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Abstract

Coreference resolution aims to identify words and
phrases which refer to same entity in a text, a core task
in natural language processing. In this paper, we extend
this task to resolving coreferences in long-form narrations
of visual scenes. First we introduce a new dataset with an-
notated coreference chains and their bounding boxes, as
most existing image-text datasets only contain short sen-
tences without coreferring expressions or labeled chains.
We propose a new technique that learns to identify coref-
erence chains using weak supervision, only from image-
text pairs and a regularization using prior linguistic knowl-
edge. Our model yields large performance gains over sev-
eral strong baselines in resolving coreferences. We also
show that coreference resolution helps improving ground-
ing narratives in images.

1. Introduction
Consider the image paired with the long-form descrip-

tion in Figure 1, an example from the Localized Narra-
tives [48]. Can you tell whether the woman who is wear-
ing spectacles refers to a person or another woman in
the text? We are remarkably good in identifying referring
expressions (or mentions) and determining which of them
corefer to the same entity, a task that we regularly perform
when we read text or engage in conversation. The text-only
version of this problem is known as coreference resolution
(CR) [29, 30, 57], a core task in natural language process-
ing (NLP) with a large literature. While solving text-only
CR requires a very good understanding of the syntactic and
semantic properties of the language, the visual version of
CR shown in the example also demands understanding of
the visual scene. In our example, a language model has to
figure out that a person can be a woman, has hands, and
correctly match it with her [hand] and the woman, but not
with another woman. However, a language model alone
cannot answer whether the woman refers to a person or the
woman. This can only be disambiguated after visually in-
specting which of the two is wearing spectacles.

In the image we can see there is a person
who is standing and holding cardboard

sheets in her hand and she is  wearing ash
colour jacket and there is another woman
sitting and at the back on the table there are
wine bottles and cardboard boxes and books

and the woman is wearing spectacles.

Figure 1: Coreference resolution from an image and narra-
tion pair. Each highlighted block of text is referred to as
a mention. The mentions in the same color corefer to the
same entity, belong to the same coreference chain.

Text-only CR has been a crucial component for a range
of NLP applications including question answering [28, 14],
sentiment analysis [6, 44], summarization [19, 55] and ma-
chine translation [40, 4, 63]. Most text-only CR methods are
either rule-based [29, 50] using heuristics such as pronoun
match or exact match based on part of speech tagging, or are
learned on large annotated text datasets from domains such
as news text or Wikipedia articles [5, 31, 30, 21]. State-of-
the-art methods [30, 21] fail to resolve coreferences cor-
rectly in image narrations for few reasons. First, CR in
image narrations often require image understanding (see
Fig. 1). Neural networks trained on text datasets [49, 9]
suffer from poor transferability and a significant perfor-
mance drop when applied to image narrations because of
domain shift. Image narrations are unstructured and can
be noisy, unlike the well-edited text used during training
(such as news or Wikipedia). Moreover, standard image-
text datasets [34, 26, 8, 47] only contain short descriptions
with very few or no cases of coreference, thus, are not suit-
able for training text-only CR models.

Some prior work have looked at visual CR for specific
tasks. [51] and [54] link character mentions in TV shows
or movie descriptions to character occurrences in videos.
More recently, the Who’s Waldo dataset [13] links person
names in the caption to their occurrence in the image. How-
ever, these methods rely on a limited set of object categories
and referring expression types (see Table 2 discussed be-
low), require annotated training data and therefore cannot
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be applied to long-form unconstrained image narrations that
include open-world object categories and multiple types
of referring expressions such as pronouns (she), common
nouns (another woman), or proper nouns (Peter).

In this paper, we look at the problem of CR in image nar-
rations, i.e., resolving the coreference of mentions in narra-
tive text that is paired with an image. As the prior bench-
marks in this domain are limited to either a small vocab-
ulary of objects or specific referring expression types, we
introduce a new dataset, Coreferenced Image Narratives ,
CIN which augments the rich long-form narrations in the
existing Localized Narratives dataset [48]. We add corefer-
ence chain annotations and ground each chain by linking it
to a bounding box in the corresponding image.

Manually annotating the whole dataset [48] is expen-
sive, hence these annotations are provided only for evalu-
ation and are not available for training. To cope with this
setting, we propose a weakly supervised CR method that
learns to predict coreference chains from only paired image-
text data. Our key idea is to learn the linking of the men-
tions to image regions in a joint multi-modal embedding
space and use the links to form coreference chains during
training. To this end, we propose a multimodal pipeline
that represents each modality (image regions, text mentions
and also mouse traces, additionally provided by [48]) with a
modality-specific encoder and then exploit the cross-modal
correlations between them to resolve coreference. Finally,
inspired from the rule-based CR [29], we incorporate lin-
guistic rules to our learning formulation in a principled way.
We report extensive experiments on CIN and demonstrate
that our method not only brings significant improvements
in CR but also large gains in weakly supervised narrative
grounding, a form of disambiguation that has been under-
explored in visual grounding1.

To summarize our contributions, we introduce (1) the
new task of resolving coreferences in multimodal long form
textual descriptions (narrations), (2) a new dataset, CIN ,
that enables the evaluation of coreference chains in text and
the localization of bounding boxes in images, which is pro-
vided with multiple baselines and detailed analysis for fu-
ture work, (3) a new method that learns to resolve corefer-
ences while jointly grounding them from weak supervision
and exploiting linguistic knowledge, (4) a rigorous exper-
imental evaluation showing significant improvement over
the prior work not only in CR but also in weakly supervised
grounding of complex phrases in narrative text.

