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Abstract   

This study supports the development of predictive bacteriophage (phage) therapy: the concept of 
phage cocktail selection to treat a bacterial infection based on machine learning models (MLM). For 
this purpose, MLM were trained on thousands of measured interactions between a panel of phage 

and sequenced bacterial isolates. The concept was applied to Escherichia coli (E. coli) associated 
with urinary tract infections. This is an important common infection in humans and companion 
animals from which multi-drug resistant (MDR) bloodstream infections can originate. The global 
threat of MDR infection has reinvigorated international efforts into alternatives to antibiotics 

including phage therapy.  E. coli exhibit extensive genome-level variation due to horizontal gene 
transfer via phage and plasmids. Associated with this, phage selection for E. coli is difficult as 
individual isolates can exhibit considerable variation in phage susceptibility due to differences in 
factors important to phage infection including phage receptor profiles and resistance mechanisms.    

The activity of 31 phage were measured on 314 isolates with growth curves in artificial urine. 
Random Forest models were built for each phage from bacterial genome features and the more 
generalist phage, acting on over 20% of the bacterial population, exhibited F1 scores of >0.6 and 

could be used to predict phage cocktails effective against previously untested strains. The study 
demonstrates the potential of predictive models which integrate bacterial genomics with phage 
activity datasets allowing their use on data derived from direct sequencing of clinical samples to 
inform rapid and effective phage therapy.  
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Significance Statement   

With the growing challenge of antimicrobial resistance there is an urgency for alternative treatments 
for common bacterial diseases including urinary tract infections (UTIs). Escherichia coli is the main 

causative agent of UTIs in both humans and companion animals with multidrug resistant strains 
such as the globally disseminated ST131 becoming more common. Bacteriophage (phage) are 
natural predators of bacteria and potentially an alternative therapy. However, a major barrier for 

phage therapy is the specificity of phage on target bacteria and therefore difficulty efficiently 
selecting the appropriate phage. Here, we demonstrate a genomics driven approach using machine 
learning prediction models combined with phage activity clustering to select phage cocktails based 
only on the genome sequence of the infecting bacterial strain.   

  
  
Main Text   
  
Introduction  
  
Uropathogenic Escherichia coli (UPEC) are among the most common causes of urinary tract 
infections (UTIs) in both humans and companion animals. It is reported that up to 80% of UTIs in 

humans and 35-69% of UTIs in small animal pets are caused by UPEC (1, 2). UTIs are widespread, 
affecting an estimated 150 million people a year worldwide (3) and 40% of women will develop an 
UTI during their lifetime (4). It is also reported that 14% of dogs will suffer with a UTI over their 
lifetime (5). UPEC employ several virulence factors that give them the capacity to colonise, invade 

and survive outside of the intestine (3). They can transfer from the intestinal environment and 
ascend and colonise the urinary tract often causing uncomplicated transient infections that 
selfresolve. However, the likelihood of antibiotic treatment increases if the infection persists and/or 

the symptoms are more severe.   Bladder (cystitis) infections can sometimes ascend to the 
kidney(s) (pyelonephritis) and potentially into the bloodstream resulting in bacteraemia. Up to 50% 
of human sepsis cases are associated with Escherichia coli (E. coli) originating from a urinary tract 
infection (6, 7). Conversely and much less commonly, kidney infections and UTIs can result from a 

bloodstream infection. Recurrent and chronic infection increases the exposure of strains to multiple 
antibiotics and therefore the potential emergence of multidrug resistant bacteria (MDR) (3, 8, 9) and 
treatment failure. Trimethoprim-sulfamethoxazole, fluoroquinolones and cephalosporins are 
common first-line antibiotics used to treat UTIs in humans. Antibiotics from these classes are also 

used to treat pets with UTIs (5, 10). Antibiotic resistance is a growing problem globally and has 
serious consequences, including increased healthcare costs and the spread of potentially 
lifethreatening infections. High-risk globally disseminated MDR human UPEC strain types such as 
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ST131 and ST410 are now being reported in veterinary settings (11). Alternative non-antibiotic 
treatments for UTIs are urgently required to help prevent further development of antibiotic-resistant 

bacteria and offer treatment options for MDR infections. A recent review highlights potential 
alternatives which include bacteriophage (phage) therapy but acknowledges further advances in 
the understanding of phage biology is required before phage therapy could be routinely used (12)  
  

