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Abstract 
 

The pitch accent system of Mainstream American English (MAE) is one of the most well-studied 
phenomena within the Autosegmental-Metrical (AM) approach to intonation. In this work we 
present an explicit model grounded in dynamical theory that predicts both qualitative 
phonological and quantitative phonetic generalizations about the MAE system. While the 
traditional AM account separates a phonological model of the structure of the accents from the 
F0 algorithm that interprets the phonological specification, we propose a unified dynamical 
model that encompasses both. The proposed model is introduced incrementally, one dynamical 
term at a time, to arrive at the minimal model needed to account for observed empirical 
generalizations, avoiding unnecessary complexity. The quantitative and qualitative properties 
of the MAE system that inform the dynamical model are based on an analysis of a large 
database of productions of the four most well-studied pitch accents of American English: three 
rising accents (H*, L+H*, L*+H) and a low-falling accent (L*). The dynamic model highlights the 
importance of velocity-based measures of F0, not typically invoked in intonational research, as 
key to understanding F0 differences among pitch accent categories. Although the focus of this 
work is on the MAE pitch accent system, suggestions are made for how the unified phonetic-
phonological dynamical framework presented can be further developed to account for other 
pitch-based phenomena in a variety of languages.  
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1 Introduction   
The Autosegmental-Metrical (AM) approach to intonation (Pierrehumbert, 1980; Ladd, 
1996/2008; Beckman et al., 2005; Arvaniti, 2022) has been successful at describing a variety of 
pitch accent systems in the world’s languages (Jun 2005, 2014). The empirical reach of AM is 
especially admirable given the small number of constructs assumed, e.g., the phonological level 
tone features (H and L), the cross-tier alignment operator (*), the linear sequence operator (+), 
and the notions of pitch range or scale. The purpose of this work is to propose a dynamical 
systems theory of pitch accent from which the constructs listed above emerge. Furthermore, 
this theory, as an instance of other dynamical approaches to speech (Fowler et al., 1980; 
Saltzman and Munhall, 1989; Browman and Goldstein, 1989; Byrd and Krivokapić, 2021; 
Iskarous and Pouplier, 2022), integrates the phonological and phonetic aspects of pitch 
organically, so there is no necessity for an F0 algorithm  that interprets the phonological 
constructs above (cf. Pierrehumbert, 1981). A dynamical theory describes an invariant 
functional relationship between the current value of a variable, e.g., F0, and the change or 
velocity of that variable over successive moments in time. Even though F0 and its velocity may 
each vary continuously throughout a pitch accent, in the dynamical model presented here their 
relation is quite abstract and constant for some phonologically defined duration. We will show 
that the relation between the value of F0 at any time point during the interval of the accent and 
its velocity, or slope, is the result of a balance of self-organizing dynamical forces, whose tuning 
results in the inventory of a pitch accent system. The fact that dynamical system descriptions 
simultaneously account for continuous phonetic variation and abstract phonological invariance 
makes them the right kind of theory from which to derive Autosegmental-Metrical (AM) 
constructs, as we will argue. Specifically, we will show that these constructs, including the 
observed contrasts between level tones, variation in the temporal alignment of F0 target 
values, the relation between alignment and F0 scaling, along with shape distinctions among F0 
trajectories, are predicted from the proposed dynamical system, arising from changes in the 
balance of dynamic forces that shape the F0 trajectory, tuned by a single parameter k. One 
additional force-balance parameter b, closely related to k, widens and narrows the scale, i.e., 
local pitch range,  through interaction with k. The proposed dynamical model captures many 
properties of the AM model for American English, and it also goes beyond the AM model in 
accounting for certain shape-based properties of F0 trajectories that are observed in empirical 
data but which are not predicted by AM’s target-and-interpolation approach. Moreover, this 
work aims to upgrade dynamical theories of speech phenomena by making them more 
emergentist and less stipulative, in an attempt to resolve a fundamental problem in task 
dynamical approaches pointed out by Pierrehumbert and Pierrehumbert (1990).  
 Despite its success, there have been a variety of critiques brought up against the AM 
theory and its level-based precursors. The first and most notorious one is the critique of the 
notion of level (Bolinger 1951) and advocacy for configuration approaches based on the shape 
of F0 contours (Fujisaki 1997; Hirst & di Cristo 2000) or for the inclusion of shape parameters in 
a level-based model (Barnes, Veilleux, Brugos & Shattuck-Hufnagel, 2012; Niebuhr 2007; 
Niebuhr, et al., 2011; D'Imperio 2000). The dynamical approach is antithetical to this long 
levels-vs-configuration debate, since a dynamical approach is about the abstract relationship 
between the state of a variable and changes in that state, so instead of further engagement in 
this debate, we aim to provide an approach that bypasses it. A second criticism is the difficulty 
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of comparing the pitch accents of different languages and dialects (Ladd, 2008a; Arvaniti, 2019), 
since what may be described with one set of AM representational constructs, e.g., L+H* in 
English and Spanish (Hualde and Prieto, 2016) or L+H* in varieties of American English (Burdin, 
Holliday & Reed, 2022), can be quite different in their F0 trajectories. It will be shown in this 
work that variation in the k parameter, the main determinant of the pitch accent, leads not 
only to quantitatively different F0 trajectories, but also to qualitatively different trajectories. 
Access to quantitative and qualitative differentiation allows for a theory in which languages and 
language varieties differ in which values of k anchor distinctions in their intonational 
phonologies. This allows us to bypass the dual use of phonological and broad phonetic 
descriptors (Hualde and Prieto, 2016) to solve this problem (where e.g., two phonologies can 
have an L+H* pitch accent, with different broad phonetic descriptions).  

A third major criticism of AM arises in the analysis of languages like English and German, 
in which the intonation system include an inventory of pitch accent categories that differ in 
their tonal specification, yet where the implementation of those accents displays substantial 
variability in F0 trajectories, resulting in overlap among distinct accent categories (Arvaniti 
2016, 2019; Cangemi & Grice, 2016; Cole, Steffman, Shattuck-Hufnagel &Tilsen, 2023;  Grice et 
al., 2017). Phonetic variation of this sort is problematic for dualist theories like AM, where 
discrete phonological categories should map onto distributions along one or more phonetic 
parameters such that the distributions are differentiable. Variable F0 trajectories in the 
implementation of an accent does not pose the same challenge for dynamical system models. 
In this paper, after first introducing a deterministic dynamical system model of pitch accents, 
we show that the deterministic model is only a special case of more general stochastic systems. 
Where deterministic dynamical systems are defined in terms of states and how they change 
across increments of time, stochastic systems are defined in terms of distributions over states, 
and the evolution of those distributions over time. We argue that this stochastic property 
provides a natural model of phonetic variation in the production of pitch accents across 
instances and speakers. 
 The theory we present will be tested based on an extensive empirical database of 
Mainstream American English (MAE) pitch accents, produced by 130 speakers (Cole et al., 2023; 
Steffman, Shattuck-Hufnagel & Cole, 2023). However, in the exposition of the theory and its 
discussion we will also present how the force-balance system built for MAE can, in future work, 
be configured to account for a variety of known pitch accent phenomena in other languages. 
Our approach is to develop the dynamical system incrementally, showing how simple dynamical 
system modules can be connected to yield different kinds of complex pitch behaviors. The goal 
is to provide a modular parametric theory that can capture observed patterns of quantitative 
and qualitative variation in the F0 trajectories of accents in MAE, and across dialects and 
languages. This is possible because, even though dynamical systems operate over real-valued 
variables, here F0, the dynamical relations between the variable and its change over time 
predict stable levels, thresholds, and ranges, making dynamical systems theory appropriate for 
deriving phonological constructs necessary for the descriptions of dialectal and linguistic 
variation.  

We begin in Section 2 with a brief overview of theoretical foundations in earlier work on 
dynamical approaches to the analysis of phonological and speech motor systems. Section 3 
introduces the empirical data which informs the development of our dynamical system, 
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focusing on the F0 measures that capture essential properties of the four MAE pitch accents we 
focus on , discussed in terms of dynamical properties and the representational devices of the 
AM model. Section 4 presents the dynamical system, starting from the simplest dynamical 
system all the way to the minimal dynamical system that can account for the generalizations. 
Section 5 discusses the theoretical contributions of this work, its limitations, and future 
directions. 

