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Non-Newtonian fluids can be used for the protection of flexible laminates. Understanding the
coupling between the flow of the protecting fluid and the deformation of the protected solids is
necessary in order to optimise this functionality. We present a scaling analysis of the problem
based on a single coupling variable, the effective width of a squeeze flow between flat rigid plates,
and predict that impact protection for laminates is optimised by using shear-thinning, and not shear-
thickening, fluids. The prediction is verified experimentally by measuring the velocity and pressure
in impact experiments. Our scaling analysis should be generically applicable for non-Newtonian
fluid-solid interactions in diverse applications.

shear thickening | composites | fluid-solid interaction | smart materials | shear thinning

Woven fabrics impregnated with a shear-thickening colloidal fluid, whose viscosity
increases suddenly at a critical shear rate, can function as body armour (1). Perhaps

surprisingly, the shear-thickening fluid does not directly provide protection in body armour
because of the bulk rheology that allows, for example ‘running on cornstarch’ (2) due to
propagating jamming fronts (3). Instead, as the fibres are pulled past one another the suspension
between them jams, preventing them being pulled apart and increasing effective inter-fibre
friction (4), so that they form a rigid layer to spread impact and protect the material underneath.

Partly inspired by this application, there is growing interest in smart materials that
incorporate various non-Newtonian fluids in solid structures (5–9). In particular, in direct
analogy with body armours, it is envisaged that including shear-thickening fluids in laminates
may provide impact protection. However, analysing the impact response of fluid-solid
composites is challenging even in the case of Newtonian fluids (10). Deformation of the
solid drives fluid flow, which then generates a pressure, which in turn changes the solid
deformation, creating feedback. For a non-Newtonian fluid, such fluid-solid interaction is
even more challenging, because the fluid property changes as the flow develops throughout
impact, and analyses to date are limited, e.g., to blood flow (11–13), or stationary process
such as blade coating (14).

We consider fluid-solid interactions in a laminate consisting of a non-Newtonian fluid
sandwiched between a flexible sheet above and a rigid base below, which is a model for various
real-life applications, e.g., a display in which the base layer is an LCD panel and the top layer is
a piece of glass, both of which must be protected from concentrated impacts at ≲ O(10 m s−1).
The physics differs from that in shear thickening body armour. The requirement here is to
protect both solid layers, while body armour is optimised for the protection of the single lower
layer.

We perform a scaling analysis of the coupling between fluid flow, rheology and solid
deformation in our geometry based on the idea of an ‘effective squeeze flow width’, and verify
our analysis using controlled-velocity impact experiments. We find that the effective squeeze
flow width varies weakly throughout the impact, so that the process can be approximated as a
simple rigid squeeze flow. From this we find, surprisingly, that shear thinning, not thickening,
is optimal for protection.

Results
Modelling. Using a quasi-2D setup, we analyse the downward impact of a point mass 𝑚 at the
origin, 𝑦 = 0, with speed 𝑣 on a flexible plate initially at height ℎ𝑖 parallel to a rigid bottom
plate, with the gap filled by a fluid, Fig. 1A. The width of the plate𝑊 ≫ ℎ𝑖 , and breadth of
the plate (perpendicular to the page) 𝐿 ≫ ℎ𝑖 . The upper plate is pushed down, leaving a gap
ℎ0 (𝑡) at the impact point, and bending deformation Δℎ(𝑦, 𝑡) upwards. The net motion causes
a fluid flow, 𝑄. If the impact velocity is significantly sub-sonic, i.e. 𝑣0 ≪ O(1000 m s−1) for
most solids and liquids, then incompressibility and mass conservation require

𝜕

𝜕𝑡
[ℎ0 (𝑡) + Δℎ(𝑦, 𝑡)] = − 𝜕𝑄

𝜕𝑦
, [1]
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Fig. 1. Non-Newtonian fluid-solid interaction. (A) Diagram of point impact on simplified
laminate geometry. (B) Schematic of full coupling between fluid rheology, fluid flow and
glass deformation. (C) Diagram of simplified effective plate. (D) Schematic of simplified
closure with single effective plate width variable.

with 𝑦 the distance from the impact. The pressure gradient associated
with the impact-driven flow is given by

d𝑝
d𝑦

= −12𝜂𝑄
ℎ3 , [2]

where the fluid viscosity 𝜂 is constant for a Newtonian fluid. The
pressure, 𝑝(𝑦, 𝑡), which satisfies 𝑝(𝑦→∞) = 0, pushes back on the
impacting mass 𝑚,

𝑚
d𝑣
d𝑡

= 𝑚
d2ℎ0 (𝑡)

d𝑡2
= −𝐿

∫ +∞

∞
d𝑦 𝑝(𝑦, 𝑡) , [3]

and bends the flexible layer, which has thickness ℎ𝑔 and rigidity
𝐵 = 𝐸𝐿ℎ3

𝑔/12 (with 𝐸 its Young’s modulus). The shape of the layer
follows the Euler-Bernoulli equation (15),

𝐵

𝐿

𝜕4Δℎ

𝜕𝑦4 = 𝑝(𝑦, 𝑡), [4]

where we have neglected the laminate mass as ≪ 𝑚. Self consistency
requires that Eq. (4) solves to give small plate deflection, so
that flow is essentially along 𝑦, as is assumed in the ‘lubrication
approximation’ (16), Eq. (2).