2. Related Work

Text-only CR in NLP has a long history of rule-based and
machine learning-based approaches. Early methods [20,
50] used hand-engineered rules to parse dependency trees,

1Our code and dataset will be made publicly available.

which outperformed all learning-based methods at the time.
Recently, neural network methods [62, 61, 12, 21, 30] have
achieved significant performance gains. The key idea is
to identify all mentions in a document using a parser and
then learn a distribution over all the possible antecedents for
each mention. SpanBERT [21] uses a span-based masked
prediction objective for pre-training and shows improve-
ments on the downstream task of CR. Stolfo et al. [56], on
the other hand, transfer the pretrained representations using
rules for CR. It is worth noting that all these learning-based
approaches either require large pretraining data or training
data annotated with gold standard (ground-truth) corefer-
ence chains, such as OntoNotes [49] or PreCo [9].

Visual CR includes learning to associate people or charac-
ters mentioned in the text with images or videos [51, 54, 13].
Kong et al. [24] exploit CR to relate texts to 3D scenes.
Another direction is to resolve coreferences in visual dia-
log [25] for developing better question-answering systems.
Unlike these works, we focus on learning coreferences from
long unconstrained image narrations using weak supervi-
sion. A related group of work [64, 66, 33, 16] aims to
ground phrases in image parts. In visual phrase ground-
ing [64, 35, 10, 65, 16, 22, 32], the main objective is to lo-
calize a single image region given a textual query. These
models are trained on visual grounding datasets such as
ReferItGame [23], Flickr30K Entities [47], or RefCOCO
[65]. However, due to short captions, the grounding of text
boils down to mostly salient objects in images. In contrast,
grounding narrations which aims at capturing all image re-
gions is significantly more challenging and cannot be effec-
tively solved with those prior methods.

Weakly supervised grounding, learning to ground from
image-text pairs only, has recently been used in [37, 39, 38,
36, 59] for referring expression grounding. These meth-
ods use phrase reconstruction from visual region features
as a training signal. Other methods [60, 18, 15] use con-
trastive learning by creating many negative queries (based
on word replacement) or by mining negative image regions
for a given query. Wang et al. [60] is a strong method in
this domain, hence we establish it as a baseline in our ex-
periments. Liu et al. [39] parses sentences to scene graphs
for capturing visual relation between mentions to improve
phrase grounding. However, this cannot be directly applied
to our task, as parsing scene graphs from narrations is typ-
ically very noisy and incomplete. Wang et al. [59] aims
to learn/predict object class labels from the object detec-
tor during training and inference respectively. Due to the
open-vocabulary setting in our dataset, we directly rely on
predictions from the detector and use them as features to
avoid the complexity of open-vocabulary object detection.
Furthermore, as we show in the experiments that grounding
is useful to anchor mentions but it is not sufficient to resolve
coreferences without prior linguistic knowledge. Thus, our
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method also employs contrastive learning but for learning
CR from weak supervision.

3. Coreferenced Image Narratives
Our CIN dataset contains 1880 images from the Local-

ized Narratives dataset [48] that come with long-form text
descriptions (narrations) and mouse traces. These images
are originally a subset of the test and validation set of the
Flickr30k dataset [47]. We annotated this subset with coref-
erence chains and bounding boxes in the image that are
linked with the textual coreference chains, and use them
only for validation and testing. Note that we also include
singletons (i.e., coreference chains of length one). Fig. 1
shows an example image from CIN .
Annotation procedure. The annotation involved three
steps: (1) marking the mentions (sequences of words)
that refer to a localized region in the image, (2) identify-
ing coreference chains for the marked mentions, including
(a) pronominal words such as him or who that are used
to refer to other mentions, (b) mentions that refer to the
same entity (e.g., a lady and that person), and (c) men-
tions that do not have any links (e.g. another woman),
(3) drawing bounding boxes in the image for the corefer-
ence chains/mentions identified in steps (1) and (2). We
created an annotation interface based on LabelStudio [1],
an HTML-based tool that allows us to combine text, image,
and bounding box annotation. More details are provided in
the supplementary material.

Dataset #noun phrases #pronouns #coreference chains #bounding boxes

Flickr30k Entities [47] 15,252 7 7 17,234
RefCOCO [65] 10,668 7 7 10,668

CIN (Ours) 19,587 1,659 3,310 21,246

Table 1: Statistics of relevant noun phrases, pronouns,
coreference chains and bounding boxes on Flickr30k En-
tities [47], RefCOCO [65] and CIN .

Figure 2: Numbers of mentions as part of the coreference
chain for pronouns them, he, it, who, she in CIN .

Dataset statistics. We split the 1880 images in the dataset
into a test and validation set using the pre-defined split of
[47]. More specifically, we have 1000 images in the test set
and 880 images in the validation set. It is important to note

Dataset Modality Domain Object categories Referring expression types

NYU-RGBD v2 [24] Images Indoor home scenes Household objects Common nouns
SIMMC 2.0 [17] Images Shopping Clothing Common nouns
MPII-MD [54] Videos Movies People Proper names, Pronouns

Who’s Waldo [13] Images WikiMedia People Proper names
CIN (Ours) Images Open-world General objects Proper names, Common nouns and Pronouns

Table 2: Comparison to existing datasets.

that the narrations have a lot of first person pronouns such
as I can see . . . . We specifically instruct the annotators to
exclude such mentions that are not a part of any coreference
chain and at the same time cannot be grounded on the im-
age. We elaborate more on the filtering process for these
mentions in the supplementary material.

Overall, the dataset has 19,587 noun phrase mentions,
1,659 pronouns, 3,310 coreference chains and 21,246
bounding boxes. In Table 1, we compare the statistics of
CIN with other related datasets. In Fig. 2, we show the dis-
tribution over the frequency and types of mention such as a
metal fence or few people that are referred to using a partic-
ular pronoun (them, he, it, who and she). There is a huge
diversity in (1) the categories of the mentions and (2) how
many times they form a part of the coreference chain.
Comparison to existing CR datasets. In Table 2, we com-
pare our proposed CIN dataset to other CR datasets. This
comparison shows that most of the other datasets are either
from a restricted domain (shopping, indoor scenes, etc.),
have limited mention types referring to either only people
or limited object categories, or do not cover all possible re-
ferring expression types such as common nouns (a person),
proper nouns (Peter) and pronouns (he).