The use of phage, viruses that specifically kill bacteria, is now gaining traction as an alternative to 
antibiotics for the treatment of bacterial infections. Phage were first described over 100 years ago 
by Felix d’Herelle (13) and used to treat bacterial infections in this era (14, 15). However, the advent 

and routine use of antibiotics by the 1940s meant phage therapy development stalled globally. As 
a result of the rising threat of AMR, there has been a renaissance in phage research with major 
advances in the characterisation of bacterial resistance mechanisms (16, 17) and knowledge of the 

counter-offensive strategies evolved by phage (18, 19).  Phage as a therapy have many 
advantages; they are naturally occurring, usually highly specific, non-toxic, effective on antibiotic 
resistant bacteria and self-dosing. However, the specificity is also a disadvantage as ideally a 
therapeutic phage needs to be matched to an infecting strain, traditionally by manual screening 

using agar overlay assays. Phage are sought that are ‘generalist’ meaning they are active on a 
reasonable proportion of an infecting species, but this is a much greater challenge for some species 
over others depending on their genome plasticity. This includes E. coli, as integrated prophage play 
a major role in their diversification and often introduce defence mechanisms against other phage to 

promote their own survival.    
  
To overcome phage specificity issues and potential resistance development, phage therapy has 

often been developed using cocktails of phage, usually between 2 and 10 phage (20). While phage 
interference can occur especially if too many phage are included, such cocktails are more likely to 
include phage that can predate on the infecting strain and conceptually there is a reduced likelihood 

that the bacteria can develop resistance if the phage use different infection pathways (21–23). Even 
with cocktails, the incredible diversity of E. coli associated with UTIs in human and companion 
animals make phage selection for effective treatment a major challenge.   Recent advances in 
genomics and machine learning analysis should allow the development of ‘smarter’, personalised 

medicine approaches within the field of phage therapy.  Machine learning is a computational 
technique capable of analysing large and complex datasets (24) which has already been applied 
for predicting viral hosts (25–27). However, previous studies have focused on species-level host 
differentiation, whereas phage therapy will require a greater level of resolution for host attribution, 

down to individual bacterial isolates. To that end, we propose that machine learning models custom-
built around predicting infection efficacy of phage on bacterial isolates of a species can be used to 
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design personalised phage cocktails for patients, aiming to achieve improved efficacy over a 
generic cocktail.   

  
To help address a knowledge gap of bacterial-phage interactions in clinically relevant conditions 
and move towards a predictive approach to phage therapy, we have generated a large data set of 

phage-UPEC interactions in an artificial urine medium. This has been used to train machine learning 
models for predictive phage therapy but also gives a wealth of information to inform the selection 
of phage, including activity groups and distribution of resistance mechanisms. Coupled to the direct 
sequencing of infected urine samples (28), the study shows how therapeutic phage cocktail 

selection can be quickly achieved using a bacterial genomics approach and appropriate interaction 
datasets.  These cocktails can be constructed at a generic level, best on the shelf preparation or in 
a bespoke manner to an individual infection.   

  
Results  
  
Local epidemiology of UPEC strains for phage treatment  

For this study, focused on urinary tract infections, 314 UPEC strains from both canine (n=203) and 
human (n=111) patients in the Edinburgh area were whole genome sequenced (Illumina, 
MicrobesNG). This was required as input data to train the machine learning models but also 

enabled an understanding of local strain diversity. In addition, it facilitated the selection of 
representative strains for phage enrichment to expand our phage collection from wastewater 
samples. Figure 1A shows the phylogenetic tree alongside their source host for the 314 strains as 
well as a set of 10 validation strains used later in the study. The sequences were uploaded to 

Enterobase allowing assessment of phylotype, sequence type (ST) and O-antigen. Some phage 
use components of the lipopolysaccharide (LPS) including the O-antigen portion as host receptors 
and other phage activity may cluster with phylogeny so mapping this information against phage 

activity could be important for rational cocktail design even without predictive models.   

As expected, most of the E. coli strains in the UPEC collection belonged to phylotype B2 and D, the 
phylotypes most associated with extraintestinal disease in humans and domestic animals (Figure 
1B) (29, 30).  The human strains had a higher proportion associated with phylotype D than the 

canine strains (18.9% of strains compared with 4.4%).  The differences in predominant ST and to 
a lesser extent O-antigen types between the human and the canine derived isolates (Figure 1C and 
1D) indicate that different types of E. coli strains are associated with UTIs in these two hosts locally 
and this is likely to impact phage specificity. ST131, ST69, ST95 and ST73 are globally 

disseminated pathogenic E. coli lineages that are associated with UTI and bloodstream infections 
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(31) and these are the most abundant ST groups represented in the human UPEC set. ST73 is also 
an abundant ST group in the canine strains (6.9%) although ST372 and ST12 represent almost 

38% of the canine isolates.   