The coupled integro-differential equations, Eqs. (1–3) need to be
supplemented by a form for the rate-dependent viscosity, 𝜂( ¤𝛾), if the
fluid is non-Newtonian. The complex feedback between quantities,
Fig. 1B, means that finite element or immersed boundary numerical
methods are needed to solve specific fluid-solid interaction problems
for Newtonian (10) and non-Newtonian fluids (17, 18); but such
solutions offer little physical insight into fluid-solid interactions, for
which we turn to a different approach.

Simplified closure. To analyse the fluid-solid interactions in our
geometry, note first that since the pressure gradient 𝜕𝑦 𝑝 ∝ ℎ−3, we
need only consider the region around the impact where deformation
is small, Δℎ ≲ ℎ0.∗ Within this region the surface is only weakly
curved, and a calculation of the shear rate shows that it is adequate
to treat it as a flat surface, ℎ(𝑦) ≈ ℎ0 (SI Appendix, Fig. S1). We
therefore define an effective flat plate width, 𝑤eff , such that the
pressure created by a rigid plate squeeze flow bends the flexible plate
by Δℎ = ℎ0 at 𝑦 = 𝑤eff . The squeeze flow for |𝑦 | ≤ 𝑤eff ≪ 𝑊 is
solved analytically (19), but we neglect fluid flow and deformation

∗Initial contact is not accurately described, but for large deformations (ℎ0 → 0) this can be neglected.

outside (|𝑦 | > 𝑤eff), Fig. 1C–D. Within this local approximation,
boundary conditions can be neglected as volume conservation will
be ensured by, e.g., the surface being pushed up further away from
the impact zone.

We use a scaling analysis to determine 𝑤eff , which is not known
a priori. The flux created by the rigid-plate squeeze flow 𝑄 ≃ 𝑣𝑤eff
gives 𝜕𝑦 𝑝 ≃ 12𝜂𝑣𝑤eff/ℎ3

0 and 𝑝 ≃ 12𝑤2
eff𝜂𝑣/ℎ

3
0. Equation (4)

implies that the the deflection Δℎ ≃ 𝑝𝑤4
eff × 𝐿/𝐵. Self consistency

demands that this Δℎ ≈ ℎ0, which combines with 𝑝 to give

𝑤eff ≃
(
𝐵ℎ4

0
12𝜂𝑣𝐿

) 1
6

,
𝐹

𝐿
≃ 𝑝𝑤eff ≃

12𝜂𝑣𝑤3
eff

ℎ3
0

=

(
12𝜂𝑣𝐵
𝐿ℎ2

0

) 1
2

. [5]

While higher 𝜂, faster 𝑣 and narrower ℎ0 bend the plate more strongly
and reduce 𝑤eff , the dependence is weak. The somewhat unusual 1

6
exponent is traceable to the dependence of plate deflection on 𝑤6

eff .†
The nearly-constant 𝑤eff means that the dynamics can be thought of
as a modified fixed width squeeze flow that scales approximately as
ℎ−3

0 .
To capture the lowest order effects of a rate-dependent viscosity,

𝜂 = 𝜂( ¤𝛾), in non-Newtonian fluids, a further approximation is made.
We take the fluid to be an effectively Newtonian with a single viscosity,
𝜂eff = 𝜂( ¤𝛾𝑤), where ¤𝛾𝑤 is the shear rate at the edge of the effective
plate (𝑦 = 𝑤eff) for a fluid of this viscosity. This again ensures self-
consistency; it also recalls the use of the rim shear rate in calculating
the viscosity in parallel-plate rheometry (20).