4. Method
4.1. Text-only CR

Given a sentence containing a set of mentions (i.e., refer-
ential words or phrases), the task of CR is to identify which
mentions refer to the same entity. This is fundamentally a
clustering problem [57]. In this work, we use an off-the-
shelf NLP parser [2] to obtain the mentions. Formally, let
S = {m1,m2, . . . ,m|S|} denote a sentence with |S| men-
tions, where each mention m contains a sequence of words,
{w1, w2, . . . , w|m|}. We assign a label yij to each mention
pair (mi,mj), which is set to 1 when the pair refers to the
same entity, and to −1 otherwise. We wish to learn a com-
patibility function, a deep network f that scores high if a
pair refers to the same entity, and low otherwise.

Given a training set D that contains |D| sentences with
their corresponding labels, one can learn f by optimizing a
binary cross-entropy loss:

min
f

∑
S∈D

|S|−1∑
i=0

|S|∑
j=i+1

log(yij(σ(f(mi,mj)))−
1

2
) +

1

2
)

(1)
where σ is the sigmoid function. Note that prior methods
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[29, 30, 21] require large labeled datasets for training and
are limited to only a single modality, text. These methods
typically also combine the learning with fixed rules based
on recency and grammatical principles [29].

4.2. CR in image narrations

Problem definition. Next we extend the text-only CR to
image-text data in the absence of coreference labels. Let
(I, S) denote an image-text pair where S describes an im-
age I as illustrated in Figure 1, and assume that coreference
labels for mention pairs are not present. As in Sec. 4.1, our
goal is to identify the mentions that refer to the same entity
in an image-text pair. Each image is defined by |I| regions
I = {r1, r2, . . . , r|I|} which are obtained by running the
pretrained object detector (trained on the COCO [34] and
Visual Genome [26] dataset) in [53] on the image. Each re-
gion r is described by its bounding box coordinates b, the
text embedding for the detected object category o, and the
visual features v. More details are provided in Section 4.3.

Weak supervision. We use ‘weak supervision’ to refer
to a setting where no coreference label for mention pairs
and no grounding of mentions (i.e., bounding boxes are not
linked to phrases in the text) are available. Moreover, in
contrast to the output space of the object detector (a re-
stricted set of object categories), the sentences describing
our images come from unconstrained vocabulary. Hence,
an object instance in a sentence can be referred to with a
synonym or may not even be present in the object detector
vocabulary [34, 27]. Finally, the object detector can only
output category-level labels and hence cannot localize ob-
ject instances based on the more specific instance-level de-
scriptions provided by the sentences. For instance in Fig-
ure 1, a person and the woman both are labeled as person
by the object detector.

In addition to image and text, we explore the use of
an auxiliary modality, mouse trace segments provided in
[48]. Each mouse trace includes a sequence of 2D points
over time that relate to a region in the image when de-
scribing the scene. As the text in Localized Narratives is
transcription of the speech of the annotators, the mouse
traces are synced with spoken words, which we denote as
T = {t1, t2, . . . , t|T |} where |T | = |S|. These features are
stacked with textual features (see Section 4.3).

In the weakly supervised setting, the key challenge is to
replace the coreference label supervision with an alternative
one. We hypothesize that each mention in a coreferring pair
corresponds to (approximately) the same image region, and
it is possible to learn a joint image-text space which is suf-
ficiently rich to capture such correlations. Concretely, let
g(m, r) denote an auxiliary function that is instantiated as
a deep network and outputs a score for the mention m be-
ing located at region r in image I . This grounding score for

each mention can be converted into probability values by
normalizing them over all regions in the image:

ḡ(m, r) =
exp (g(m, r))∑

r′∈I exp (g(m, r′))
. (2)

The compatibility function f can be defined as a sum prod-
uct of a pair’s grounding probabilities over all regions:

f(m,m′) =
∑
r∈I

ḡ(m, r)ḡ(m′, r). (3)

In words, mention pairs with similar region correlations
yield bigger compatibility scores and are hence more likely
to corefer to each other. The key idea is that we employ
the grounding for mentions as anchors to relate coreferring
mentions (e.g., a person and the woman). At test time, we
compute f(m,m′) for all the pairs and threshold them to
predict their pairwise coreference labels.

As no ground-truth bounding box for each mention is
available for learning the grounding g, we pose grounding
as a weakly supervised localization task as in [18, 60]. To
this end, we impute the missing bounding boxes by taking
the highest scoring region for a given mention m at each
training iteration:

rm = arg max
r∈I

g(m, r). (4)

Then we use rm as the pseudo-truth to learn g as following:

min
g

∑
(I,S)∈D

∑
m∈S
− log

( exp(g(m, rm))∑
I′∈D\I exp(g(m, r′m))

)
(5)

where r′m = arg maxr∈I′ g(m, r) is the highest scoring re-
gion in image I ′ for mention m. For each mention, we treat
the highest scoring region in the original image as positive
and other highest scoring regions across different images
as negatives, and optimize g for discriminating between the
two. However, as the denominator requires computing g
over all training samples at each iteration, which is not com-
putationally feasible, we instead sample the negatives only
from the randomly sampled minibatch.

Linguistic constraints. Learning the associations be-
tween textual and visual features helps with disambiguat-
ing coreferring mentions, especially when mentions contain
visually salient and discriminative features. However, re-
solving coreferences when it comes to pronouns (e.g., her,
their) or ambiguous phrases (e.g., one man or another man)
remains challenging. To address such cases, we propose
to incorporate a regularizer into the compatibility function
f(m,m′) based on various linguistic priors. Concretely, we
construct a look-up table for each mention pair q(m,m′)
based on the following set of rules [29]:
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Front this person[1] is lying on the
floor and raising his[1] leg[1] to top
and above his[2] leg[2] there is a
ball. Far these persons are
standing. This person is ...