Generation of a host-phage interaction data set  

To develop machine learning models and better understand genotype to phage activity phenotype, 
an interaction data set is required for training and analysis. While this potentially could be mined 
from online databases, the methods used would be varied and there would be a lack of negative 

data. To overcome this, and to test for activity in conditions more closely reflecting those in vivo, we 
generated an interaction dataset by growing 314 bacterial UPEC strains in an artificial urine (AU) 

medium in 96 well plate growth assays and challenging them with a set of 31 phage. Ultimately 
phage selected to treat UTIs need to be active in the host environment and to assess phage activity 

against UPEC the ideal growth medium would be urine but repeated urine collection would 
introduce too much variability. Our preliminary work for this study therefore included development 

of an AU medium based on published studies (SI Appendix, Figure S1A).  The AU approximated 
canine pooled urine in terms of growth dynamics and phage activity and also demonstrated that the 

activity of certain phage could be lost when the bacteria were cultured in urine and AU compared 
to Lysogeny/Luria Broth (SI Appendix, Figure S1B).   

Phage were initially selected from our phage library by screening of activity against a small subset 
of UPEC strains using LB plate assays. Around 60 phage were then assayed in liquid AU against 
38 bacterial isolates selected to represent the diversity of the wider UPEC collection. From this 

data, a final set of 31 phage were selected to generate interaction data for the remaining 284 
bacterial isolates (314 in total), >9000 interactions, each measured in triplicate against a no phage 
control. The final phage set were primarily selected as those showing the broadest host range and 
diverse activity profiles but some narrower range phage and phage with very related activity were 

also included. An interaction score was determined for each strain-phage combination using the 
ratio of the area under the curve (AUC) for phage treatment over a no-phage control culture (SI 

Appendix, Table S1).  A score of 100 indicated no activity while scores under 100 were indicative of 
phage interaction and reduced bacterial growth. Some interactions scored higher than 100 in the 

interaction assays i.e. where the bacteria grew better in the presence of the phage preparation than 
the no phage control. The scores were plotted as a heatmap to visualize patterns of phage activity 
across the strain collection (Figure 2) with any interaction that scored over 100 being given the 
score of 100 for the purposes of the heatmap illustration. With a score of 60 or less indicating clear 

phage activity, only two phage in our test set showed activity on more than 40% of strains in the 
bacterial collection, Chap1 (54%) and Nea2 (41%) (Fig 2 & 3A). 4% of strains (n=14) were 
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completely resistant to all 31 phage tested (all phage interactions scored higher than 90). 
Subsequent to the generation of this data set, these strains were used to enrich for further phage 

which will be used to broaden the host range of the phage collection.   

Machine learning predictions of phage activity  

The principal aim of this work was to generate an interaction database that could be used, with 
features extracted from bacterial whole genome sequences, to train machine learning models to 
predict phage activity based on an E. coli sequence. This is a ‘proof of principal’ study with 31 phage 

to gain insight into the capacity of the method to predict phage activity, and design effective 
cocktails, without further manual screening.    

The main genomic features used for testing were predicted genes generated by a pangenomic 
analysis and defined as protein variants (PVs).  Separate models were created for each phage, 

resulting in a total of 31 models. Models were initially evaluated on RMSE scores, which represent 
the difference between the observed and predicted scores (available in SI Appendix, Table S2).  
The individual models (Figure 3B & SI Appendix Figure S3) had average RSME values between 8 
and 23. The interaction datasets for some of the phage were very imbalanced (Figure 3A), which 

required a more stringent investigation of model bias. To reflect their use in a clinical setting, 
observed and predicted interaction scores were classified either side of a threshold score of 60 
(below 60 was a positive (active) interaction and above 60 a negative (inactive) interaction). A 
confusion matrix was generated for each phage model, and the models were further evaluated on 

classifier-based metrics; F1 (Figure 3B), recall and precision (SI Appendix, Figure S2). F1 was 
chosen as the best performance metric, taking class imbalance into account, and there was a clear 
trend that more generalist phage yielded more reliable models (Figure 3B).   
  

The spread of predicted vs observed scores for the most generalist phage Chap1 (F1=0.83) is 
shown in Figure 3C. Similar figures for the other 30 phage models can be found in the supplemental 

data (SI Appendix, Figure S3). The information was also plotted across the phylogeny of the strains, 
based on core SNP variation, and activity as well as significant positive or negative deviation of the 

predicted score from the measured score was generally distributed across the phylogeny and not 
limited to one sub-cluster (Figure 3D and SI Appendix, Figure S4).   