We use a power-law model, 𝜂eff = 𝐾 ¤𝛾𝑛−1
𝑤 , to explore the effect of

thinning (𝑛 < 1) and thickening (𝑛 > 1) on impact protection. Now,
Eq. (5) becomes (see SI Appendix)

𝑤eff ∝
(
𝐵ℎ4

0
12𝐾𝑣𝐿

) 1
6
(
(6𝑣)5𝐵

2ℎ8
0𝐾𝐿

) 1−𝑛
6(𝑛+5)

and
𝐹

𝐿
∝

√︁
12𝐾𝑣𝐵/𝐿
ℎ0

(
(6𝑣)5𝐵

2ℎ8
0𝐾𝐿

) 𝑛−1
2(𝑛+5)

,

[6]

which reduce to Newtonian results, Eq. (5), for 𝐾 = 𝜂 and 𝑛 = 1.
Equation (6) gives the force per unit length in terms of (𝐵/𝐿, 𝐾, 𝑛)
and a single dynamical variable ℎ0 (𝑡) with its derivative ¤ℎ0 = 𝑣; this
then allows us to understand how a flexible solid-fluid laminate may
be protected against impact.

Numerical solutions. After impact, a time-dependent bending moment
𝑀 (𝑡) = 𝐹 (𝑡)𝑤eff (𝑡) develops, which flexes the upper plate, Eq. (4).
Large flexure can lead to breakage when 𝑀 exceeds a critical bending
moment, 𝑀∗. Protection requires minimising the maximum, 𝑀max <
𝑀∗, e.g., for a given geometry through fluid optimisation.

A Newtonian-fluid laminate with initial gap ℎ𝑖 impacted by mass
𝑚 at initial downward speed 𝑣𝑖 obeys from Eq. (3)

d2ℎ0
d𝑡2

= − 𝐶
ℎ0

����dℎ0
d𝑡

���� 1
2
, 𝐶 =

√︄
12𝜂𝐵𝐿
𝑚2𝑣3

𝑖

. [7]

The gap and time have been normalised by ℎ𝑖 and ℎ𝑖/𝑣𝑖 , giving
a single dimensionless ‘impact parameter’, 𝐶, which captures
the ratio of viscous dissipation, 𝐹 (ℎ𝑖) × ℎ𝑖 ∝ √

𝑣𝑖 , to kinetic
energy, ∝ 𝑣2

𝑖
. We solve for ℎ0 (𝑡) numerically (using SciPy v1.10.1

integrate.odeint) for various 𝐶 ∝ √
𝜂, Fig. 2.

†Larger 𝑤eff increases𝑄 and 𝜕𝑦 𝑝 ∝ 𝑤eff , such that 𝑝 ∝ 𝑤2
eff and 𝐹 ∝ 𝑤3

eff . The bending moment

in the plate ∝ 𝑤4
eff , the angular deflection ∝ 𝑤5

eff and, ultimately, Δℎ ∝ 𝑤6
eff .

2 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Richards et al.
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Fig. 2. Predicted response to impact for a Newtonian fluid
laminate with varying viscosity. (A) Changing gap, ℎ0 (𝑡 ) ,
normalising length ℎ𝑖 and time ℎ𝑖/𝑣𝑖 . Lines: green to light
blue with increasing viscosity, 𝜂, setting impact parameter,
𝐶 = (12𝜂𝐵𝐿)0.5/𝑚𝑣3/2

𝑖
, see legend in B. Bold dashed line

for 𝐶 = 0.2 at optimum viscosity, see D. (B) Impact force,
𝐹, normalised by (𝐿𝜂𝑣𝑖𝐵)0.5/ℎ𝑖 . (C) Bending moment,
𝑀 (𝑡 ) = 𝐹𝑤eff , with effective plate width 𝑤eff normalised by
(𝐵ℎ4

𝑖
/𝐿𝑣𝑖 𝜂)1/6 and peak 𝑀 (𝑡 ) = 𝑀max (circle). (D) Peak

bending moment, 𝑀max vs𝐶.

At large 𝜂 (𝐶 = 14, 6, 2), the impact is rapidly stopped and the
gap hardly drops, ℎ0 (𝑡 → ∞) ≲ 1, Fig. 2A [light blue lines, see
legend in Fig. 2B]. This causes a large initial force, 𝐹 (0), Fig. 2B,
and maximum bending moment 𝑀max = 𝑀 (0) that grows with
𝜂, Fig. 2C (circle); however, both 𝐹 (𝑡) and 𝑀 (𝑡) drop rapidly. At
intermediate 𝜂 (𝐶 = 1, 0.6), ℎ0 decreases noticeably before stabilising,
while 𝐹 (0) and 𝑀 (0) both drop, but 𝐹 (𝑡) and 𝑀 (𝑡) stay constant for
longer before dropping rapidly. At the smallest 𝜂 (𝐶 = 0.1, 0.05),
the impact is not slowed and ℎ0 → 0, giving a sharp peak in 𝐹 (𝑡),
Fig. 2B, and in 𝑀 (𝑡) (as 𝑤eff changes sub-linearly with ℎ0) that now
grows as 𝜂 → 0, Fig. 2C.

At some optimal 𝐶 ≈ 0.2, 𝑀max is minimised at 𝑀opt
max, Fig. 2D.