Image

Text description

Object  
detector 

Text encoder

Image encoder

Cross 
attention

Trace encoder

image regions 

this person[1], the floor , ..., building  

Mouse traces

Joint encoder 
mentions

this person[1]
his[1], 
his[2],

this person[2]
 

Coreference chains

door

NLP 
 parser 

Temporal 
parser 

traces per mention

......

his leg[1]
his leg[2]

a ball 
 

these persons 

... 

glass

....

person

Figure 3: Overview of our pipeline. Our model encodes the image regions obtained from an object detector using the image
encoder. We parse text mentions and mouse traces from the sentence description, which are then encoded using a text and
trace encoder respectively. Finally, a joint text-trace encoder learns a joint embedding for text and traces. A cross-attention
module attends to the words given an image region and then we compute the joint probability of the paired mentions, thus
forming coreference chains.

(a) Exact String Match. Two mentions corefer if they ex-
actly match and are noun phrases (not pronouns).
(b) Pronoun Resolution. Based on the part-of-speech tags
for the mentions, we set q(m,m′) to 1 ifm is a pronoun and
m′ is the antecedent noun that occurs before the pronoun.
(c) Distance between mentions. Smaller distance is more
likely to indicate coreference since mentions to occur close
together if they refer to the same entity.
(d) Last word match. In certain cases, the entire phrases
might not match but only the last word of the phrases.
(e) Overlap between mentions. If two mentions have one
or more overlapping words, then they are likely to corefer.

Finally, we include q(m,m′) as a regularizer in Eq. (5):

min
g

∑
(I,S)∈D

∑
m∈S

(
− log

( exp(g(m, rm))∑
I′∈D\I exp(g(m, r′m))

)
+λ

∑
m′∈S

||f(m,m′)− q(m,m′)||2F
) (6)

where λ is a scalar weight for the Frobenius norm term.
Note that f is a function of g (see Eq. (3)). We show in
Section 6 that incorporating this term results in steady and
significant improvements in CR performance.

4.3. Network modules

Our model (illustrated in Figure 3) consists of an image
encoder ei and text encoder et to extract visual and linguis-
tic information respectively, and a cross-attention module a
for their fusion.
Image encoder ei takes in a dr-dimensional vector for
each region r that consists of a vector consisting of bound-

ing box coordinates b ∈ R4, text embedding for the de-
tected object category o ∈ Rdo and visual features v ∈
Rdv . The regions are extracted from a pretrained object de-
tector [53] for the given image I . The image encoder ap-
plies a nonlinear transformation to this vector to obtain a
d-dimensional embedding for each region r.
Text encoder et takes in the multiple mentions from a
parsed multi-sentence image description S produced by an
NLP parser [2] and outputs a d-dimensional embedding for
each word in the parsed mentions. Note that the parser does
not only extract nouns but also pronouns as mentions.
Mouse trace encoder em takes in the mouse traces for
each mention parsed above after it is preprocessed into a 5D
vector of coordinates and area, (xmin, xmax, ymin, ymax, area)
[45] and outputs a dm-dimensional embedding. In [7, 48],
mouse trace embeddings have been exploited for image
retrieval, however, we use them to resolve coreferences.
We concatenate each mention embedding extracted from et
with the mouse trace encoding em, denoted as etm and ap-
ply additional nonlinear transformations (Joint encoder in
Fig. 3) before feeding into the cross-attention module.
Cross-attention module a takes in the joint text-trace
embeddings for all the words in each mention and returns
a d-dimensional vector for each m by taking a weighted
average of them based on their correlations with the im-
age regions. Concretely, in this module, we first compute
the correlation between each word w (or joint word-mouse
trace) and all regions, take the highest correlation over the
regions through an auxiliary function ā:

ā(w) = max
r∈I

( exp(etm(w) · ei(r))∑
r′∈I exp(etm(w) · ei(r′))

)
(7)
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where · is dot product. The transformation can be inter-
preted as probability of word w being present in image I .
Then we compute a weighted average of the word embed-
dings for each mention m:

a(m) =
∑
w∈m

ā(w)etm(w). (8)

Similarly, a(m) can be seen as probability of mention m
being present in image I .
Scoring function g(m, r) can be written as a dot prod-
uct between the output of the attention module and region
embeddings:

g(m, r) = a(m) · ei(r). (9)

While taking a dot product between the two embeddings
seemingly ignores the correlation between text and image
data, the region embedding ei(r) encodes the semantic in-
formation about the detected object category in addition to
other visual features and hence results in a high score only
when the mention and region are semantically close. Fur-
ther implementation details about the modules can be found
in Section 5 and the supplementary.

5. Experiments
We train our models on the Flickr30k subset of the

Localized Narratives [48] which consists of 30k image-
narration pairs, and evaluate on the proposed CIN dataset,
which contains 1000 and 800 pairs for test and validation
respectively.
Evaluation metrics. To evaluate the CR performance,
we use the standard link-based metrics MUC [58] and
BLANC [52]:2

(a) MUC F-measure counts the coreference links (pairs of
mentions) common to the predicted chainR and the ground-
truth chain K by computing MUC-R (recall) and MUC-P
(precision).
(b) BLANC measures the precision (BLANC-P) and recall
(BLANC-R) between the ground-truth and predicted coref-
erence links and also between non-coreferent links.
(c) Narrative grounding. For evaluating narrative ground-
ing in images, we consider a prediction to be correct if
the IoU (Intersection over Union) between the predicted
bounding box and the ground truth box is larger than 0.5
[60, 18]. We report percentage accuracy for evaluating nar-
rative grounding for both noun phrases and pronouns. Fur-
ther details about the metrics is in supplementary material.
Inputs and modules. For the image modeling, we extract
bounding box regions, visual features and object class la-
bels using the Faster-RCNN object detector [53]. For the
text modeling, we use Glove embeddings [46] to encode

2Refer to [30, 43] for a more detailed discussion of CR metrics.

the object class labels and the mentions from the textual
branch. For the mouse traces, we follow [48] and extract
the trace for each word in the sentence and then convert it
into bounding box coordinates for the initial representation.
The model discussed in Sec. 4 referred to as ‘Ours’ in Sec. 6
uses the transformer backbone for the image, text and trace
encoders (more details in supplementary).