Assessment of different approaches to select phage cocktails  

Clinically, phage are often administered as a cocktail of multiple phage. The advantage of using a 

phage cocktail is two-fold; (i) the construction of a general cocktail that could be used ‘off the shelf’ 
to treat an infection where the inclusion of a range of phage should increase the chance at least 
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one is effective against the infection; (ii) a bespoke cocktail where the included phage are matched 
to the infection and so should all be effective and the inclusion of multiple active phage should help 

overcome the development of bacterial resistance to the phage treatment.  In both these cases it 
is useful to include phage with diverse activity and therefore an increased probability they use 
different mechanisms to infect the host bacteria. Here, the phage were clustered by activity on the 
bacterial strains generating five primary activity groupings. For this, a matrix with the 

bacteriumphage interaction scores was used to produce a heatmap (gplots version 3.1.3) and 
dendrogram based on pairwise comparisons (Figure 2). Cocktails were generated based on using 
one phage from each activity group. We selected Chap1, F1, TB69, RV2 and Phage P for a general 

cocktail, which were the broadest range phage from each activity group (Figure 2 and 4A, SI 

Appendix, Table S4).  From the dataset of single phage interactions, this cocktail was expected to 
be effective on 64% (201/314) of strains in the training data set as at least one phage in the cocktail 
has activity against the strain. This was validated on a subset of 50 strains from the UPEC 

collection, selected to represent the diversity across the collection (orange dots on Figure 1A). As 
expected, this general cocktail was effective on 64% of the strains tested (Figure 4A, SI Apendix, 
Table S5). With most of the strains tested, the general cocktail limited the strains to a similar level 
to the most active single phage in the cocktail on that strain. There was little evidence of synergistic 

effects from the general cocktail where the score for the cocktail was less than any of the individual 
phage. In fact, the opposite could be seen where the cocktail score was higher than the best 
individual phage indicating some antagonist activity.  

Bespoke cocktails could also be designed using the phage interaction dataset by choosing a 
selection of diverse phage active against a strain, a feature that would help combat the development 
of bacterial phage resistance. Only a small proportion of strains from the test set of 50 were 
susceptible to more than two phage in the general cocktail (5 strains, SI Appendix, Table S5). A 

bespoke cocktail selected for each strain would mean that all phage included in the cocktail should 
some activity against the strain. A few strains from the set of 50 could not have a bespoke cocktail 
of 5 phage designed due to a limitation of overall phage activity, but assessment was possible for 
38 strains.  The bespoke cocktails were significantly more effective when compared to the general 

cocktail with a lower median score (Figure 4B, p=2.081e-05). As expected, analysis of the growth 
curves from these interactions generally showed much less bacterial regrowth in the bespoke 
cocktails compared to the general cocktail (example shown in Figure 4C) resulting in lower scores.  

A key question is whether the predictive models have the potential to inform phage selection of 
cocktails and how selection using this method compares to the general cocktail. To assess this and 
to look at phage activity on strains outside the original 314 in the training dataset, 10 newly isolated 
clinical UPEC strains (3 canine, 7 human), were genome sequenced and these sequences run 
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through the predictive models to give predicted phage interaction scores (SI Appendix, Table S6). 
From the predicted scores, cocktails were constructed using specific rules (materials and methods) 

so they could be compared to cocktails created using the same rules from observed phage activity 
data (that was subsequently carried out for validation).  Phage cocktail composition for each strain 
can be found in supplementary material with selection accounting for F1 scores (SI Appendix, Table 
S6). The full set of cocktails (general, bespoke observed and bespoke predicted) were tested 

against the strains in AU, and as a final validation, in canine urine (CU). The scores from each of 
these cocktails for duplicate experiments are recorded in supplementary data (SI Appendix, Table 
S6) and the distribution of scores shown in Figure 4D. Three of the strains were insensitive to all 

the phage tested and none of the cocktails worked well on these strains. The bespoke predicted 
cocktail performed at a level equivalent to the observed bespoke cocktail and was significantly more 
effective than the general cocktail in both AU and canine urine (Figure 4D).   
  
