transformation. Finally, if an overhead
is not acceptable, techniques like Multi-Variant ELF (MELF)
binaries [63] allow the runtime to pick the right compile-time
variant of a function, exploiting the tradeo� between migra-
tion granularity and performance impact.

7 RelatedWork

Dynamic so�waremigration. Migration among hetero-
geneous-ISAcomputenodesduringexecutionwas initially ex-
plored in the context of distributed systems [21, 39, 47, 60].De-
Vuyst et al. [36],were the �rst to examine the feasibility of het-
erogeneous-ISAmigration for multicore CPUs, where state
transformation dominates the migration overhead. Venkat
and Tullsen [65] showed that ISA heterogeneity o�ers ∼20%
performance and ∼23% power improvements over the ho-
mogeneous-ISA counterpart. Both works rely on the same
compilation techniques, aiming to minimize the state trans-
formation by providing a common data layout as much as
possible andusing a common“fat” binary format for the target
architectures. The evaluation is done through simulation, but
artifacts are not publicly available. The Popcorn Linux and
compiler toolchain [27, 28], improve upon these techniques
and provide an open source implementation. The Popcorn
compiler toolchain [27] avoids “fat” binaries by embedding
metadata in them to guide the transformation during migra-
tion. Later works based on Popcorn Linux, examined mi-
gration between heterogeneous-ISA systems and FPGAs[44],
and at higher granularity among sets of processes in Linux
containers [67]. Unifico, as a compilation technique, can be
integrated in any of the aforementioned approaches.

Migrationgranularity. VonBanketal. [66]providea for-
mal methodology to identify migration points among hetero-
geneous processes at varied granularity. A large body ofwork,
alongwithUnifico,whichoperateat theprocess level,usecall
site boundaries as potential migration points [27, 28, 36, 65].
DeVuyst and Venkat [36, 65] propose to allowmigration re-
quests at any machine instruction by using dynamic binary
translation (DBT) to ful�ll them till a call site is reached, upon
which actual migration occurs. However, the DBT overheads
have shown to be excessively high [27]. Checkpointing has an
a�nity with process migration [8, 57], thoughHetCRIU [67]
blurs this distinction.

8 Conclusion

WeproposeUnifico, a compilation technique that extends
and innovates upon existing compiler support for heteroge-
neous-ISA CPUmigration, by removing the need for runtime
state transformation. Unifico removes state transformation
overheads during migration, without creating large binaries
and easing programmability, by extending the compiler back-
end to generate binaries for di�erent architectures with a
unique address space and stack layout.We show thatUnifico
does not substantially impact program execution, adding on
average no more than 6% execution time overheads and no
more than 10% code size increases, compared to the 2G size
overhead introduced by related work. In future work, we will
examine the applicability of our approach to other architec-
tures, the automatic extraction of uni�cation rules for the
ABI and stack layout, as well their encoding to the high-level
compiler speci�cations to ease adoption.

9 Data-Availability Statement

Our artifact is publicly available and can be found on Zen-
odo [19].
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