Baselines. We consider the following baselines to fairly
compare and evaluate our proposed method:
(a) Text-only CR: For all these methods, we directly evalu-
ate the coreference chains using the narration only without
the image. (1) Rule-based [29]: In this method, a multi-
sieve rule based system is used to find mentions in the sen-
tence and the coreference chains, (2) Neural-Coref [30]:
Instead of rules, this method is trained end-to-end using a
neural network on a large corpus of wikipedia data to detect
mentions and coreferences, and (3) Similarity-based: We
compute cosine similarity between mentions using Glove
word features and threshold them to get coreference chains.
(b) Visual grounding: The baselines discussed below are
not trained for CR and hence we post-process their out-
put in order to evaluate for CR. (1) GLIP [32]: GLIP is
trained on large-scale image-text paired data with bounding
box annotations and shows improvement on object detec-
tion and visual phrase grounding. To evaluate it for CR,
we predict bounding boxes for the mentions in the narra-
tions from GLIP. If the IoU overlap between the mentions
is greater than 0.7, then we consider them to form a coref-
erence chain, (2) MAF† [60]: MAF is a weakly super-
vised phrase grounding method, originally trained on the
Flickr30k-Entities [47]. We train this model on narrations
data and evaluate CR by computing Eq. (3). (3) MAF++:
We retrain the MAF† model on the narrations with our reg-
ularization term. Architecturally our method differs from
the MAF† in two aspects: i) we employ a transformer to en-
code visual and text features unlike the MLP in theirs and
ii) we attend to the mouse traces when present (not present
in MAF) and word features jointly whereas they directly
compute the similarity function.

6. Results

Coreference resolution. In Table 3, we report CR perfor-
mance of the baselines and our method. Our method sig-
nificantly outperforms all the text-only and the grounding
baselines on all the metrics. The text-only CR baselines in
the first three rows fail to effectively resolve conferences
from narrations. It is important to note that relatively high
number in BLANC scores (compared to MUC) occure be-
cause this measures also counts non-coreferent links (i.e.
mentions that are not paired with anything), whereas MUC
only measures pairs that are resolved.

The rule-based method [29] uses exact match noun
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Method Text Image MT MUC-R MUC-P MUC-F1 BLANC-R BLANC-P BLANC-F1

Rule-Based [29] 3 7 7 5.6 10.13 6.4 3.3 4.1 4.9
Neural-Coref [30] 3 7 7 0.11 0.17 0.13 1.59 36.99 3.23
Similarity-based 3 7 7 7.07 14.43 9.06 37.48 65.17 45.98

GLIP [32] 3 3 7 0.13 0.12 0.12 21.71 61.40 31.66
MAF† [60] 3 3 7 25.86 10.18 13.21 37.68 61.14 38.17

MAF++ 3 3 7 19.07 15.62 15.65 41.25 65.04 47.21

Ours
3 3 7 22.07 17.10 17.58 42.72 65.92 48.29
3 3 3 24.87 18.34 19.19 43.81 66.35 48.53

Table 3: CR performance on CIN dataset. MT denotes mouse trace and † denotes our trained model.

phrases, pronoun-noun matches and the distance between
mentions as hard constraints. It achieves low scores on all
metrics and especially on BLANC. The reason for this is the
limitation of the rule-based heuristics: For instance, in long
narrations, if a pronoun such as she occurs farther to its ref-
erent (e.g. the woman) than the predefined distance, it will
not form a coreference chain. In contrast, as we apply rules
as a soft constraint, we are able to make more flexible deci-
sions in our method. Neural-Coref [30], a deep network on
a pre-trained large-corpus of labeled CR data, obtains low
scores on CIN for both MUC and BLANC. This is due to
the large domain gap between the source and target data as
well as the ambiguity in resolving the mentions without the
visual cues. Similar observations are made when pretrained
CR methods are applied to other domains such as biomedi-
cal text [42] or social media [3]. Lastly, the similarity-based
baseline performs poorly, as the utilized off-the-shelf word
vectors are not trained to cluster corefering mentions. The
relatively high scores on BLANC is due to the frequent non-
coreferents in our narratives. This kind of approach clusters
words with similar meaning together e.g. woman and an-
other woman (both representing female entities) or he and
she (both pronouns).

Next we compare our method to the visual grounding
baselines that use both image and text input. Our method
also outperform these baselines: Though GLIP is pretrained
on large-scale data with ground-truth boxes for each object
in captions, these captions are usually short and do not con-
tain multiple mentions of entities, unlike in our data. Hence
GLIP acts more like an object detector, fails to link core-
ferring pairs (low MUC scores) and merely identifies sin-
gletons (higher BLANC scores). While it is nontrivial to
finetune GLIP on our data without groundtruth boxes, we
finetuned MAF on our data, as its training does not require
groundtruth boxes; we denote this as MAF†. This is the
strongest baseline on our task, as training it on narrations
including the pronouns reduces the domain gap and enables
it to resolve coreferences well. However, this method ob-
tains low precision by incorrectly linking visually similar
mentions (that do not belong together) such as trees, plant,

flowers. When the training is regularized with the linguis-
tic priors from our method, denoted as MAF++, its perfor-
mance significantly improves on both MUC and BLANC.
The constraint helps to push away the negative mentions
(trees, plant, etc.) and encourage the model to learn unique
embeddings for them. Due to the self-attention in the
transformer architectures, Ours without mouse traces (MT)
achieves better performance than MAF++, a simple MLP
baseline. The performance difference between our method
without using mouse-traces and MAF++ can be explained
by the better architecture described previously. Finally, our
method achieves the best performance gains in CR thanks
to the mouse traces and improved architecture over MAF.