  
Discussion   
  
This history of successful phage therapy over the last century has often occurred when a more 
bespoke approach has been used, i.e. where phage are identified that act on the infecting bacteria. 
While there are some exceptions to this, including ‘jumbo’ phage targeting a wide range of 
Salmonella serovars for a recent advance in food safety (32), the high-profile news stories and the 

long-standing work at the Eliava Institute are based on identifying the infecting organism and 
selecting appropriate phage from extensive phage collections.  This highlights the potential of 
phage therapy but a bespoke approach is much harder to do at scale.  The selection of appropriate 

antibiotics is strengthened with knowledge of the antibiotic resistances of the infecting strain, and 
similarly a diagnostic platform that provides information about phage effectiveness would greatly 
advance the development of phage treatment.  The premise for this study was that genomic 
information about the infecting strain should be the basis of phage cocktail selection. Towards this, 

phage activity models were generated from bacterial sequence data combined with phage 
interaction data allowing prediction of phage that are active on ‘unseen’ strains, i.e. those not used 
in the model training sets. Phage predicted as active from the models can then be combined into 
cocktails for treatment.  

  
E. coli UTIs are an appropriate challenge for phage selection as horizontal gene transfer mediated 
by phage and plasmids has resulted in an ever-increasing pangenome of >100,000 genes relative 

to a ‘core’ genome of only a few hundred genes. Prophage integration also introduces resistance 
mechanisms to phage infection and this accounts for major variation in phage susceptibility along 
with receptor and metabolic diversity. As a consequence of the presence of these genomic 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 23, 2023. ; https://doi.org/10.1101/2023.11.23.568453doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.23.568453
http://creativecommons.org/licenses/by-nc-nd/4.0/


9  

  

determinants, phage activity on a strain should be identifiable from its genome sequence. To date, 
most of the predictive effort has been focused on possible hosts for phage based on phage genome 

sequencing, reviewed in (24), in particular prediction of bacteriophage sequences from 
metagenomic studies and predictive calling of possible bacterial hosts. These have mainly used 
nucleotide information including k-mer biases, although one study has taken into account CRISPR 
sequences (33). These studies are identifying phage interactions at the level of phylum or genus 

and have not been focused on defining phage that would be active on clinically infecting strains of 
a species based on their sequence data.  The idea of predictive models based on the different steps 
in infection has been proposed (34) and our approach presented here, while relatively agnostic in 

that it uses differential PVs (predicted genes) as features, may well include receptors and resistance 
mechanisms. However, this is hard to dissect as the majority of features used are grouped genes 
with no clear annotation. Future pipelines for phage selection could apply both associative features 
as well as those based on functional knowledge. Either way, good quality training sets with 

phenotypic interaction data will still be critical.   
  
For the majority of methods using genome features for prediction (reviewed for source attribution 

in (35)) there will be significant phylogenetic influence. This will mean that features are used with 
statistically significant associations with phage activity but which do not have a functional 
relationship to phage susceptibility. This is not an issue for the models as long as they are used 
within a similar population structure to the training dataset but there would be reduced accuracy if 

the models are applied to strains from different structures.  Machine learning models are also prone 
to replicating existing biases in their training datasets. This was demonstrated in the predictions 
scored of phage with very imbalanced datasets (e.g. A01), in which the model was trained on mainly 
high interaction scores indicating no infection and a very small subset of low scores, indicating 

infection. The resulting model struggled to differentiate isolates that the phage would actually infect 
and would be prone to generating false negatives. From a cocktail perspective, the failure to select 
a phage that would have been active (false negative) is actually preferred to false positives, 

although a high rate of false negatives may lead to a paucity of phage predicted as active from 
which to select a cocktail. We note that with the better models presented in this study the frequency 
of false positives and false negatives falls within a range where if five phage are selected for a 
cocktail the majority will be correctly predicted. For example, for Chap1 the predictive model 

generated 7% false negative scores (22/314) and 10.8% were false positive scores (34/314).  
  

Our analysis on a set of completely independent sequenced isolates did demonstrate that the 
predicted cocktails were more effective than a generic cocktail and in fact were comparable with 
the bespoke cocktails that were based on individual measured activity. This result on ‘unseen’ 
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isolates provides confidence in the main concept of the study. To really move such predictive phage 
therapy into the clinic, there are areas the research has highlighted that require further development 

along with the safety and registration issues that are being tackled more globally by the phage 
community.  A key improvement would be inclusion of more generalist phage in the interaction 
dataset. Based on the findings illustrated in Figure 3, the models trained on datasets with a class 
imbalance as high as 85:15 were able to produce results of practical value for phage selection, as 

defined by a predefined F1 cutoff of 0.6. For greater reliability, it would be preferable to use phage 
with a class imbalance less than this, and therefore phage that can target at least 30% of the 
population. More generalist phage will also provide more options for cocktail selection especially if 

they can be distributed across different activity groups. The work shown is a ‘proof of concept’ and 
valuable interaction datasets for prediction models could now be produced in a short period of time 
using high throughput platforms, including those that can measure 50 x 96 well plates with 
appropriate phage and strain collections in place.   