The impact is absorbed over the whole gap with a near-constant
𝑣 = ¤ℎ0, but eventually slows before 𝐹 diverges. As 𝑤eff is weakly
dependent on ℎ0, reducing the divergence in 𝐹 directly gives a flatter
𝑀 (𝑡). This, however, still peaks as the gap narrows, Fig. 2C [bold
dashed line], increasing 50% from 𝑡 = 0 before dropping rapidly to
zero. To obtain a minimum 𝑀max with a flat 𝑀 (𝑡) profile, we turn
to non-Newtonian fluids.

Consider first a constant-speed impact. We plot in Fig. 3A–B the
ℎ0 (𝑡) dependence implied by Eq. (6):

𝐹 ∝ ℎ−
5𝑛+1
𝑛+5

0 and 𝑀 = 𝐹𝑤eff ∝ ℎ−
3𝑛−1
𝑛+5

0 . [8]

The force and bending moment in a shear-thickening fluid laminate
(𝑛 = 1.5, 2) diverge more sharply as the gap narrows than the
Newtonian case (𝑛 = 1). However, a shear thinning fluid (𝑛 =

0.5, 0.33, 0) leads to a weaker force divergence. For 𝑛 = 0.5 the
bending moment also diverges more weakly than the Newtonian case.
Interestingly, decreasing 𝑛 further brings a constant 𝑀 (𝑛 = 0.33)
and then a decreasing 𝑀 (𝑛 = 0). These results suggests that for
laminate protection a shear-thinning, not thickening, fluid is needed.

We next confirm and generalise our analysis with numerical
solutions of the dynamical equation for ℎ0 (𝑡):

d2ℎ0
d𝑡2

= −
√

12𝐾𝑣
ℎ0

(
(6𝑣)5

2𝐾ℎ8
0

) 𝑛−1
2(𝑛+5)

[9]

where the second term modifies the Newtonian equation, Eq. (7), and
𝐵, 𝐿 and 𝑚 have been set to unity.

For any value of 𝑛 ≳ 0.4, we find an optimal 𝐾 for which the
maximum bending moment is minimised (comparable to Fig. 2D,
but with 𝜂 → 𝐾). Increasing 𝑛 from the Newtonian value of unity,
this optimal value 𝑀opt

max increases, Fig. 4C, i.e., a shear-thickening
fluid decreases protection. In contrast, decreasing 𝑛 below unity,
i.e., changing to progressively more shear-thinning fluids, lowers
𝑀

opt
max, thus offering increasing impact protection, consistent with

our constant-𝑣 analysis.
For 𝑛 < 0.4, we find that decreasing 𝐾 below its optimal value

brings laminate failure, as ℎ0 → 0. So, we predict that optimal
impact protection is offered by a shear-thinning fluid with 𝑛 = 0.4,
somewhat higher than the 1

3 from the constant-𝑣 analysis, but is
insensitive to pre-factors in our scaling analysis. Physically, a shear-
thinning fluid is optimal as it is harder to push out of large gaps (low
¤𝛾, higher 𝜂eff , larger 𝐹) than for narrow gaps (high ¤𝛾, lower 𝜂eff ,
smaller 𝐹), which smooths 𝐹 (𝑡) and hence 𝑀 (𝑡).

Constant velocity experiments. We verify our analysis in an
experimental realisation of our quasi-2D set up from Fig. 1A, using a
universal testing machine to drive a wedge downwards at a laminate
consisting of a fluid sandwiched between a 0.3 mm-thick flexible
glass plate and a 10 mm-thick polydimethylsiloxane (PDMS) base,
Fig. 4A, at low enough constant velocity, 𝑣, to allow us to follow
the force on the wedge, 𝐹, as a function of time, or, equivalently,
(downward) displacement, Δ𝑥. The gap height is ℎ0 = ℎ𝑖 −Δ𝑥 +𝐹/𝑘 ,
where ℎ𝑖 is the initial gap height, and 𝑘 is the (separately measured)
stiffness of the system. We measured 𝐹 (Δ𝑥) at different imposed 𝑣,
and monitored the pressure on the PDMS via photoelastic imaging.
Experimental details are in Materials and Methods.