 
2. Theoretical foundations 
Our approach builds on methods used first by Goldsmith, and later others, who derive discrete 
constructs of phonology related to syllables and stress through models of continuous 
spreading-activation computation (Goldsmith and Larson, 1990; Goldsmith, 1994; Prince, 1993; 
Iskarous and Goldstein, 2018). Phonological structure, in this view, emerges from interactive 
computation among adjacent representational units (e.g., segments or gestures). For 
syllabification, Goldsmith and Larson (1990) show that syllable-defining sonority waves emerge 
from excitatory and inhibitory interaction between contiguous segments, with each segment 
influencing the sonority value of its neighbors, giving rise to complex syllabic phenomena, e.g., 
as seen in Tamazight Berber and Indonesian. For quantity insensitive stress systems, Goldsmith 
(1994) shows that properties such as boundedness, rhythmic alternation, and extrametricality 
can arise through continuous excitatory and inhibitory interactions between contiguous syllable 
prominences. Further, Prince (1993) shows that phonological properties like the limitation of 
stress to the periphery of a domain (e.g., 3 syllables from the end), what he calls a barrier, 
emerges from continuous-time scalar computations as proposed by Goldsmith. Prince (2005) 
lauds this approach to phonology as being free-standing in that “many predictions and 
properties can be determined from examination of the theory alone” (Prince, 2005). The 
predictive power of these computational theories stems from the simplicity and modularity of 
the fundamental computation, from which representational constructs are derived, as opposed 
to being posited at the basis of theory. 

Our proposal also builds on work over several decades investigating speech motor 
control, perception, and phonological cognition from a dynamical perspective (Fowler et al., 
1980; Browman and Goldstein, 1989; Saltzman and Munhall, 1989). We seek to upgrade this 
dynamical approach by showing how discrete phonological categories can emerge from 
continuous computation. Our upgrade is inspired by Pierrehumbert and Pierrehumbert’s 
critique of Task Dynamics/Articulatory Phonology (AP) (Browman and Goldstein, 1990; 
Saltzman and Munhall, 1989) in their (1990) paper “On attributing grammars to dynamical 
systems”. Pierrehumbert and Pierrehumbert (1990) argue that AP does not actually meet its 
stated goal of fully integrating the concrete/continuous and abstract/discrete aspects of 
language (Browman and Goldsmith, 1990). This can only be accomplished, Pierrehumbert and 
Pierrehumbert argue, if discrete cognitive aspects are derived from continuous dynamical 
computation. They correctly point out that in AP, the discrete is specified, not derived.  In the 
words of the authors, “[t]hey [AP] do not fully bridge the gap between dynamics and 
phonology. ‘Task dynamics’ as it is most typically carried out to date takes discrete inputs and 
produces continuously variable outputs” (p.467). These “discrete inputs” in Task Dynamics 
includes dynamical parameters that specify the goal of a gesture, e.g., the degree of closure at a 
constriction, or specific place of articulation of a gesture. These are analogous to discrete 
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featural specifications in traditional phonology.1 Pierrehumbert and Pierrehumbert (1990) 
argue that in order to attribute grammars to dynamical systems, discrete equilibria at which a 
dynamical system settles and which are then associated with phonological contrasts (and, we 
believe, to syllable relations and prosodic units), should be computed or derived, not specified. 
We agree with this fundamental critique, but we do not believe that it is detrimental to 
dynamic theories. Qualitative constructs, like those of intonational phonology can indeed 
emerge, from dynamical theories if the parameters do not specify goals, but degrees of 
interaction between dynamical terms, as we will show in the rest of this paper. Indeed, Iskarous 
(2019) derives the very idea of a contrastive feature or gesture from dynamical computation. 
Our present work extends this approach for the analysis of intonation, and alongside Iskarous 
(2019), represents an attempt to advance contemporary phonological theory through 
emergentist computation. 

The AM approach to intonation is subject to the same criticism that Pierrehumbert and 
Pierrehumbert (1990) level at AP in that the discrete constructs of level tones (L, H), tonal 
alignment (*) and tonal composition (+) are posited at the foundation of the theory, and 
continuous F0 trajectories are derived through an algorithm with discrete inputs 
(Pierrehumbert, 1980; Pierrehumbert, 1981; Beckman and Pierrehumbert; 1988; O’Shaugnessy, 
1976; Maeda, 1976). In fact, this critique also applies to the dynamical systems model of F0 
contours proposed by Yi Xu and colleagues (Xu et al. 1999; Prom-on et al. 2009, inter alia), 
which is a task-dynamic based linear dynamical system that models the combined change of F0, 
its velocity, acceleration, and jerk (time-change of acceleration). Their work is an important 
accomplishment that extends the results achieved in AP for supralaryngeal contrasts (Saltzman 
and Muhall, 1989; Browman and Goldstein, 1989) to laryngeal behavior and shows a good fit 
between predictions of the dynamical model with empirical F0 trajectories of Mandarin lexical 
tones and English stress/accent. However, their model, like AP, assumes the discrete equilibria 
that correspond to empirically observed articulatory or acoustic targets of phonological 
categories.  

The dynamical models of F0 proposed by Xu and colleagues illustrate one additional 
property that we wish to challenge, and that is the reliance on second order and higher order 
linear models, meaning that the dynamical relations captured are between several derivatives 
of the main state variable (F0), its velocity, acceleration, and maybe jerk (the infinitesimal 
change in acceleration with time). We will argue that constructs central to the analysis of 
intonation can be meaningfully modelled using more conservative models in which acceleration 
(curvature of F0) or jerk play no role. Headway in this direction has already been made by 
Roessig, Mücke, and Grice (2019) and Roessig (2021) who introduce a dynamical model quite 
similar to the one we will present, though presented in that work as a model of the planning or 
selection of pitch accents in German2, where a system equilibrium is associated with a 

 
1 More technically, AP includes a task equilibrium value within the task differential equation. We believe that this is 
true not only of AP of the time, but also extends to new versions of Task Dynamics (Byrd and Saltzman, 1998; 
Sorenson and Gafos, 2016), as well as modern extensions to syllable structure where equilibrium values of phase 
lags are pre-specified (Goldstein et al., 2007), and to boundary prosody where strength and specific phase-lag 
between articulatory gestures and the 𝜋𝜋-gesture is explicitly specified (Byrd and Saltzmann, 2003). 
2 The dynamical differential equation we present in Equation (1) can be obtained as the negative derivative of the 
potentials they provide. 
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speaker’s choice of one accent vs. another. However, in this paper we show that that the shape 
of an F0 trajectory that corresponds to a pitch accent can also be modelled in terms of the 
same dynamic.  

The ultimate goal in understanding prosody, of course, is to “establish a complete 
picture of a prosodic typology” (Jun, 2005). A full typology would allow for different aspects of 
prosody: pitch patterning, boundary-based segment/gesture duration, juncture type and 
duration, speech timing (rhythm), stress patterning, syllables, and tonal contrasts, to be stated 
in comparable terms not only for cross-linguistic description, but also for describing how any of 
these properties interact in a language when they co-occur. Since dynamical analyses of all 
these phenomena have been proposed (Gao, 2009; Hermes et al., 2013; Shaw and Gafos, 2015; 
Shaw et al., 2019; Iskarous and Goldstein, 2018; Katsika, 2016; Katsika et al., 2014; Karlin and 
Tilsen, 2014; Krivokapić , 2014, 2020; Krivokapić et al., 2020), we hope that the model we 
propose will in the future be able to interact with these other theories, to provide a common 
dynamical vocabulary for different aspects of prosodic systems, in addition to making within- 
and across-language differences clearer. 
 
3. Methods 
3.1 The empirical F0 trajectories 
The pitch accent model we propose is based on data from a project led by two of us (Cole, 
Steffman) investigating the perception and production of MAE pitch accents in nuclear position 
(i.e., the final pitch accent in the prosodic phrase). The data are from 130 MAE speakers, 
aggregated from three imitative speech production experiments. In each experiment, on a 
given trial, participants heard model utterances that exemplified a particular tune. F0 in the 
model utterances was resynthesized based on straight-line approximations from the ToBI 
training materials (Veilleux, Shattuck-Hufnagel & Brugos, 2006), shown in Figure 1, which are in 
in turn based on empirical F0 trajectories in Pierrehumbert (1980). In all the experiments, the 
participant produced the heard tune on the final three-syllable, stress-initial name in a 
sentence that was metrically and syntactically similar to the stimuli (e.g., heard: “He answered 
Jeremy”, “Her name is Marilyn”; produced: “They honored Melanie”, with the target tune 
realized on the underlined material). Across all materials analyzed here, imitated tunes were 
produced on one of three names: Harmony, Madelyn, and Melanie.  