Ablation on mouse traces In Table 3, we also analyze the
contribution of modeling mouse traces (second last row).
Adding the mouse traces improves performance on CR
across all metrics. We hypothesize that the mouse traces
provide a strong discriminative location prior to the textual
mentions, which helps the model to learn a better compat-
ibility score. To visualize qualitatively, consider the exam-
ple in Figure 3, the same mention this person points to two
different visual regions – one with the person holding the
ball and the other person standing next to the door. In such
cases, mouse traces provide a strong signal for disambigua-
tion. But in many cases, mouse traces are noisy and can
link mentions that are very close to each other in the image,
referring to two different regions. In the above example,
mouse traces for these persons and this person have a sig-
nificant overlap and hence act as a noisy prior. Therefore,
without the visual/image region features, it is very challeng-
ing to address the problem with mouse traces alone.

Narrative grounding Not only does our method show
performance gains on CR but also outperform the base-
lines on another challenging task of narrative grounding.
Table 4 compares results from our methods and baselines.
We directly compare with the weakly supervised method
for a fair comparison. MAF† [60] is originally evaluated
on the Flickr30k-Entities [47] dataset where the textual de-
scriptions are significantly shorter (i.e. single sentence) than
the image narrations in our dataset. The performance of
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in the middle of the picture,
we see a person who is
wearing the costumes is
walking on the road[1]. 

on the left side, we see
the people are
walking. 

at the bottom, we see
the road[2] and we see
an object which looks
like a water sprinkler.

which

in front of them, we see
a baby trolley and a
baby is sitting in the
baby trolley.

a baby

a
person,

who

the road[1],
the road[2]

an object, 
a water sprinkler

the people 
them

a
person,

who

the road[1],
the road[2]

an object

a water
sprinkler

the people
Ours

(w/o Reg)

Ours a baby trolley,
a baby,

the baby trolley

the baby trolley

a baby trolley,
a baby

Predicted coreference chains

Figure 4: Qualitative results of predictions on the CIN dataset. The colored mentions in the text indicate the ground truth
coreference chains. The solid and dotted bounding boxes on the image denote the correct and incorrect grounding respectively
for our proposed method. We also show the predicted coreference chains for our final method with and without regularizer.

Method Reg Noun Phrases Pronouns Overall

MAF† [60] 7 21.60 18.31 20.91
MAF++ 3 25.58 22.36 24.91

Ours
7 27.62 23.46 26.75
3 30.27 25.96 29.36

Table 4: Grounding accuracy (%) for noun phrases and pro-
nouns and the overall accuracy on the CIN dataset.

MAF on our dataset is significantly lower (21% vs 61% on
Flickr30k-Entities), which indicates that narrative ground-
ing is a challenge in itself and cannot be addressed off-the-
shelf by phrase grounding methods. When trained with the
regularizer, the localization performance improves for both
nouns and pronouns with our method and MAF++. With the
help of regularization, the model learns to attend to differ-
ent regions of the image for semantically similar mentions
as they might be two separate entities (e.g. five people and
the people in Fig. 4).

CR Grounding
Attention Type MUC-F1 BLANC-F1 Acc(%)

Average 17.02 48.26 28.83
Cross attention 19.19 48.53 29.36

Table 5: Our method with/without cross attention.

Further ablations. Table 5 compares the performance of
our final method under two settings: (1) directly averag-
ing the word features or (2) attending over the words by
using the image as the query as discussed in Sec. 4. Both
the narrative grounding accuracy and the coreference eval-
uation get a boost in performance for visually aware word
features. More often than not, the word phrases are rela-
tively short (e.g., the machine) and hence the model does
not always learn to disambiguate better with attention for
the grounding. On the other hand, this technique is espe-
cially useful for CR because the flow of visual information
to the word features acts as a prior to cluster mentions that
refer to the same region but with are referred to with dif-
ferent mentions/entities in the text (e.g. the machine and
an equipment). We provide detailed ablations in the supple-
mentary material.

Qualitative results Figure 4 qualitatively analyzes CR
and narrative grounding. We visualize the narrative ground-
ing results from our proposed method on the images. The
model correctly resolves and localizes phrases such as a
person, who, the people, them and a baby trolley, the baby
trolley. Whereas, the model fails to ground and chain the in-
stance a baby. It is interesting to note that our model pairs
an object and water sprinkler, thereby resolving ambiguity
in what the object might refer to. But it fails to add which
to this coreference chain. Moreover, without the language
regularizer, our method fails to link them to the people. It is
very hard to learn coreferences for these pronouns as they
come with a weak language prior and hence are difficult for
the model to disambiguate. Our model (without regulariza-
tion) misses the referring expression of the baby trolley to
refer to the instance of the trolley before. With the help
of rules (e.g. last token match), we can resolve these pairs
more often than not. Hence, we clearly show the challeng-
ing problem of coreferences we are dealing with and indi-
cate the great potential for developing models with strong
contextual reasoning.

7. Conclusion

We introduced a novel task of resolving coreferences
in image narrations, clustering mention pairs referring to
the same entity. For benchmarking and enabling the
progress, we introduce a dataset – CIN – that contains im-
ages with narrations annotated with coreference chains and
their grounding in the images. We formulate the problem
of learning CR by using weak supervision from image-
text pairs to disambiguate coreference chains and linguis-
tic priors to avoid learning grammatically wrong chains.
We demonstrate strong experimental results in multiple set-
tings. In the future, we plan to address the noise induced by
the language rules during learning and also reduce the errors
coming from the mouse traces. We hope that our proposed
task definition, dataset and the weakly supervised method
will advance the research in multi-modal understanding.
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Appendix

8. Annotation Details
Localized Narratives dataset. Tuset et al. [48] proposed
the Localized Narratives dataset, new form of multimodal
image annotations connecting vision and langauge. In par-
ticular, the annotators describe an image with their voice
while simultaneously hovering their mouse over the region
they are describing. Hence, each image is described with a
natural language description attending to different regions
of the image. In addition to textual descriptions (obtained
using speech to text conversion), they additionally provide
mouse traces for the words.