Newtonian fluids. We begin with a Newtonian fluid laminate with
ℎ𝑖 = 0.7 mm, using glycerol as the ‘sandwich filling’, increasing 𝑣
from 0.5 mm min−1, Fig. 4B [dark (purple) lines], to 200 mm min−1

[light (yellow) lines]. At low 𝑣, the fluid can almost freely drain
and 𝐹 is low, only increasing as Δ𝑥 → 0.8 mm and ℎ0 → 0. With
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Fig. 3. Predicted impact response for a power-law fluid. (A) Constant velocity impact
force, 𝐹 (ℎ0 ) , at different index, 𝑛, dark (purple) thinning to light (yellow) shear-thickening
(see legend). Normalised by setting additional parameters to unity. (B) Corresponding
bending moment, 𝑀 (ℎ0 ) . (C) Peak 𝑀 (𝑡 ) for decelerating impact vs power-law index,
𝑀

opt
max (𝑛) , at optimal consistency, 𝐾 , following Fig. 2D. Symbols: light (thickening) to

dark (thinning); open, impact to ℎ0 (𝑡 ) < 10−4.

increasing 𝑣, 𝐹 (Δ𝑣) takes on a sigmoidal shape. Converting Δ𝑥

to ℎ0 and normalising by
√
𝑣 collapses the data to within a factor

of 1.5 over a 400-fold variation in 𝑣, Fig. 4C. confirming the
√
𝑣

scaling of Eq. (5). Indeed, 𝐹/𝐿 = 12(𝜂𝑣𝐵/𝐿ℎ2
0)

1/2 offers a credible
account of the collapsed data (dashed line). That this is within an
order-unity numerical factor (

√
12 ≈ 3.5) of Eq. (5) validates the

physics embodied in our scaling analysis: an effective squeeze flow
that shrinks in extent as the viscous forces more strongly bend the
flexible upper layer.

To illustrate this physics, we turn to photo-elastic measurements,
where light intensity is a proxy for the pressure, so that we can visually
distinguish between a point and a distributed load, Fig. 4A (ii) and (iii)
respectively. At 𝑣 = 20 mm min−1, a bright region, evidencing high
pressure, emerges at ℎ0 ≲ 0.35 mm Fig. 4C, and grows in intensity
as ℎ0 decreases further. The half width of a Gaussian fitted to the
measured intensity pattern decreases only weakly, from 9.9(2) to
6.19(3) mm as ℎ0 decreases from 0.53 to 0.09 mm. The observation
of a localised high pressure region is consistent with assumption of
squeeze flow in a confined region of some effective width 𝑤eff . The
weak dependence of 𝑤eff on ℎ0 is also consistent with Eq. (5), from
which we predict 𝑤eff ≃ (𝐵ℎ4

0/12𝐿𝜂𝑣)1/6 = 9 mm at ℎ0 = 0.35 mm
down to 𝑤eff ≃ 4 mm at ℎ0 = 0.09 mm, comparable to the observed
widths and trends of the high-pressure region. Finally, these results
are consistent with our assumptions of lubrication flow (𝑤eff ≫ ℎ0)
and neglecting boundaries (𝑤eff ≪ 𝑊 = 75 mm). Thus, the complex
feedback between fluid flow and plate deformation can indeed be
captured in an ‘effective flat plate’ treatment.

Non-Newtonian fluids. We next tested a laminate filled with an 𝑛 = 0.4
shear-thinning suspension, Fig. 5A (filled circles); this and the shear-
thickening suspension (see below) can be treated as continua, as the
particle size is much smaller than the minimum gap (SI Appendix).
Now, Eq. (6) predicts 𝐹 ∝ 𝑣0.22, consistent with the observed collapse
of 𝐹 (ℎ0) data taken at different speeds when we plot 𝐹 (ℎ0)/ 5√𝑣,
Fig. 5B. The prediction of 𝐹 ∝ ℎ−0.55

0 [Eq. (8)] does not capture
the transient, early-stage response, but shows moderate agreement at
intermediate ℎ0, Fig. 5B (dashed), with a prefactor of 2.4 consistent
with a scaling analysis. The observed divergence in 𝐹 as ℎ0 → 0 is
weaker than for 𝑛 = 1, matching the predicted trend. However, it is

Fig. 4. Experimental controlled-velocity impact into a Newtonian fluid laminate. (A) Testing
apparatus. (i) Diagram from top to bottom: 0.3 mm glass; 0.70 mm to 0.76 mm fluid
layer; base with 10 mm PDMS, region analysed for pressure measurement, dashed
(orange) outline. Fluid flow out of plane prevented by rigid glass panes (light shading);
laterally serrated anvils allow fluid flow during loading, SI Appendix Fig. S2. (ii) Image,
𝐼 (𝑥, 𝑦) , of static point loading, 𝐹/𝐿 ≈ 200 N m−1, directly on PDMS in dark-field
circular polariscope. Note, background subtraction has not been performed and the air
pocket created is unique to the localised load directly on the PDMS. (iii) Distributed static
load, across 20 mm rigid glass slide. (B) Force-displacement response with varying speed,
𝑣, for 0.3 mm thick glass with 0.76 mm initial gap. Lines: dark (purple) to light (yellow),
slow to fast controlled 𝑣 (see inset legend), three test average, standard deviation shown
by shading. (C) Velocity-normalised force, 𝐹/𝐿