The first experiment from which we drew data is described in Steffman, Shattuck-
Hufnagel & Cole (2022). In that study, data from 70 speakers of MAE produced the high-toned 
pitch accents H*, L+H* and L*+H on a phrase-final word in all intonational boundary contexts—
followed by one of four possible edge tone specifications: H-H%, H-L%, L-H%, L-L%. Each tonally 
unique sequence of pitch accent and edge tones was repeated 12 times for total of 3,360  
productions per pitch accent (48 tokens of each pitch accent for 70 speakers). We also wanted 
to model productions of the low-toned L* pitch accent, which were lacking in that study, so we 
included data from  two additional experiments. One data set is described in Cole, Steffman, 
Shattuck-Hufnagel & Tilsen (2023), in which 30 participants produced H* and L* pitch accents in 
all edge tone contexts. Given that we already had productions of H* from 70 other speakers, we 
opted to use just L*, with 72 L* tokens elicited per speaker,  totaling 2,160. To include data from 
more speakers for the L* pitch accent, we added data from a third experiment. That experiment 
was a replication of Cole et al. (2023) that differed only in that participants heard two model 



8 
 

sentences on each trial, as compared to the three model sentences in Cole et al. (2023), and they 
only produced two different sentences, as compared to three sentences as in Cole et al. (2023). 
This third experiment yielded another 2,160 tokens of L* for a combined total of 4,320 L* tokens 
aggregated from 60 speakers, with equal numbers in the four edge tone contexts. Because we 
expected phrase-final non-modal phonation to lead to potential issues in F0 measurement, F0 
trajectories were audited for F0-tracking errors using a semi-automated procedure which made 
use of an algorithm detecting sudden F0 jumps (Steffman & Cole, 2022) and manual inspection 
of the files flagged by the algorithm. Approximately 10% of each data set was excluded due to 
inaccurate F0 measurement. This left 2,970 H*, 2,962 L+H*, 2,981 L*+H and 3,830 L* productions, 
produced by a total of 130 speakers. We measured F0 using STRAIGHT, as implemented in 
Voicesauce (Kawahara, Cheveign, Banno, Takahashi & Irino 2005; Shue, Keating, Vicenik & Yu, 
2011). 

As described above, our production data come from participants’ imitations of 
resynthesized tunes presented as model utterances. Table 1 shows six F0 target values spanning 
each model speaker’s pitch range, which defined the accentual and edge tone pitch targets of 
the resynthesized tunes for both the male and female model speakers. These six F0 targets 
correspond to the relative height of tonal targets of the pitch accent, phrase accent and boundary 
tone in each phrase-final intonational tune, based on published examples (Veilleux et al., 2006; 
Pierrehumbert, 1980), and are represented in the faint grid lines in the F0 trajectory plots in 
Figure 1. Figure 1 shows the time-normalized model tune trajectories in ERB, averaged across the 
two model speakers. Note that the values in ERB are centered to start at the value of zero for 
each trajectory. The reader is referred to Steffman, Shattuck-Hufnagel & Cole (2022) and Cole et 
al. (2023) for more details about the stimuli.  

Note that the model tune F0 trajectories in Figure 1 span the entire nuclear accented 
word (e.g., Melanie), including not only the F0 trajectory corresponding to the pitch accent (the 
initial portion), but also the F0 trajectory representing the edge tones (the later portion). In this 
paper we have limited our focus to modeling the F0 trajectory of the pitch accent, in all four edge 
tone conditions. Accordingly, we segmented the full F0 trajectory of the imitated productions 
into two portions and used only the initial portion, corresponding to the region of the pitch 
accent, as the empirical basis for our dynamical systems model. This portion was the initial 
portion of the trajectory up to the F0 maximum (for H*, L+H*, L*+H) or minimum (L*) if that value 
occurred in the first two thirds of the trajectory, and otherwise the window for analysis ended at 
two thirds of the trajectory, which was the case for the monotonically rising or falling trajectories 
(e.g., H*H-H%, L*L-L%). This segmentation juncture is indicated for the model tune schema in 
Figure 1.  

Table1: target values defined in each speaker’s pitch range for the model stimuli. 
 Male model speaker Female model speaker 
 Hz ERB Hz ERB 
Target level 1 80 2.79 100 3.37 
Target level 2 105 3.51 160 4.93 
Target level 3 130 4.18 200 5.84 
Target level 4 225 6.36 300 7.79 
Target level 5 240 6.67 350 8.62 
Target level 6 265 7.15 380 9.09 
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Figure 1: model trajectories for each pitch accent (columns) and each boundary tone (rows) in 
the corpus. The black vertical dotted line marks the end of the portion of the produced 

(imitated) trajectories that was used for modeling accentual F0 in this paper (see text for 
details). 

 
3.2 F0 measurements and empirical F0 trajectories 

In the study of speech dynamics, the value of F0 and its velocity are both important. Besides 
the value of F0 reached, the peak velocity (PV) and the time at which peak velocity is reached 
(TTPV) are also of paramount importance in the attempt to understand the dynamical model that 
generates the data (Perrier et al., 1988; Sorenson and Gafos, 2016; Iskarous and Pouplier, 2022. 
Though TTPV is not frequently used as a measure in intonation modeling, it serves to quantify 
the amount of delay in the location of a pitch extremum with respect to some supralaryngeal 
event like a stressed vowel, i.e., a measure of offset in the alignment of a tonal target. Indeed, 
the notion of alignment offset is one of the earliest innovations of the AM approach to tone, 
introduced by Goldsmith (1976) through the use of the star diacritic * to capture the offset in 
alignment of a tone to a tone-bearing unit (Goldsmith, 1974); we use TTPV to measure this offset. 
 
Figure 2 provides a qualitative overview of the empirical pitch accent trajectories in our dataset. 
It shows the mean F0 trajectories (upper panels) and F0 velocity (lower panel) in the interval of 
the pitch accent (the initial 2/3 portion of the entire tune), for data aggregated across all subjects, 
and all tokens, including all three target words (i.e., names). The mean F0 trajectories are grouped 
by pitch accent (color), and the edge tone context (phrase accent followed by boundary tone; in 
panels). Here and throughout the figures in this paper, edge tone contexts are labeled with their 



10 
 

two tonal elements, suppressing the diacritic features commonly used in AM annotation, e.g., 
the H-H% edge tone context is simply labeled HH.  

Our first step in identifying a dynamical system model of our data is to note the patterns 
of variation in the empirical F0 trajectories. We observe variation across the pitch accents within 
each edge tone context, as well as variation for each pitch accent across the four edge tone 
contexts. Here we describe four measures of variation across F0 trajectories that will be relevant 
for our analysis: F0 level at equilibrium (maximum or minimum), velocity of F0 rises (i.e., slope) 
and peak  velocity (the velocity maximum), latency of peak F0 velocity, and F0 span (Table 2). We 
examine these measures to establish and quantify the properties of F0 trajectories that 
differentiate the four pitch accents, H*, L+H*, L*+H, L*, which will inform the dynamical systems 
model.  

Table 2. Empirical measures of F0 trajectories 

Empirical measure description 

Level 
The extreme (maximum or minimum) value along the F0 trajectory. The 
level is defined as the F0 maximum for rising trajectories, and F0 
minimum for falling trajectories 

Velocity 
Amount and direction of F0 change across successive time steps, in 
plotted function of F0 over time, velocity corresponds to the slope of the 
F0 curve over an interval of time 

Peak velocity The value of maximum velocity along the F0 trajectory 

Latency Difference between the time at the beginning of accentual rise in F0 to 
time of peak velocity 

Span 
Difference in F0 extrema across the accentual interval: maximum - 
minimum for the rising pitch accents (a positive value), and minimum - 
maximum for L* (a negative value).  

 
An immediately obvious distinction among the F0 trajectories of different accents is that 

they move toward different F0 maxima (rising accents) or minima (falling accents). These F0 
extrema correspond to what are described as “F0 targets” in the intonation literature, and to 
equilibria of the dynamical systems under different values of the free parameter k, described in 
Section 4. We use the term level to refer to the extrema, maximum (rises) or minimum (falls), in 
an accent’s F0 trajectory. 3   

For accents with a rising F0 trajectory, we observe variation in the timing and extent of 
the rise. Variation in the timing of an F0 rise has long been known to be a crucial factor 
differentiating tonal categories, e.g., pitch movements with “early” vs. “late” peaks (Goldsmith, 
1974; Bruce, 1977; Pierrehumbert, 1980; Pierrehumbert and Steele, 1989), and is evident in our 
data in the upper panel of Figure 2. In a dynamical systems analysis, the velocity function, which 

 
3 Here, we use the term “level” to refer to a particular F0 value (the F0 maximum or minimum) on a continuous 
scale of F0, within some interval. This is related to but not the same as the notion of “level” in opposition to 
“configuration”, as an analytic framework. In that usage, which pre-dates AM, “level” is closer to a phonological 
construct, with a discrete numeric representation, e.g., from lowest to highest, levels 1-4 (Trager & Smith, 1951), 
or a symbolic representation, e.g., the H and L tones of Autosegmental theory (Goldsmith, 1976; Pierrehumbert, 
1980). See discussion in Ladd (2008a: 62-65). 
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characterizes the amount and direction of F0 change across successive time steps, provides a 
measurement of timing through the location of the peak velocity, as shown in the lower panel 
of Figure 2.  