  
Another major consideration is the actual activity of the selected phage in the infection environment, 
in this case urine which can vary considerably in terms of composition and constituent 

concentrations, especially pH and osmolarity, as well as factors associated with the host response 
to infection (36–38). We have tried to mitigate this by measuring phage activity in artificial urine but 
acknowledge this cannot capture the complexity of real urine as although it is a defined reproducible 
medium and a closer match to urine than many rich broths that are routinely used for phage activity 

studies that allow faster bacterial growth.  The bespoke phage cocktails formulated in this study 
based on the predictive models showed good activity in canine urine, comparable with results in 
artificial urine (Fig. 4D), and this mirrored our preliminary work on the activity of a subset of 

individual phage in artificial urine vs pooled canine urine. (SI Appendix, Figure S1).  
  
Predictive phage therapy would be used in conjunction with diagnostic sequencing. Direct 

sequencing of nucleic acids extracted from clinical sample has been successfully used for diagnosis 
for viruses, fungi and bacteria (39–41) including UTI (42, 43) and we have applied it to direct 
sequencing of E. coli in canine urine samples with respect to the selection of appropriate 

antimicrobials (28). There is the challenge of feature extraction for the phage models from long read 
data of more complex samples compared to assemblies of short reads from purified strains, as 
used in this study. If there are multiple strains associated with the infection then the models may 
still be useful to select phage, even without their separation at a genome level, although that 

remains to be tested. The testing of phage activity with sequenced clinical samples would be used 
to continually reinforce the learning dataset and improve predictions.  
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It should be emphasised that the primary aim of this study was to signpost what could be possible 
for phage therapy with machine learning or alternative predictive methods based on comprehensive 

interaction datasets. The study looked at both canine and human UTI E. coli isolates presented by 
patients at local hospitals and used a selection of 31 phage from an initial pool of just over 100.  
While these are only representative subpopulations, we consider they allowed the concept of 
predictive phage therapy to be tested with a promiscuous and important pathogen than can exhibit 

multi-drug resistance. We are optimistic that there will be a rapid expansion of advances in this 
space and the best methods could be combined in pipelines to transition the best approaches into 
clinical practice.  However, the wider adoption of phage therapy in the veterinary or human clinic 

will require changes in licensing and management of expectations of both clinicians and the general 
public (44).  
   

  
Materials and Methods  
  
  
Strain Information   

203 E. coli were isolated from UTIs in canine patients at the Royal (Dick) School of Veterinary 
Studies, Hospital for Small Animals between Jul. 2017 and Jun. 2019. In addition, 81 E. coli were 
isolated from urine and 30 E. coli from blood from patients with blood stream infections processed 
at The Royal Infirmary of Edinburgh (collected between Jan. 2019 and Nov. 2019). The canine, 

human urine and human blood isolates were designated “CANxx”, “HUxx” and “HBxx” respectively. 
Isolates were stored at -70˚C in 20% glycerol (G5516, Sigma, Germany) and streaked out to obtain 
pure, individual colonies on LB agar. A final set of 10 strains were collected from the same clinics 

towards the end of the study for validation of the prediction models. (canine, n=3, collected as part 
of a different study(28) and human, n=7, from The Royal Infirmary of Edinburgh collected Spring 
2023).   
  

Phage Isolation and Propagation  

Phage were propagated by growing the appropriate host strain to an OD600 0.2 to 0.3 in LB or AU 
in a glass conical flask at 37ºC with shaking at 170 rpm before adding 500 µL of phage plaque 
filtrate in SM (50mM Tris-HCl pH7. 5, 100mM NaCl, 8mM MgSO4, 0.01% Gelatin (v/w)) buffer and 
continuing to incubate overnight. Infected cultures were centrifuged at 5,000 rpm for 10 minutes in 
a benchtop centrifuge to pellet the bacteria, and the phage lysate passed through a 0.22 µM syringe 
filter before long term storage at 4ºC. Phage were titred using double layer agar overlay plates and 
diluted to 1 x 106 per mL working stock concentration using SM buffer.  
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Growth media and Culture Conditions  

1L volumes of artificial urine (AU) were prepared (according to the following protocol, 
https://dx.doi.org/10.17504/protocols.io.kxygx3exzg8j/v1), aliquoted into single use tubes, and 

frozen until required. Each aliquot was filter sterilised through a 0.22 µM syringe filter prior to use. 
Canine urine was collected from healthy dogs, filter sterilised using a 0.22 µM syringe filter, 

aliquoted and frozen until use.  