√
𝑣, as a function of corrected gap, ℎ0,

line shading as in (B). Dashed black line: model prediction, 𝐹/𝐿 = 12(𝜂𝑣𝐵/𝐿)1/2/ℎ0.
Inset: polariscope proxy pressure measurement. Vertically averaged intensity change,
Δ𝐼 (𝑦) , across quasi-2D geometry at decreasing ℎ0 [blue to dark (red), see inset legend].
Impact velocity, 𝑣 =20 mmin−1 and ℎ𝑖 =0.7 mm.

also weaker than predicted for 𝑛 = 0.4. Better agreement between
theory and experiment here may require more careful modelling of
shear-thinning fluids under squeeze flow conditions (21).

If instead a shear-thickening fluid, Fig. 5A (filled squares), is
used, we observe a markedly different behaviour. Varying 𝑣 from
1 mm min−1 to 20 mm min−1, Fig. 5C [dark (purple) to light (green)],
we find that 𝐹 (ℎ0) is Newtonian-like, with 𝐹/

√
𝑣 collapsing the data

(cf. Fig. 4C). This is consistent with the almost-constant viscosity
of this fluid at low shear rates: 𝜂 decreases from 3 to 1 Pa s as ¤𝛾
increases from 10−1 to 102 s−1. A different behaviour is seen when
𝑣 ≥ 50 mm min−1, Fig. 5C (light lines): 𝐹/

√
𝑣 no longer collapses

the data, and the ℎ0 dependence becomes stronger, although the
small-ℎ0 limit could not be accessed in these high 𝑣 experiments
due to load cell limits. The shear rate at the onset of this change
can be estimated by using Eq. (5) for 𝑤eff with 𝜂 = 1 Pa s, so that
¤𝛾 = 6𝑣𝑤eff/ℎ2

0 ∼ 160 s−1 at 𝑣 = 50 mm min−1 and ℎ0 = 0.6 mm.
This is consistent with the shear rate at which we observe shear
thickening in our fluid, Fig. 5A (filled squares), once again supporting
the validity of our analysis in terms of an effective flat plate of
width 𝑤eff , and an effective viscosity set by the edge shear rate,
𝜂eff = 𝜂( ¤𝛾𝑤).
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Fig. 5. Impact into non-Newtonian fluid based laminates. (A) Fluid rheology, viscosity with
shear rate, 𝜂 ( ¤𝛾) . Symbols: light (blue) squares, shear-thickening suspension of 20 wt%
fumed silica in PEG200 measured with fixed stress; (orange) circles, 7 wt% suspension
of hydrophobic fumed silica in PEG200 measured at fixed rate; and dark (grey) triangles,
glycerol. Dashed line, representative power-law fit for shear-thinning region, 𝜂 = 𝐾 ¤𝛾𝑛−1,
for 𝑛 = 0.4, 𝐾 = 38 Pa s0.4 and ¤𝛾 = 1 to 104 s−1. (B) Shear-thinning fluid. Force,
𝐹 (ℎ0 )/𝐿, normalised by speed, 5√𝑣, for ℎ𝑖 = 0.70 mm. Lines: solid, dark (purple)
to light (green), 𝑣 = 1 mm min−1 to 20 mm min−1, see legend in part B; dashed, model
prediction [Eq. (6), 𝑛 = 0.4, 2.4 pre-factor]. (C) Shear-thickening fluid. Force normalised
for Newtonian fluid by

√
𝑣. Lines, increasing 𝑣, see inset legend. (D) Comparison of

force response for different fluid rheologies. Dark lines, low speed, 𝑣 = 1 mm min−1:
thin solid, shear thinning; dashed, Newtonian; and thick dotted, STF. Light lines, high 𝑣,
𝑣 = 20, 50 and 100 mm min−1 respectively.

Energy scaling. The speeds at which we have performed our
experiments to validate our scaling analysis are far too low for
realistic impact protection at 𝑣 ≳ 1 m s−1. Nevertheless, our analysis,
now substantially validated by experiments, allows some predictions
for higher speeds via energy scaling.