 

Figure 2. Mean F0 trajectories (upper panel) and mean F0 velocities (lower panel) for 4 pitch 
accents (H*, L+H*, L*+H, L*) of imitated tunes in 4 edge tone contexts (HH, LH, HL, LL). The 

portions shown are 2/3 of the nuclear tune, showing the pitch accent (the topic of this paper), 
and a portion of the edge tones. 

The upper panels of Figure 3 show the distribution of latency values (TTPV) for each pitch 
accent, paneled by edge tone context. In examining latency variation across pitch accents, we 
focus first on the H-L% edge tone context,  as this context exerts the least coarticulatory influence 
on the preceding accent, as this edge tone sequence specifies an F0 trajectory that simply 
maintains the final F0 value of the pitch accent interval up to the end of the intonational phrase 
(as described by Gussenhoven, 2005: 299-300 and Ladd, 1983: 721-759 2008; see also Ladd, 2008 
128-129). For this reason, the question as to differentiation in latency among pitch accents is best 
answered by first examining the panel in Figure 3c. Latency increases across the rising accents: 
H* < L+H* < L*+H. For the bitonal accents (L+H*, L*+H), an ordering which corresponds to the 
difference in the temporal alignment of their F0 peaks as reported in prior work (Pierrehumbert, 
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1980; Beckman & Ayers, 1997; Arvaniti & Garding, 2007; Veilleux et al. 2006).4 The same ordering 
of latency values across rising accents is seen in the L-H% and L-L% contexts, and in the H-H% 
context with the exception that the distribution of H* latency more closely resembles that of 
L*+H. This unexpected pattern for H* in the H-H% context can be understood in relation to the 
mean F0 trajectory for H* in Figure 2a, which is very similar to L*+H, i.e., speakers appear to have 
neutralized the contrast between H* and L*+H in just this edge tone context (imitations of the 
H* stimulus produced with F0 trajectories that more closely resemble the L*+H stimulus; see 
Steffman, Shattuck-Hufnagel & Cole, 2022 for discussion). We assess the magnitude of the 
differences in F0 latency among the rising pitch accents using Cohen’s d (Cohen, 1986), a measure 
of effect size (here, the effect of pitch accent category on F0 measures). The upper panels of 
Figure 4 shows Cohen’s d  for Latency for each pitch accent pair, paneled by edge tone condition.5 
Cohen (1986) provided the heuristic that (taking the absolute value of d), d ~ .2 is a small effect, 
d ~ .5 is a medium effect, and d ~ .8 or above is a large effect. Pairwise differences that are 
medium or above based on absolute d values are displayed in bold red. We are interested in how 
latency differentiates the three rising accents (with only one low/falling accent in our dataset, 
there is no opportunity to observe relevant differences in the latency of the F0 minimum for L*). 
There are large differences between the bitonal rising accents L+H* and L*+H in all edge tone 
contexts, and similarly large differences between L*+H and H* except in the H-H% context, as 
already noted. Setting aside the H-H% context, the pair H* and L+H* show a medium difference 
only in the L-L% edge tone context. Overall, and again setting aside H* in the H-H% context, we 
observe substantial differences in latency, as measured by TTPV, of rise timing for the rising 
accents in our data.  

The lower panels of Figure 3 show the distribution of F0 span for each pitch accent, 
paneled by edge tone context, and Cohen’s d for accent pairs in Figure 4 (lower panels). L*+H 
and L+H* have a larger F0 span than H* before L-H%, H-L%, and L-L%, with medium-to-large effect 
size, while L*+H has a larger span than L+H*, though the effect size is small. These results are 
consistent with the descriptions of these accents in the literature (e.g., Arvaniti & Garding, 2007; 
Beckman & Ayers, 1997; Burdin  et al., 2022; Veilleux et al., 2006), where the H* rise begins earlier 
and is more gradual than the rise for the bitonal accents, while for the bitonal accents the rise 
starts from a low pitch at the onset of the stressed syllable (L+H*) or later (L*+H).  We note that 
the characterization of rising accents in MAE in terms of differences in their F0 trajectories is the 
subject of much debate in the literature (Calhoun, 2012; Ladd & Schepman, 2003; Ladd, 2022; 
see also discussion in Ladd 2006: 96-97, 136-137). Most relevant for the discussion here is that 
experimental findings from prior work show little difference in F0 at the rise onset for H* and 
L+H* (Arvaniti & Garding, 2007; Calhoun, 2012; Dilley, 2005; Ladd & Schepman, 2003). In fact, 

 
4 These works do not describe a distinction in peak alignment between H* and L+H*, for which the primary 
difference is claimed to be the presence of a low pitch target at the onset of the rise only for L+H*, but visual 
inspection of examples in the ToBI tutorial (Veilleux et al., 2006, section 2.5.2.2)  suggest that an  earlier F0 peak 
for H* compared to L+H* occurs in at least some phonological contexts. 
5 Cohen’s d is a measure of effect size that can be used to quantify the difference between distributions. It 
measures the difference between the means of two variables normalized by their summed standard deviation: 
𝜇𝜇(𝑥𝑥)−𝜇𝜇(𝑦𝑦)

�𝜎𝜎(𝑥𝑥)2+𝜎𝜎(𝑦𝑦)2
. We calculate Cohen’s d with x and y as the F0 measures of latency (Time to PV) and span for two pitch 

accents, x and y. 
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our evidence is similar. While the mean trajectories in Figure 2 show a substantial difference 
between the F0 maximum for L+H* and H*, there is at best a very small difference in the initial 
F0 values for these two accents. Differences in F0 span in our data derive from the difference in 
F0 maximum of H* and L+H*, and the lower initial F0 of L*+H. Together, these differences yield 
the observed ranking of accents by F0 span: H* < L+H* < L*+H. Figure 5 shows the  distributions 
of initial and final F0 in each pitch accent, after centering each trajectory around its mean to 
partially normalize for overall F0 differences across participants, and Figure 6 shows the 
accompanying Cohen’s d’s. We see that the distributions of the initial F0 value are quite similar 
across all four edge tone contexts, but that in L-H%, H-L%, and L-L% edge tone contexts, there is 
an ordering in the final F0 value: H* < L+H* < L*+H.  Differences in the final F0 value for rising 
accents in the H-H% are much smaller, presumably reflecting a strong coarticulatory influence of 
the very high F0 at the end of this tune (not shown; for details see Cole et al. 2023; Steffman et 
al., 2022). 

 

 
Figure 3. Time to peak velocity and F0 span by pitch accent and edge tone context. 
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Figure 4. Cohen's d for distinctions between pitch accents in F0 latency (time to peak velocity) 
and span (see Figure 3). Number in red indicate medium or large effect sizes. 

 

 
Figure 5. Initial and Final values of centralized F0 trajectories by pitch accent, and each of the 

edge tones. 
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To summarize the results so far, among the rising accents there is a gradation across accents in 
both the latency (Figure 3, top) and magnitude (Figure 5) of the rise, which yields an ordering of 
the accents: H* < L+H* < L*+H. This ordering can be described as rise later, rise higher. Comparing 
latency and velocity (Figure 2, bottom) yields the same ordering, which can be described as rise 
later, rise faster. In Figure 6 we assess these relationships directly, comparing latency with F0 
span, F0 level (= max F0) and peak velocity from left-to-right in the first three columns. Here 
latency values are binned in quarter-portions of the temporal accent interval on the x-axis, from 
1st to 4th quarters. We also assess how peak velocity relates to F0 span and F0 level in scatterplots 
shown in the fourth and fifth column. The scatterplots show all rising pitch accents pooled 
together, so the results in Figure 6 are true of individual trajectories, regardless of the specific 
pitch accent label that represents the target of the imitated production. Despite some variation 
in the relation between latency and the other three variables, there is an overall positive trend: 
As latency increases across the four temporal quarter-intervals, F0 span, F0 level and peak 
velocity trend upwards.  

Each panel of columns 1-3 in Figure 6 shows Cohen’s d for the distributions of F0 span, F0 
level, and F0 peak velocity at the 1st through 4th quarter interval, as a partial quantification of the 
size of the latency effect on those measures, i.e., quantifying the strength of the positive 
relationship between latency and each of those measures. All  these Cohen’s d values are large, 
indicating that this is indeed a robust pattern: the later the rise, the higher and faster the rise. 
The scatterplots in Figure 6, columns 4-5, show Pearson’s correlation coefficient, which similarly 
quantifies a strong relationship between peak velocity and F0 span/level. These data speak 
directly to one of the main debates in intonation research, the level-vs.-configuration debate. 
The dynamical approach relates levels of variables to their rates of change, so this type of debate 
does not make much sense in  the context of dynamical theory. Indeed, a dynamical theory 
analysis predicts a relationship between the level reached in a pitch accent and the maximal slope 
of rise (i.e., peak velocity). The scatterplots in Figure 6 show this quite robustly for the rising 
accents: there is a strong relation between the peak velocity of rise and the change in F0. The 
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appreciable Pearson correlation coefficients show, fundamentally, that F0 measures of level and 
configuration are not orthogonal.  