Interaction Assays including AUC analysis  
Phage interactions assays were performed using 31 phage against 314 E. coli isolates using an 

MOI of 0.01 (~1 phage per 100 bacteria). This MOI ratio was chosen to ensure that complete virus 
lifecycle infections were analyzed rather than abortive infections which can occur at higher MOIs. 

A single colony of an E. coli isolate was picked to inoculate 5 mL LB (LBL0102, Formedium Ltd, 
England) and incubated overnight at 37°C with shaking at 170 rpm. 50 µL of overnight culture was 

subcultured into 5 mL fresh LB and grown at 37ºC and 170 rpm shaking to an optical density (OD600) 
of 1.0 (equivalent to 108 bacterial cells per mL). During this incubation, 10 µL of SM buffer (for no 

phage controls) or 10 µL phage at 1 x 106 per mL (phage stocks were diluted in SM buffer) was 
added to a flat-bottomed 96-well microplate. 180 µL of AU was added to all wells. 10 µL of E. coli 

at OD600 of 1 was added to all wells resulting in a final reaction volume of 200 µL. A gas permeable, 
sterile, optically clear plate seal was applied to the plate (4ti-0516/96, Azenta Life Sciences) to 
control for evaporation and prevent phage contamination within the plate reader. Microplates were 

run on 1 of 3 identical Multiskan FC photometers (51119100, Thermo, China) with absorbance 
measurements at 620 nm taken every 20 minutes immediately after a 5 sec mix over a time course 

of 18 hours and constant incubation at 37ºC.   
  

All interactions and controls were measured with at least three technical repeats and additional 
controls on each plate for growth and sterility, Media controls comprised 180 µL AU, 10 µL SM 
buffer, and 10 µL LB in place of bacterial culture. While the number of interactions involved were 

too large to carry out each interaction as triplicate biological repeats, biological repeats of a limited 
number of strains were carried out periodically to ensure repeatability of the assay over time and 
consistency of phage activity. Based on 31 phage measured on 314 bacterial strains with the 
technical repeats, a total of >27,000 growth curves were produced and analysed.  The Multiskan 

FC photometers use SkanIt Software (Thermo) allowed raw data to be exported as a Microsoft 
Excel file. Phage interaction scores were calculated by comparing the average area under the curve 
(AUC) of the plus phage triplicate wells against the average AUC for the no phage control wells 

using PRISM software (GraphPad).  (Score = (AUC plus phage/AUC no phage control) x 100). For 
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the purposes of plotting data where the score generated was over 100 it has was recorded as a 
value of 100 representing no phage activity.  

  

Genome Sequencing  

Genome sequencing of isolates was provided by MicrobesNG (http://www.microbesng.com) 
using paired Illumina reads. The reads were uploaded to Enterobase and assembled using the 

Enterobase Tool Kit (https://github.com/zheminzhou/EToKi). The assemblies were then annotated 

with prokka version 1.14.5 (45) Enterobase’s Tool Kit was also used to generate a maximum 

likelihood phylogenetic tree based on core SNP.  

Machine Learning and prediction pipelines  

After filtering for fragmented assemblies (<600 contigs), 301 of the 314 isolates were used for model 
training and testing. The main features used for testing were predicted genes, defined as predicted 

protein variants (PVs) generated from a pangenome analysis of the 301 bacterial sequences using 
panaroo version 1.2.9 (46). PVs were encoded in a binary format (1/0) to indicate 

presence/absence in an isolate.   
  

Random forest regression models were created for each of the 31 phage using the MUVR package 
(47) using 1 75-25 split of training/testing data and 10-fold cross validation. The predicted value 
was the interaction score calculated during the interaction assays analysis. (Score). Model 

performance was evaluated using the Root Mean Square Error (RMSE) statistic, which is calculated 
by taking the square root of the average of the squared differences between the predicted and 
actual values. RMSE provides a single numerical value that represents the overall accuracy of a 
prediction model, with lower values indicating better predictive performance. F1, recall, precision 

and related statistics were created by classifying each observed and predicted phage interaction 
based on the score (Score<60: infection; Score>60 No infection).  
  