The kinetic energy scales as 𝑣2, but 𝐹 (and energy absorbed)
scales as 𝑣0.2 for the optimal-protection shear thinning fluid with
𝑛 = 0.4, Eq. (6). For a laminate with given (ℎ𝑖 , 𝐵), the consistency
𝐾 required for energy absorption increases with 𝑣. In a constant-𝑣
approximation,

∫ ℎ𝑖

0
dℎ0

𝐹

𝐿
∼ 𝑛 + 5

4(1 − 𝑛) ℎ
4(1−𝑛)
𝑛+5

𝑖

√︂
𝑣𝐾𝐵

𝐿

(
𝑣5𝐵

𝐾𝐿

) 𝑛−1
2(𝑛+5)

. [10]

So, for energy ∼ 0.25 J (e.g., 𝑚 = 50 g for 𝐿 = 25 mm and 𝑣 =

3 m s−1), our model laminate (𝐵/𝐿 = 0.18 N m, ℎ𝑖 = 1 mm) requires
𝐾 ∼ 104 Pa s0.4. For this fluid, even a low ¤𝛾 ∼ 1 s−1 would generate
stresses ∼ 104 Pa.

Under such conditions, our fumed silica suspensions may become
brittle (22), rendering manufacturing challenging, and post-impact
‘self healing’ may not be possible. A fluid with more complex
rheology, e.g., one that thins only at the high ¤𝛾 of impact, may be
more suitable. This reduces stresses at slow deformation, facilitating
manufacturing, self-healing, and, perhaps, even enabling fully flexible
laminates. Such rheology could be achieved using suspensions that
thin after thickening, due to asperity compression (23) or a brush-like
coating (24), or a polymer solution with a low-shear plateau (25).
Our approach also provides insight into the mechanism of these
flows and how to optimise them, for example, in forming laminate

structures with unset polymers adhesives or foams, where ensuring
𝑤eff ≫ 𝑊 is required for squeezing a uniform layer.

Conclusions
Inspired by the use of shear-thickening fluids in body armours, we
have established a general scaling framework for analysing the impact
response of solid-fluid laminates, which captures interactions through
an effective rigid plate squeeze flow with width 𝑤eff , which scales
only weakly with all parameters, Eq. (5). Insight can, therefore, be
gained by thinking in terms of a simple rigid plate squeeze flow.
Strikingly, we conclude that, not thickening, but shear thinning with
𝜂 ∝ ¤𝛾−0.6 optimises protection, Fig. 5D. This arises from reducing
the 𝐹 (ℎ0) divergence, with a low 𝜂eff at small ℎ0 (high ¤𝛾), while still
absorbing the impact energy with a high 𝜂eff at large ℎ0 (smaller ¤𝛾).
These scaling predictions were substantially verified in controlled-
velocity impact tests where we measured 𝐹 (ℎ0) and imaged the
pressure distribution using photoelasticity. Together, these results
establish the effective rigid plate squeeze flow approximation as
a useful tool for analysing fluid-solid interactions in composites
incorporating non-Newtonian fluids, with optimisation shown for
where the upper layer must also be protected.

Further work including flow perpendicular to 𝑥 and 𝑦 (26) or
curvature (21), as well as normal stress differences (27), strain-
dependence (28) and extensional viscosities (29), could allow
predictive design of optimised fluids for realistic impact velocities.
These insights could also be applicable to sports equipment (30),
combining rigidification of fabrics using shear-thickening fluids from
body armour (1) with squeeze flow damping using shear thinning
fluids. More generally, our scaling approach may also apply to
non-Newtonian fluid-solid interaction problems arising from rubbing
skin ointments (31) or eating chocolate (32) by replacing the bending
equation for a thin sheet, used to calculate 𝑤eff , with the elastic,
Hertzian contact deformation of a curved surface modelling the finger
or tongue.

Materials and Methods

Non-Newtonian fluids were prepared from fumed silica in poly-ethylene
glycol (PEG 200, Sigma Aldrich), with a shear-thinning suspension from
7 wt% hydrophobic hexamethyldisilazane-modified Aerosil® R812S and a
shear-thickening suspension from 20 wt% hydrophilic HDK® N20. Particles
are ∼ 100 nm radius (Fig. S3) fractal-like aggregates (33) of ≈ 3 nm primary
particles. Powders were dispersed via vortex mixing, then repeated stirring
and centrifugation to break agglomerates (34), similar to conching (35).

Rotational rheometry (NETZSCH Kinexus Ultra+) was performed at
𝑇 = 20 ◦C. For the shear-thickening fluid, controlled-stress measurements
were made with roughened parallel plates (radius, 𝑅 = 10 mm and gap,
𝐻 = 200 µm); we report the rim shear rate, ¤𝛾 = Ω𝑅/𝐻, from the measured
rotation rate and the viscosity based on the apparent stress, 𝜎 = 2T/𝜋𝑅3,
from the applied torque, Fig. 5A (blue squares). Stress was applied from 1 Pa
logarithmically at 10 pts/decade with 10 s equilibration and 10 s measurement
at each point up to the fracture stress (3 kPa to 10 kPa), ensuring reversibility in
separate tests. For the shear-thinning fluid, rate-controlled measurements were
made in a smooth cone-plate geometry (angle, 𝛼 = 1◦ angle; 𝑅 = 20 mm)
with ¤𝛾 = Ω/sin(𝛼) and 𝜎 = 3T/2𝜋𝑅3, Fig. 5A (orange circles). Shear
rates were applied at 5 pts/decade from ¤𝛾 = 0.01 s−1 to inertial ejection,
¤𝛾 = 4000 s−1. For glycerol (99 wt%, Fisher Scientific), measurements were
made at 10 pts/decade from 1 s−1 to 1000 s−1, 5 s equilibration and 10 s
measurement.