 
Figure 6. Relationships between paired F0 measures for rising pitch accents: latency (Time to 

peak velocity), F0 span, F0 level and peak velocity. Column 1) rise latency and F0 span; Column 
2) rise latency and F0 level; Column 3) rise latency and peak velocity; Column 4) peak velocity 
and F0 span; Column 5) peak velocity and F0 level. Data aggregated over three rising accents: 

H*, L+H*, L*+H. Cohen’s d for F0 span, level and peak velocity distributions is shown in the 
upper left of each panel in columns 1-3; Pearson’s r in the upper left of each scatterplot. 

 
One more aspect of pitch accents that we would like to highlight is the average initial 

velocity of F0 in the pitch accents, measured over the first 20% of the pitch accent, since this 
provides information about the distinction between the monotonal H* accent and the L initial 
tone in the bitonal rising accents . Figure 7 provides kernel density estimates6 of the distributions 
of the velocities. As expected, most of the values of initial velocity for L* are negative, but there 
are also quite a few negative velocity initiations for the rises, with the most for L*+H and least 
for H*. We believe this reflects the “scooped” shape seen most often in productions of the L*+H 

 
6 A kernel density estimate is the estimate of a probability distribution that underlies an empirical distribution 
(here, F0 measures).  
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accent, described in work pre-dating AM (Vanderslice & Ladefoged, 1972: 822) and in the AM 
framework (Ladd, 1980; Gussenhoven, 1984; see also discussion in Ladd, 2008a: 94). The initial 
negative velocity for some rises is an extreme form of scooping, where there is a fall before the 
rise. As we show below, this aspect of the data is important in determining the underlying 
dynamic of pitch accents, since the mathematical theory should be able to predict rises that only 
rise, as well as rises that begin with a fall before the rise onset.  

In the next section, we motivate a dynamical system that generates the pitch accents of 
MAE, capturing the dynamic F0 patterns related to the timing (velocity, latency) and extent (span) 
of the F0 movements that differentiate accents in our data, as described above. Although we use 
the results above as a quantitative springboard into the model, many of the observations we try 
to account for in the model have been made previously in the literature on MAE intonation, 
including works cited above. Before launching into the dynamical model, we first summarize the 
key elements of the AM theory used in the analysis of MAE pitch accents for modeling the 
proposed phonological differences among accents (Table 3), focusing also on how these 
constructs fare in capturing the empirical measures presented in Table 2 above.  

 
Figure 7. Distributions of the average initial velocity of F0's for each pitch accent pooled over all 

edge contexts. 
 

 
Table 3. AM constructs for the analysis of accentual F0 movements 

Construct Example with reference to AM 
Tone level High, Low 
Linearity Tone sequences in bitonal accents, e.g., L+H*, L*+H, H+!H* 
Alignment Early peak (L+H*) vs. late peak (L*+H) 

 
In the AM model of MAE pitch accents (Pierrehumbert, 1980; Beckman & Pierrehumbert, 

1986), three constructs are involved in defining phonological contrasts among accents: tone 
level, linearity, and alignment. The construct of tone level was already present in earlier 
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approaches to the analysis of English intonation (Pike 1945; Trager & Smith, 1951; see discussion 
in Ladd 2008a: 62-75), though AM restricts the number of levels to two, Low (L) and High (H), 
with downstepped High (!H) added in subsequent work (Ladd 1983). These level tones are the 
primitive features that combine to define dynamic patterns, or configurations, of rising and falling 
pitch. Configurations arise from tone concatenation due to linearity, a construct that imposes a 
linear precedence relation between the tones within a prosodic domain. Tones combine to form 
linear sequences across phonological anchors such as syllables, moras or segments, but in bitonal 
accents, tones may also combine in a linear sequence on a single, shared anchor, for which AM 
uses the representational device of the plus symbol (+), e.g., L+H. The alignment construct is 
critical for the analysis of bitonal pitch accents, to designate one of the two tones as aligned to a 
phonological landmark—the stressed syllable. The aligned tone is marked with the star diacritic 
(*), and the other tone in the bitonal accent is sequenced to precede  (L+H*, H+!H*) or follow 
(L*+H) the starred tone but is not phonologically aligned to a segmental or syllabic landmark.7 

Combinations of these three constructs are sufficient to encode a basic, level distinction 
between accents with high vs. low pitch targets and some of the most salient timing differences 
among accents. For instance, timing differences in the realization of High-tone targets (F0 
maxima) for rising accents are captured through the combined effects of linearity and alignment. 
Linearity allows the composition of tones in bitonal accents, which differentiates dynamic rising 
(L+H*, L*+H) and falling (H+!H*) accents, anchored at the beginning or end of their F0 movement 
with a stressed syllable, from the monotonal accents (L*, H*), which specify only a single F0 
target, and thus do not restrict the F0 movement into or out of that target. Alignment 
distinguishes the bitonal rising accent with an early peak, L+H*, from the late peak accent, L*+H, 
and also specifies that the sole falling accent, H+!H* is realized with a falling F0 movement that 
reaches its target, a downstepped high tone, in the stressed syllable.  

What AM offers, fundamentally, is a model based on linearly sequenced level tones, some 
of which are aligned to phonological landmarks, phonetically implemented through the context-
sensitive specification of F0 values as tonal targets with linear interpolation between successive 
targets. But, as we have mentioned earlier, this model doesn’t capture all the salient properties 
of accentual F0 movements. For instance, in rejecting earlier approaches to English intonation 
that center configurations as the primitive units of analysis, (Bolinger 1951; O’Connor & Arnold, 
1973; t’Hart & Cohen, 1973; see discussion in Ladd, 2008a; Arvaniti, 2011), AM fails to capture 
certain observed distinctions in the shape of F0 movements, e.g., the extent of an F0 maximum 
(peak vs. plateau), or in rise curvature (D’Imperio, 2000; Barnes et al., 2012).8 With respect to 
our MAE pitch accent data, the AM model offers no explicit encoding of the pattern of scooped 

 
7 The notion of tonal alignment to a phonologically designated anchor predates AM. For example, alignment 
(under the term “timing”) distinctions that underlie the Swedish accent system are discussed by Bruce (1983), 
citing work dating back to Haugen (1949). The use of the star diacritic as a representational device marking 
alignment was introduced by Goldsmith (1976) in his proposal for Autosegmental Phonology and adopted in 
Pierrehumbert (1980) for the specification of bitonal pitch accents in MAE. 
8 Pierrehumbert (1981) argues for an F0 implementation model with “sagging” interpolations between successive 
High tonal targets, and in the fall from a High to a Low target. But for the bitonal rising accents, the transition 
between and initial Low tone and the following High tone target is proposed to be monotonic, never dipping below 
the lower value (p. 990). This model does not generate a scooped rise, or a distinction between scooped and 
domed rises (Barnes, et al. 2012).  
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F0 rise in productions of the L*+H accent, a property related to rise configuration. It also does 
not predict or model the observed variation in the scaling of tonal targets (F0 maxima) among 
the rising accents (Figure 6),9  or the relationship in rising accents we described earlier as “later-
higher-faster”, i.e., the relationship between the latency and scaling of F0 maxima, and F0 
velocity. 

Before leaving this overview, we remark on one final property of accentual F0 movements 
that is pervasive in our data: There is significant F0 variation in the production of pitch accents in 
MAE, including within-category and within-speaker variation, which is evident in the medium 
effect sizes reported above (Figure 4). We observe a similar degree of variability in pitch accent 
production within and across discourse contexts, speech styles, and speakers, in our prior 
experimental and corpus work on MAE (Chodroff & Cole, 2018, 2019; Im, Cole & Baumann, 2023), 
and similar variation is reported for German (Grice et al., 2017; Röhr, Baumann & Grice, 2022).  

In Section 5, we will discuss other properties of pitch accent systems, and tone systems 
more generally, that modifications of the proposed dynamical model could potentially account 
for. 
 
4. Combinatorial Dynamics for a Pitch accent Model  
The goal of this section is to introduce a dynamical framework for describing pitch accents of 
MAE in particular, but we also seek to lay the foundation for describing pitch accent systems in 
general. Our exposition will be combinatorial in nature, first describing dynamical atoms—
simple dynamical behaviors due to one-term differential equations (a relation between a value 
and its change), then we show how combining these atoms yields differential equations for 
pitch accents. This approach also allows us to show how the empirical measures observed in 
our data, related to level, velocity, latency, span (Table 2), evolve from their simplest 
precursors. Our argument that the model we will provide is a minimal one is based on our 
combinatorial/hierarchical approach, since we start with the simplest dynamical system atoms, 
building just enough structure, gradually, till we get to minimal system that can account for the 
dynamical properties. This approach also allows the exposition to be self-contained, but the 
reader can also consult Sorenson and Gafos (2016), Roessig et al., (2019), Iskarous (2017), and 
Iskarous and Pouplier (2022) for other accessible introductions to dynamical systems analysis. 
The main dependent variable for pitch accents, F0, will be labeled F.  
 