The Localized Narratives dataset is built on top of COCO
[34], Flickr30k [47], ADE20k [67] and Open Images [27].
The statistics of the individual datasets are shown in Table 6.

Localized Narratives Subsets [48] #images #captions #words/capt.
COCO 123,287 142,845 41.8

Flickr30k 31,783 32,578 57.1
ADE20k 22,210 22,529 43.0

Open Images 671,469 675,155 34.2

Table 6: Statistics of Localized Narratives for COCO,
Flickr30k, ADE20k, and Open Images.

Annotation tool and analysis. We develop an HTML
based interface on the Label Studio annotation tool [1]. Fig-
ure 5 shows the annotation interface from Label Studio. We
hired 6 high quality annotators (all from computer science
background) for an average of 54 hours of annotation time.
The annotators were trained with the exact description of
the task and given a pilot study before proceeding with the
complete annotations. The pilot study was useful to cor-
rect and retrain annotators if needed. As shown in Figure 5,
the annotators had to select a mention in the caption with a
given label (C1, C2, etc.) in Step 1 and draw a bounding
box in the image for the selected mention in Step 2 (with
the same label).

For Step 1, if the mention is coreferring then it is se-
lected with the same label to define coreference chains. It
is important to note that the captions are pre-marked with
noun phrases parsed from [2]. The annotators are instructed
to correct the phrases if they are wrong (e.g. for a men-
tion glass windows, the parser parses glass and windows
as two different mentions rather than belonging to the same
label/cluster) and remove the phrases that do not correspond
to region in the image.

In Step 2, if there are plural mentions such as two men,
we ask the annotators to draw two separate bounding boxes
for this. In the case of mentions such as several people if the
people are less than five, they are instructed to draw separate
bounding boxes otherwise a group bounding box (covering
all the people).

Given the challenging nature of the task, we doubly
annotate 30 images with coreference chains and bound-
ing boxes to compute the inter-annotator agreement. More
specifically, for the coreference chain we compute Exact
Match which denotes whether the coreference chains an-
notated by the two annotators are the same. We get an
exact match of 79.9% in the coreference chains, which is
a high agreement given the complexity of the task. For
the bounding box localization, we compute the Intersection
over Union (IoU) to compute the overlap between the two
annotations. It is considered to be correct/matching if the
IoU is above 0.6. We achieve bounding box accuracy of
81% on this subset of images. This analysis shows good
agreement between the annotators given the subjective na-
ture and complexity of the task.

Coreferenced Image Narratives dataset. In total, we
annotate all the 1000 test images and 880 validation images
(out of 1000) in the Flickr30k dataset. The text descriptions
from the Localized Narratives dataset are very noisy with a
lot of words/sequence of words. We manually filter phrases
such as - in this image, in the front, in the bakcground, we
can see, i can see, in this picture. If there are some other
mentions that are pre-marked and not filtered, we ask the
annotators explicitly to filter them out. By doing this, we
make sure that the dataset is clear of any unnecessary and
noisy mentions.

All the words that are marked as mentions and are not
noun phrases (as detected by the part of speech tagger [2])
are considered as pronouns e.g. them, they, their, this, that,
which, those, it, who, he, she, her, him, its.

Statistics for the Coreferenced Image Narratives . In
Figure 6, we show the statistics for the frequency of pro-
nouns in the dataset. Few pronouns (e.g. he, it, them) are
more frequent than the others. Overall, the occurence of
pronouns is frequent to conduct a fair evaluation of the
coreference based models. Similarly in Figure 7, we eval-
uate how many mentions occur in the coreference chains.
Coreference chains with 2 and 3 mentions have a very high
frequency in the dataset. There are few chains that have
longer mentions (e.g. 6 and 7). Hence, we can safely con-
clude that the dataset is a powerful tool to evaluate corefer-
ence chains and learn complex coreferencing and grounding
models. Moreover, the average length of the mentions (ex-
cluding pronouns) is 1.93.

9. Evaluation Metrics

In this section, we discuss in detail the evaluation metrics
used for CR and narrative grounding. For CR, we use the
MUC and the BLANC metrics, which are discussed below.
(a) MUC F-measure. It measures the number of coreference
links (pairs of mentions) common to the predicted R and
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Figure 5: Annotation interface from Label Studio.

CR Grounding

MT Loss Function MUC-R MUC-P MUC-F1 BLANC-R BLANC-P BLANC-F1 Acc (%)

7 7 21.84 12.29 14.09 40.15 62.82 43.69 25.97
3 7 20.19 15.79 16.26 41.91 65.42 47.82 26.75

3 L1 20.76 15.47 16.05 41.73 64.94 47.09 27.65
3 MSE 21.58 16.40 17.00 42.19 65.37 47.60 28.50

7
Frobenius Norm

22.07 17.10 17.58 42.72 65.92 48.29 28.31
3 24.87 18.34 19.19 43.81 66.35 48.53 29.36

Table 7: Ablation study with different regularizer types and without mouse traces.

ground-truth chains K. It involves computing the partitions
with respect to the two chains:

MUC-R =

∑Nk

i=1(|Ki| − |p(Ki)|)∑Nk

i=1(|Ki| − 1)
, (10)

MUC-P =

∑Nr

i=1(|Ri| − |p
′
(Ri)|)∑Nr

i=1(|Ri| − 1)
(11)

where Ki is the ith ground-truth chain and p(Ki) is the
set of partitions created by intersecting Ki with the output
chains; Ri is the ith output chain and p

′
(Ri) is the set of

partitions created by intersecting Ri with the ground-truth

chains; and Nk and Nr are the total number of ground-truth
and output chains, respectively.
(b) BLANC. Let Ck and Cr be the pairs of coreference links
respectively, and Nk and Nr be the set of non-coreference
links in the ground-truth and output respectively. The
BLANC Precision and Recall for coreference links is cal-
culated as follows:
Rc = |Ck∪Cr|

|Ck| and Pc = |Ck∪Cr|
|Cr| , where Rc and Pc are

the recall and precision respectively.
Similarly, recall Rn and precision Pn for non-

coreference links (Nk and Nr) are computed. The overall
precision and recall are:

BLANC-R = (Rc+Rn)
2 and BLANC-P = (Pc+Pn)

2 , re-
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Figure 6: Total number of occurrences of pronouns in
Coreferenced Image Narratives .