Viscosities are shown relative to Newtonian glycerol (Fig. 5A grey
triangles, 𝜂 = 1.24 Pa s). Hydrophilic silica initially weakly shear thins,
before reaching a critical rate, ¤𝛾𝑐 ≃ 100 s−1, where further stress does not
increase the rate (discontinuous shear thickening (36)). This is consistent
with previous results (37), with the onset of thickening occurring when the
stabilising force, attributed to the absorption of PEG onto the silica surface,
is overcome and the particles enter frictional contact (38). Compared to
monodisperse spheres, DST occurs at a low volume fraction, ≈ 11%, which
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may be attributed to the fractal-like nature of the particles with additional
rolling constraints (39, 40).

Hydrophobic silane surface modification creates a strongly shear-thinning
material (41), Fig. 5A (orange circles), similar to removing adsorbed
surfactants (42). At low ¤𝛾 slip is observed (43), above this shear thinning
with 𝑛 ≈ 0.4 (dashed line, 𝐾 = 38 Pa s0.4) occurs up to sample fracture.
Around ¤𝛾 = 100 s−1, 𝜂 for all fluids are comparable, at the range of ¤𝛾 for
low-velocity impact testing. The three fluids, with comparable absolute 𝜂
but different ¤𝛾 dependence, allow isolation of the role of fluid rheology.

Our quasi-2D controlled-velocity impact apparatus is based on a
universal testing machine (Lloyd Instruments LS5, AMETEK). The force-
displacement response (20 or 100 N load cell, 1 kHz sampling) is measured
with 𝑣 = 0.5 mm min−1 to 200 mm min−1. Combined with a dark-field
circular polariscope (FL200, G.U.N.T. Gerätebau GmbH) and a photo-elastic
base, qualitative pressure measurements can be made.

Our top flexible plate, Fig. 4A, was 25 mm × 75 mm × 0.3 mm glass. The
base was a 10 mm-thick piece of cut silicone elastomer [Sylgard 184, Dow
Chemical Company, 5:1 cross-linker ratio, degassed and cured at 25 °C for
48 h, 𝐸 = 1.5 MPa (44)]. The silicone becomes birefringent under applied
loads, generating photo-elastic contrast as the polymer chains stretch and
align with strain (45). The constraining panels were sealed with silicone oil
(10,000 cSt, Sigma Aldrich). For non-Newtonian fluid force-displacement
tests, glass was on top of the base (compliance, 𝑘 = 80 N m−1, ℎ𝑖 = 0.76 mm);
otherwise 𝑘 = 50 N mm−1, ℎ𝑖 = 0.7 mm.

For force-displacement measurements, the initial gap, ℎ𝑖 , and zero
displacement, Δ𝑥 = 0, were set with no fluid. After loading the fluid,
the laminate was allowed to come to equilibrium, 𝐹 = 0 and Δ𝑥 = 0. The
impactor was then moved down 0.8 mm at a fixed speed, 𝑣, recording𝐹 (𝑡 ) and
Δ𝑥 (𝑡 ) from which 𝐹 (Δ𝑥 ) was reconstructed. The gap, ℎ0 = ℎ𝑖 − Δ𝑥 +𝐹/𝑘.

To infer the fluid pressure, we used a polariscope to probe stress in the
base, giving finer spatial resolution than transducer arrays (46, 47). Stress-
induced intensity patterns in the PDMS, 𝐼 (𝑥, 𝑦, 𝑡 ) , were recorded using
a camera (Nikon Z6, 3840 × 2160 30 Hz, 8-bit grey-scale). Instead of
precisely quantifying the stress (48), we sought to establish the extent of
any high-pressure region. A narrow region at the top of the base layer is
isolated in recording, 700 × 10 px2, Fig. 4a (red outline). The change in
intensity from the quiescent state at the start of recorded movies, Δ𝐼 (𝑥, 𝑦, 𝑡 ) ,
is averaged vertically, Δ𝐼 (𝑦, 𝑡 ) , and smoothed on short length scales using a
Savitzky-Golay filter. The intensity is normalised to saturation (ISO 1200
and shutter speed 1/125).

Data availability. Data is available in Edinburgh DataShare at https://doi.org/
10.7488/ds/7556.
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