 
9 More generally, AM does not offer a model of systematic variation in the scaling of tonal targets within the local 
tonal span, or register. See discussion in Ladd (2008a: 188-210). 



20 
 

 
Figure 8. Dynamical atoms: a) positive feedback system with k = 1, boundary = 0, unstable rise 

configurations above and unstable fall configurations below; b) positive feedback system with k 
= .3, boundary = 0; c) positive feedback with a boundary = -1.5; d) cubic negative feedback 

system. Colored trajectories correspond to initial values of F (the IC) between -2 and 2. 

4.1 Dynamical Atoms  
Differential equations are about change, and we begin by describing four motifs, or atoms, of 
change, which will be later combined. The left-hand side of a differential equation refers to the 
change in a dependent variable’s state or value, here F, with respect to some independent 
variable, here time t. The (potentially infinitesimal) change in F with respect to t will be 
symbolized by 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
. If F is plotted with respect to t, 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
  is the slope of F at time t. The right-hand 

side of a differential equation defines the value of 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 through some function, usually of F itself. 
What we seek are functions F(t), F  as a function of time, that make the differential equation 
true. For instance, if a differential equation says that the value of the derivative (graphical 
slope) at every point should be equal to the value of the function minus the cube of the value of 
the function, then the functions that we seek are the only ones with that property: that their 
slope at every point is equal to the value at the point minus the cube of that value. These 
functions are the solutions of the differential equation. The simplest differential equation 
where the change in F, 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 , depends on its current value positively is 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝐹𝐹, which represents a 

positive-feedback loop: if the value of F starts out as a positive number, the differential 
equations says that the slope should be positive, so F increases further increasing the slope, 
etc. This is called a positive feedback system since the value positively feeds the slope, which 
feeds the value, etc. Such solutions can be seen in Figure 8a in the top half of the graph. Each 
curve is for a different initial positive value of F. If F starts as a negative value, then F falls, and 
keeps on falling, as seen in the bottom half of Figure 8a. These are examples of the exponential 
function solutions with the initial condition (IC), the value of F at t = 0, varying from 2 (red) to -2 
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(blue) . The curves go to +∞ for IC’s above 0, to -∞ for IC’s below 0, and stay at 0 if the IC is 
exactly 0. Through this dynamic, 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝐹𝐹, 0 becomes a very special value of F, an equilibrium 

value, since if F starts exactly at 0, the system is in equilibrium and remains there. The value 0 is 
an unstable equilibrium, since the slightest deviation from 0 leads to explosive deviation from 
equilibrium. For 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝐹𝐹, dynamicists call 0 a repellor, since it repels the state F. In the context 

of phonetics and phonology, 0 can be thought of as a boundary, as it divides all the possible 
values of the IC and the entire set of  F-curves into two classes, the rises above 0 and the falls 
below 0, through the dynamic of repulsion. It may seem strange that a discrete notion like 
boundary can be discussed in the context of dynamical states like F that can take on any 
possible continuous value, by using continuous mathematics. This is possible because 
differential equations can discretize continuous state spaces into regions, with boundaries or 
thresholds (Strogatz, 1994; Abraham and Shaw, 1992). Therefore, we already see something 
useful arising from this simple equation: the notion of boundary. Another property arising from 
this equation is the distinction between rising and falling F0 configurations. Rises and falls result 
from the repulsion from an unstable equilibrium, 0 in this dynamical system. The rises and falls 
in Figure 8a are not the same as those observed in actual F0 contours, as this model is too 
simple; however, we are trying to show the source of each property in simple models before 
moving to more complex models where those properties persist, and new ones emerge. This 
model already demonstrates the possibility of rise and fall configurations. As the right-hand side 
becomes more complex, we will see that realistic rise and fall configurations will be possible, as 
well.  

We turn next to consider latency, another of the empirical measures in Table 2, which in 
our data distinguishes among rising pitch accents that differ in the timing of the F0 maximum. 
This property relates to the AM construct of alignment (Table 3).   The simplest differential 
equation 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝐹𝐹, where a variable positively influences its own slope, already has implications 

for the timing of rises and falls. Consider the timing of rising/falling trajectories as a function of 
the distance between an IC and the equilibrium in Figure 8a. When the IC is large positive or 
negative (red and blue curves), leading to a large distance between IC and the equilibrium at 0, 
the initial slope is large in magnitude and therefore the function rises/falls fast and early. In 
contrast, when the IC is closer to the equilibrium, it takes a long time for the slope to rise 
enough for divergence from equilibrium to take place (green curves), a behavior we describe as 
stickiness. The closer an IC is to the equilibrium, therefore, the longer (in time) F sticks to the 
equilibrium, and consequently, the greater the delay in its rise/fall. Therefore, this very simple 
system also reveals a source for the possibility of delay in the onset of a rise or fall, which we 
argue is a dynamical root for variation in latency (equivalently, variation in alignment). This is 
because, for variation in latency to occur, F0 trajectories must have temporal malleability 
leading, e.g., to an earlier vs. later rise or fall as attested in some of the seminal work in AM 
theory (Goldsmith, 1974; Bruce, 1977). The specific association we have from this simplest 
dynamical system is that the smaller the distance between IC and the (unstable) equilibrium, 
the later the rise/fall. The specifics of latency in empirical F0 trajectories are not modeled 
correctly by this differential equation, but the distance between IC and equilibria will still play a 
role in more complex differential equations that will be argued to more accurately model the 
empirical F0 trajectories. 



22 
 

If the simplest differential equation just discussed is modified to have a variable positive 
coefficient k:  𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝑘𝑘𝑘𝑘, then k changes the repulsive power of the boundary. If k is large, then F 

influences its own change by a higher factor, so solution curves are repelled from 0 faster and 
greater. The closer k is to 0, on the other hand, the slower and less the rise/fall. This can be 
seen for k = .3 in Figure 8b. Therefore, the value of k is a second dynamical determiner of 
stickiness to the boundary, with low k leading to later latency of rise/fall and high k  to earlier 
latency of rise/fall.   

A different modification of 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐹𝐹 is to add a constant C to it: 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐹𝐹 + 𝐶𝐶. Figure 8c 
shows solutions when C = 1.5. F still influences itself positively, so we still get repulsion from 
the boundary. The difference here is that the boundary is no longer at 0, but at -C, so for this 
example, the rise/fall boundary is at C = -1.5. This is obvious, since if the IC = -1.5, then 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
=

−1.5 + 1.5 = 0, and the F value making the right-hand side 0 is the equilibrium. In general, for 
this system, the boundary, which we will call Fequi, is set to equal -C. Therefore, C variation 
changes the distance between the IC and the boundary, since for a fixed IC, C changes the 
boundary location. Earlier we saw how the distance between the IC and equilibrium leads to 
stickiness, and how that can be accomplished by varying the IC. Here we see that the distance 
can be varied by changing C, a third factor that can alter the latency/alignment of rises and falls. 

Another simple form of self-dependence (i.e., the change in F depends on the current 
value of F) is negative feedback, where a positive value of F leads to a negative change, and a 
negative value of F leads to a positive change. In such systems, if an event pulls F away from 
the equilibrium, F subsequently trends back towards that equilibrium. One differential equation 
that leads to this behavior is 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= −𝐹𝐹3. A positive F will lead to decay (𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
< 0) and a negative F 

will lead to growth (𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

> 0), as can be seen in the solutions in Figure 8d. Again here, an IC of 0 
leads to no change, so 0 is an equilibrium of this equation. However, small deviations from 0 
will be reduced, not amplified as we saw for 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝐹𝐹. Therefore, 0 is another discrete entity, 

called a stable equilibrium or an attractor,  picked out as a special state amongst the infinite set 
of possible real F values. Fowler et al. (1980) and Browman and Goldstein (1989) associated 
attractors with contrastive values in phonology, since discrete stable values are category-like, 
where attractiveness is the basis for the regularity of the linguistic behavior. The initial value for 
such a dynamical system is the state before speaking or at the end of some earlier contrastive 
unit, and the trajectory towards the attractor is the spoken actuation of the contrast.  
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Figure 9. Dynamic Molecule 1: Linear positive feedback and cubic negative feedback, leading to 

2 stable equilibria/levels, with an unstable equilibrium (= boundary) in between. Initial 
conditions are variable. The pitch accent labels are explained in the text. 