Figure 7: Number of coreference chains with 2 or more than
2 mentions in a chain in Coreferenced Image Narratives .

spectively.
For evaluating narrative grounding in images, we con-

sider a prediction to be correct if the IoU (Intersection over
Union) score between the predicted bounding box and the
ground truth box is larger than 0.5 [60, 18]. Following [22],
if there are phrases with multiple ground truth boxes (e.g.
several people), we use the any-box protocol i.e., if any
ground truth bounding box overlaps the predicted bound-
ing box, it is a correct prediction. We report percentage
accuracy for evaluating narrative grounding.

10. Implementation details

Inputs and modules. For the image modeling, we extract
bounding box regions, visual features and object class la-
bels using the Faster-RCNN object detector [53]. We use
Glove embeddings [46] to encode the object class labels

and the mentions from the textual branch. For the mouse
traces, we follow [48] and extract the trace for each word
in the sentence and then convert it into bounding box coor-
dinates for the initial representation. All the modules i.e.,
image encoder, text encoder, trace encoder and joint text-
trace encoder are a stack of two transformer encoder lay-
ers. Each transformer encoder layer includes a multi-head
self attention layer and an FFN. There are two heads in the
multi-head attention layer, and two FC layers followed by
ReLU activation layers in the FFN. The output channel di-
mensions of these two FC layers are 2048 and 1024, respec-
tively. The input to the joint text-trace encoder comes from
the separate text and trace encoder branches. We add a spe-
cial embedding to the learned embeddings following [11]
to distinguish between the two modalities (text and trace) in
the transformer encoder.
Training details. The whole architecture is trained end-to-
end with the AdamW [41] optimizer. We train the trans-
former encoders with the learning rate of 3e-5, batch size
of eight, weight decay of 0.01 and the loss coefficient λ of
0.001. We train the model for 60 epochs and choose the best
performing model based on the validation set.

11. Ablation Study
In Table 7, first we study the impact of training with

just our proposed architecture without the mouse traces and
regularizer. The model suffers a drop in both the CR and
grounding performance. While the model is able to learn
some coreference links but it still produces a lot of false
positives (lower precision scores), compared to the model
trained with mouse traces. Next, we study the effect of
training with different regularizer types. We achieve im-
provement in performance with the Frobenius norm as a
constraint unlike L1 and MSE, as it imposes a stronger con-
straint on the learned coreference matrix. Note that the last
row corresponds to our proposed model (MT+Frobenius
norm).

12. Additional Qualitative Results
In Fig. 8, we show additional qualitative results from our

proposed method. The model correctly chains mentions and
grounds them to the correct entities in the image even for
complex and ambiguous cases. Our model finds corefer-
ences for people (e.g. [a man, his]) or for objects (e.g. [a
barbecue grill, it]). Moreover, it also finds links for plu-
rals such as [two men, them]. There is a huge potential in
learning to disambiguate the mentions in the descriptions
and this work paves the way for future research.
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Description: this image is taken outdoors. at the top of the image there is sky with clouds[1]. in the
background we can see there are many plants[2] and trees[3]. we can see the mesh[4]. there are many
rocks[5]. at the bottom of the image there is the floor[6]. we can see the swimming pool[9] with
water[10] in it[11]. in the middle of the image a kid[12] is standing on the floor[13] and he[14] is
holding a stick[15] in the hand[16] and playing. we can see the balls[17] in the water[20].

Description: in this picture i can see a man[0] doing stunts with a
bicycle[1], he[2] is wearing a cap[3] on his[5] head[4]. i can see
three people[6-8] in the back, they[9-11] are riding bicycles[12]. i
can see the ground[13] at the bottom and the trees[14] in the
background and it[15] looks like grass[16] on the ground[17] in the
back.

Description: on the left side of the image there is a person[0]. in front of that
person[1] there is a barbecue grill[2] with a food item[3] on it[4]. and there are few
people[5] standing. this is an edited image. and there is a blur background. and there
are few other things in the background.

Description: in front of the picture, we see two men[0]. the man[2] on the left side
is wearing the spectacles[3] and he[4] is trying to talk something. the man[5] on the
right side is wearing the goggles[6] and an orange cap[7]. it[8] looks like a man[9] is
holding a wooden stick[10]. behind them[11-12], we see the people[13] and some of
them[14] are wearing the orange color caps[15]. this picture is blurred in the
background.

Predicted Coreference Chains: [a man[0], he[2], his[5]],
     [three people[6-8], they[9-11]]  

Predicted Coreference Chains:  [a kid[12], he[14]],
      [the swimming pool[9], water[10], it[11], the water[20]] ,
      [the floor[6], the floor[13]]

Predicted Coreference Chains:  [the man[2], he[4], a man[9]],
      [two men[0], them[11-12]]  

Predicted Coreference Chains:  [a person[0], that person[1]],
      [a barbecue grill[2], it[4]]

Figure 8: Additional qualitative results for coreference chains. For each image, we show the predicted coreference chain
(mentions more than 2) and the grounding results for the corresponding mentions in the chain. The colored mentions in the
descriptions are the ground-truth coreference chains.
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