Feature reduction was performed recursively using the MUVR package. For each phage, an initial 
model using all PVs was created. Then the top-ranking features of a model were selected to create 

a new model with a reduced number of features and the RMSE values between the old and the 
new model were compared. If the models had a similar RMSE, the top-ranking features of the new 

model were used to create another new model, and the process repeated.  
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Phage cocktail testing  

Cocktail interaction assays were set up in a similar manner to the single phage assays described 
above. Phage were selected for the bespoke cocktails (both predicted and observed) using the 
same design rules; (i) to include the lowest scoring (highest activity) phage from each interaction 

grouping (Figure 2) as long as it scored under 80 (ii) if no active phage available from a group then 
additional phage(s) were added that were the second lowest scoring phage from activity groupings 
starting with the remaining phage with the lowest score until 5 phage in the cocktail (iii) if less than 
5 phage available with scores less than 80 then less phage were used in the cocktail. Working 

stocks of phage cocktails were prepared by mixing equal volumes of each selected phage already 

prepared at 106 per mL such that the 10 µL volume transferred to each triplicate well of a 96-well 

plate contained an equivalent total number of virus particles to the single phage assays, so that the 

overall MOI remained at 0.01. Additionally, the cocktail assays were allowed to proceed for 24 hr.  
  
  

Genomic Data  

The  genomic  data  generated  for  this  work  has  been  deposited  in  Enterobase  

(https://enterobase.warwick.ac.uk/species/ecoli/search_strains?query=workspace:97040).  
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Figures   
  
  
  
  

  
  
  
  
  
  
  
Figure 1. (A) Phylogentic tree showing the relationship of the UPEC strains from the collection used 
in this study (314 strains in training set and 10 strains from validation set). The host source (canine 
or human) is shown in the outer ring. Orange dots show the 50 representative strains used to test 
the general and bespoke cocktails and the purple dots show the 10 ‘unseen’ strains used to validate 
the machine learning models. (B, C, D) Charts showing the percentage of the canine and human 
strains (n=314) belonging to the different phylotypes (B), O-Antigen type (C) and sequence type 
(ST) as defined by Enterobase.   
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Figure 2. Heatmap of bacterial (n=314) phage (n=31) interactions based on score from growth 
assay in artificial urine. Low scores (yellow) represent high phage activity and good inhibition of 
bacterial growth. High scores (dark red) represent limited phage activity. Using heatmap2 in gplots 
(v3.1.3,), pairwise comparisons of the data interactions allowed the phage to be clustered into five 
primary activity groups to aid with cocktail selection.   
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Figure 3. (A) The infectivity of the 31 phage across the E. coli dataset. Infections were determined 
based on a score of less than 60. (B) F1 scores vs activity (ratio of infected isolates) for PV phage 
models. The dashed line delineates a threshold of 0.6 for the F1 score as a metric for a ‘reliable’ 
model. (C) Scatter plot of the predicted vs observed interaction scores for phage CHAP1.  The 
diagonal line represents a perfect prediction (observed=predicted). The chart is divided into 4 
colour-coded quadrants to represent correct/incorrect predictions (True Negatives and True 
Positives as blue, False Negatives and False Positives as red). (D) Phylogenetic SNP tree of the 
isolates used for model training. Exemplar phage models for CHAP1, NEA2 and E4 are shown. For 
each model, the observed and predicted interaction scores are shown in black and white, followed 
by the difference between the two scores as a colour gradient, followed by whether each isolate 
would be categorised (score <60 the cut-off value for activity) in the same way by both the observed 
and predicted scores.  
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Figure 4. Phage cocktail analysis (A) Using a representative set of 50 UPEC strains from the 
training set of E. coli the General Cocktail was tested. The box plots show the distribution of scores 
for the individual phage and for the cocktail. (B) For the 38 strains (out of the set of 50) that had 
more than 2 effective phage (from different activity groups) a bespoke cocktail was created and 
scores recorded (SI Appendix, Table S4 & S5). A statistical analysis (paired t-test) comparing the 
general to the bespoke cocktail for these 38 strains shows that the bespoke cocktail is more 
effective (p= 2.081e-05). (C) Representative growth data that was used to generate the activity 
scores comparing the general and bespoke cocktails for three strains where there is no difference 
between the cocktails (CAN118), where there is bacterial resistance evolving for the general 
cocktail (CAN127) and where the bespoke cocktail is effective over the general cocktail (HU25). 
(D) A set of 10 strains that had not been in the training set were used to validate the prediction 
models. Using defined rules bespoke cocktails were created using the predicted scores and 
separately the observed scores and compared alongside the general cocktail. This was done in AU 
and canine urine (CU) and the scores plotted (representative data from one experiment, repeat 
data available in SI Appendix, Table S6). Analysis of these results (paired t-test) showed the 
predicted cocktail was more effective than the general cocktail (p=0.03502 (AU), p=0.03614 (CU)). 
There was not a statistical difference in effectiveness between the observed or predicted cocktail 
(p=0.1746 (AU), p=0.4288 (CU)).   
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