 
4.2 Dynamical Molecules 
4.2.1 Equilibria and latency 

Now consider what happens when we combine the two dynamical systems capable of repulsion 
and attraction into one: 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝐹𝐹 − 𝐹𝐹3, whose solutions are shown in Figure 9. If F is initially a 

small positive number less than 1, then F3 can be ignored, since it’s much smaller than F. So we 
end up with 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝐹𝐹, and F starts to rise exponentially—however, as F gets larger, F3 can no 

longer be ignored. And when F reaches 1, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐹𝐹 − 𝐹𝐹3 = 1 − 1 = 0. So 1 is a stable 
equilibrium, while 0 is still an unstable equilibrium. If F starts as a small negative number 
between 0 and -1, it will be attracted to F = -1, another attractor. Therefore, this system has 
three equilibria, three special discrete values along the F-continuum that impose a great deal of 
structure on it. In the context of phonetics and phonology, we can regard this system as having 
2 stable categories, a high valued category (1), and a low valued category (-1), and a boundary 
(0) in between. As opposed to the rise and fall configurations in the simplest system we 
considered, the rise and fall configurations of this system level off. We posit that this is a 
dynamical precursor for the notion of level in the AM theory, giving rise to H(igh) and L(ow) as 
stable equilibria of a dynamical system.  
 The question now is how 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝐹𝐹 − 𝐹𝐹3can be complexified to predict the latency 

differences between pitch accents, as well as other properties that accompany latency. We 
have already seen that there are three factors that can lead to differences in rise latency: 1) the 
value of the IC; 2) the value of a boundary C; 3) the value of k. Since we are seeking a minimal 
model of pitch accent systems, we will first investigate models where there is variation in only 
one of these parameters (IC, C, k), while the other two are held constant, while also keeping 
the model with as few terms on the right-hand side as possible. The parameter that varies 

H*   L+H*  L*+H 
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would then represent differences in pitch accent. There are therefore three basic hypotheses 
about which parameter corresponds to proposed phonological pitch accent distinctions.  

We’ve already seen the first hypothesis: 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐹𝐹 − 𝐹𝐹3, with varying initial conditions as 
in Figure 9, needing no further complexity. This dynamical system models differences among 
pitch accents by varying the IC. The closer the IC is to the boundary 0, the stickier the F0 
trajectory, and the slower the trajectory arrives at the value of a stable equilibrium. One could 
imagine, then, that the L*+H accent, with high latency, could be modeled by an F-curve that 
has a positive IC close to 0; L+H* with a higher IC, and H* with an IC closer to 1. Indeed, there is 
a notable similarity between the labeled pitch accents in our Figure 9 and empirical F0 
trajectories of the same rising accents in Pierrehumbert 1980.10 Moreover, early rising H*, 
starting at a higher IC, shows a smaller span of F0, while, at the other extreme, L*+H, with late 
rising, shows a much larger F0 span. This would suggest that the very simple F0 model 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝐹𝐹 −

𝐹𝐹3, the same model from which levels emerge, also generates timing differences between the 
rises as well as F0 span differences. L* in this model would, of course, be based on an IC below 
0. However, differences among the rising accents in the scaling of their F0 maximum value, 
which is observed in our data (see Figures 2a-d and 3), as well as in data of Arvaniti and Garding 
(2007) and Burdin et al. (2022), are not predicted by this model. In these data, H* has the 
lowest F0 maximum, while L*+H has the highest. We believe that even if there are systematic 
differences among pitch accents in their IC values, such differences may not be the most 
crucial; instead, variation in C or k may lead to a better model that captures both timing and 
scaling differences among the rising accents. Therefore, as we approach a more realistic model 
of F0 trajectories, we will take IC to be constant, the assumed baseline for a speaker, from 
which rises and falls can be made. Later we will discuss what happens when we vary IC in 
addition to C or k. In addition, we will (for now) assume that this baseline is a small negative 
value, signifying that before the pitch accent begins the system is inhibited.  
 
 

 
10 The reader is directed to these figures in Pierrehumbert 1980: From chapter 2, Figures 2.22 illustrates the later 
rise onset for L*+H vs. H*. From chapter 4, Figures 4.3 and 4.4 illustrate the later rise onset for L*+H compared to 
L+H*, while Figures 4.30 and 4.31 illustrate the later rise onset for L+H* compared to H*. 
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Figure 10. Dynamical Molecules 2: initial condition IC is fixed at F = -.2 and k is fixed at 1, while C 

varies. 

We turn now to the second hypothesis, that pitch accent variation is modeled through 
variation in C. We enrich our model by adding a constant C to obtain 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝐹𝐹 − 𝐹𝐹3 + 𝐶𝐶, and test 

whether varying that constant yields a possible model of pitch accent variation. In the enriched 
model, IC is fixed at baseline and k, the coefficient of the linear term, is fixed at 1. Since the goal 
is to model different pitch accents, and C is the only variable here, (IC and k are fixed), the 
current hypothesis is that each value of C picks out a different pitch accent. We have already 
discussed how varying C varies the location of the boundary (compare Figures 9a and 9c), and 
since we are now assuming that the IC has a fixed value for all trajectories, the IC will be either 
above the boundary or below the boundary, depending on its fixed value. Figure 10 shows 
trajectories generated from this system, all emanating from IC = -.2, with one solution for each 
fixed value of C. As expected, the trajectories rise when the IC is above the boundary value and 
fall otherwise. Also, since the distance between the IC and boundary changes with C, we expect 
to see some trajectories rising earlier than others (red-early, yellow-late), which is confirmed in 
Figure 10, where we also observe trajectories that rise early rise to a higher F0 maximum, while 
those that rise late achieve a lower maximum. This is opposite to the pattern observed in our 
empirical data, where we observe that trajectories that rise early also have a higher F0 
maximum, i.e., rise-early-rise-higher, discussed above in terms of the ordering of rising accents 
for latency (Figure 3, top) and magnitude (Figure 5). We therefore abandon this model.  
 
4.2.2 Emergence of levels, alignment and linearity 
Our third hypothesis is that pitch accent variation is due to k-variation, while IC and C are fixed. 
The differential equation that defines this dynamical system is given in (1). In the terminology 
of dynamic analysis, this kind of system is called an imperfect pitchfork bifurcation system (IPB; 
the bifurcation is illustrated in Figure 11).  
 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑘𝑘 − 𝐹𝐹3 + .5           (1) 
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Figure 11a shows solutions of the IPB system in (1) for different values of k. Keeping the 
IC of F at a small negative number, when k is a small positive number, both kF  and -F3 will also 
initially be very small. In that case the dominant term is C = .5, therefore 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
> 0, which is the 

main condition for generating rising trajectories. In short, setting k to a small positive value 
results in rising trajectories. A different pattern emerges when  k is set to a large positive value. 
Still keeping the IC at a small negative value, kF  will initially be large and negative (positive k 
multiplied by negative F), exerting a negative force on the change in F which eventually (and 
soon) overcomes the rising force from the positive C. But the negative divergence from kF  is 
then balanced by -F3 (which will be large positive) to get falls that resemble L*. Within the rises, 
as k increases, the balance between the rising force of C = .5 competes with the falling force of 
kF-F3. The kF- F3   force for falling delays the rise more and more, as the force for falling 
increases. This can be seen in Figure 11a where an increase of k (from red to green) leads to a 
later and later rise. We therefore see how under this hypothesis there is a balance between the 
linear positive feedback (kF) and cubic negative feedback (-F3), leading to configurations that 
level off, but there is also an interlinked balance between those two terms and the rising force 
of positive C that results in variation in timing. Moreover, this dynamical system, hypothesized 
to underlie the pitch accent system of MAE, predicts the empirical measures accompanying 
latency. H*-like trajectories that rise earlier and slower also rise to lower F0 maxima, whereas 
L*+H-like trajectories that start later and faster rise to higher peaks.   

To understand the system in (1) at a deeper level, we will plot what dynamicists call a 
bifurcation diagram as in Figure 11b. For each value of k, we compute the value(s) of F that 
leads to 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 0. These are the equilibria of the system, so we can think of the bifurcation plot 

as showing how the attractor landscape changes across variation in k. We are looking for a 
correspondence between these equilibria and observed F0 extremum values in our pitch accent 
data. These equilibria, Fequi, are easily computed by solving, for each value of k, the roots of the 
polynomial on the right-hand side of the differential equation. As shown in Figure 11b, for the 
low values of k, below 1.19, there is a single equilibrium, which is an attractor at a high value of 
F. The color-matched (dark red) trajectories in Figure 11a rise to a low F0 maximum value 
relatively early. This is quite similar to the empirical H* trajectories presented in Section 3. As k 
increases in value, two more equilibria are born. This is sometimes called a blue-sky bifurcation, 
since two equilibria emerge out of the blue sky (without a triggering influence) but is more 
technically called an imperfect pitchfork bifurcation (Strogatz, 1994). The middle branch is a 
boundary, an unstable equilibrium, while the lowest branch is another stable equilibrium at a 
low value of F, as determined through a mathematical analysis (not included here; see Strogatz, 
1994). Figure 11b also shows a horizontal black line at the fixed IC value = -.2 value. When k < 
1.19, the IC is below the only stable equilibrium, and the corresponding trajectories in Figure 
11a simply rise towards that stable equilibrium, as there are no competing forces to influence 
those trajectories. For 1.19 < k < 2.54, the IC is above the repellor boundary (the middle branch 
in Figure 11b) and accompanying trajectories in Figure 11a (light orange through yellow-green) 
are, therefore, repelled upwards. Early in that interval of 1.19 < k < 2.54, the IC is relatively 
distant from the boundary (the middle branch in Figure 11b is below the IC), and therefore 
corresponding trajectories rise without sticking, whereas later in that same interval, the IC is 
quite close to the boundary, leading to sticking. When k > 2.54, the IC is below the boundary, if 
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only slightly (the middle branch crosses the IC, trending upward), so trajectories are repelled 
downward.  

 

 
Figure 11. Model where IC is fixed at -.2, C is fixed at .5, while k varies. (a) Solutions (b) 

Bifurcation diagram, where F equi  are F values that make 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0, so they are roots of the right-
hand sides of the differential equation. Pitch accent labels are explained in the text. 

We propose that different intervals along the range of k values generate F0 trajectories 
that correspond to different MAE pitch accent categories in the AM model, as follows. Typical 
F0 trajectories for the H* category correspond to the trajectories generated with k values in the 
first interval of k < 1.19, trajectories typical of L+H* correspond to k in the lower interval of the 
region 1.19 < k < 2.54, while L*+H trajectories correspond to k in the higher intervals of the 
same k region, and L* trajectories correspond to the higher interval of k > 2.54. A truly 
remarkable property of this model is that the bifurcation, as an emergent property of the 
model, corresponds to what is a categorical distinction in AM between the monotonal (H*) and 
bitonal (L+H*, L*+H) pitch accents. Recall from the discussion in Section 3 (Table 3) that 
encoding this distinction in AM requires two constructs: contrastive level tones (H, L) and 
linearity (+). In the proposed dynamical model, the distinction between monotonal and bitonal 
rising is emergent, corresponding to two intervals in the range of k values: a lower interval 
where there is only a single attractor (stable equilibrium) at high positive values of F and a 
middle interval where there are two attractors, one positive and one negative. Establishing this 
correspondence between attractors in the dynamical model and the AM level tones (H, L), we 
see that the dynamical model generates one set of trajectories in a region where there is a sole 
attractor, H, and another set of trajectories in a region where there are two attractors, H and L. 
Said differently, just as the AM encoding of H* trajectories is monotonal and therefore absent 
the L feature, the corresponding behavior of the dynamical system exhibits only one branch, a 
high attractor.  Moreover, like AM, the distinction marked by the bifurcation is categorical as 
well: for long stretches of k, small differences in a parameter lead to quantitative differences in 

H*   L+H*  L*+H 
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the equilibria, whereas across the bifurcation value of k, small changes in k lead to qualitative 
differences in the equilibria.  

This tight matching between AM and the proposed k-dynamic theory of pitch accents 
permits us to call the dynamical theory phonological. Like AM, the k-dynamic theory models 
the “discrete linguistics” of categorical contrast (Pierrehumbert and Pierrehumbert, 1990). In 
fact, there are two inter-related levels of discreteness in our dynamical model. The first, lower 
level is the discretization of the F-continuum by equilibria. The second, higher level, is the 
discretization of the k-continuum through bifurcation of equilibria. We consider this a 
phonological model because, although the model deals with F0 trajectories that vary 
continuously in F0 space and over time, the model generates equilibria as well as categorical 
changes in these equilibria. Goldsmith and Larson (1990), Goldsmith (1994), and Prince (1993) 
have already demonstrated how dynamical computation can derive discrete constructs, e.g., 
syllables, feet, and barriers to stress. Our proposal builds on this prior work in the attempt to 
bridge the discrete and continuous elements of intonation that characterize the traditional 
distinction between intonational phonology and its phonetic implementation. The IPB system in 
(1) computes F0 dynamics over a continuous time dimension, and in doing so goes beyond the 
work just cited, which model the dynamics of sonority and stress prominence over time that is 
already quantized in discrete units corresponding to segments (for syllable models) and 
syllables (for models of stress feet). As we have shown, discrete contrasts emerge from our 
model without prior quantization of the input, effectively capturing phonological contrasts 
between High and Low level tones and between monotonal and bitonal accents.  

Looking beyond discreteness, the proposed dynamical system also effectively models 
within-category variation in F0 trajectories that is relegated to phonetic implementation in the 
AM model, though without recourse to a separate F0 implementation algorithm. For example, 
note how the H branch in Figure 11b rises, reflecting the scaling differences in the F0 maxima of 
rising accents noted in our empirical data (see Figures 2 and 5), a pattern that is also observed 
in other work on American English intonation (Arvaniti and Garding, 2007; Burdin et al, 2022).  
This variation in F0 peak scaling is what we describe earlier as the pattern of rise-later-rise-
higher, which yields a kind of F0 prominence ranking among the rising accents: H* < L+H* < 
L*+H. Yet beyond our data, and the similar findings in Arvaniti and Garding (2007) and Burdin et 
al. (2022), this pattern linking F0 peaks, their temporal alignment, velocity and overall F0 span, 
is not discussed in prior work on MAE pitch accents, perhaps due to the more limited focus of 
most work on only one type of measurement, e.g., F0 range or F0 peak alignment. As such, we 
don’t know the extent to which the pattern truly generalizes. It is therefore worth considering 
whether our dynamical model would still be appropriate in the case that no scaling differences 
are observed. We believe the answer is yes, since the earlier-later scale of latency can be 
decoupled from the higher-lower attractor scale, if the interval of k values that a language uses 
for linguistic functions is sufficiently narrow. Note especially in Figure 11b, where k values 
increase incrementally and uniformly, how in the cyan region, right before beginning of the L* 
interval, equal increments of increase in k leads to larger and larger delays in rise, with very 
small changes in the height of the F attractor. Therefore, a language can use this region to 
achieve large changes in latency (peak alignment), with little or no changes in the value of the 
attractor (the level tone).  
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4.2.3 The Fitzhugh-Nagumo dynamical system for MAE pitch accents 
There is one behavior that the IPB system in (1) cannot accomplish, and that is generating a 
scooped trajectory that falls and then rises within the temporal interval of the pitch accent. We 
have observed this property in empirical F0 trajectories, especially those corresponding to the 
L*+H pitch accent, as shown in Figure 2 (top panel), and we have discussed this property in 
terms of velocity profiles shown in Figure 7. According to the IPB system in (1), an F0 trajectory 
will either rise or fall, but it is not possible for a trajectory to first fall and then rise. This is due 
to the repulsive threshold (middle branch in the bifurcation diagram in Figure 11b): Given a 
fixed IC, if k is below the critical point (k=1.19), F can only rise from the IC; for k above the 
critical point, when there are 2 stable equilibria, F will be repelled upwards if the IC is above the 
threshold and will be repelled downwards to the lower branch when the IC is below the 
threshold. This repulsive threshold dynamic is binary, generating  rises or falls. Therefore, one 
more complexification of the dynamic needs to take place to account for L*+H scooping. It may 
seem that this is a small effect that can be ignored in a first account of pitch accent dynamics. 
However, we believe that an account of this fall-rise behavior is necessary for a more general 
dynamical theory of tonal behavior; after all, there are other languages that have a fall-rise as 
part of their tonal inventories, e.g., Mandarin Tone 3. We therefore develop a complexification 
of the basic IPB system that can account for scooping, but which is also motivated by building a 
general dynamical framework for tonal phenomena that goes beyond American English pitch 
accents. 

There are two approaches that could be taken here, one nonautonomous and the other 
autonomous (Sorenson and Gafos, 2016). The nonautonomous approach would be to stipulate 
some extrinsic time-varying force that first pushes F towards a low equilibrium, then after a 
while that force changes polarity, pushing F upwards. This is a nonautonomous approach 
because the effect is artificially superimposed through this external time-varying force. The 
approach we take is autonomous as we agree with Sorenson and Gafos (2016) that 
explanations relying on system internal explanation are more powerful than ones that resort to 
extrinsic force sources. The latter lead to data-fitting rather than explanation, since such 
external forces can be multiplied, literally forcing F to yield whatever data is observed—the 
type of possibility that Pierrehumbert and Pierrehumbert (1990) warned against.  

Phenomena in which a function first heads towards one value and then reverses 
direction to go towards another are well known in mathematical physics, biology, and 
neuroscience (Strogatz, 1994; Izhikevich, 2010). Indeed, in one of the first papers in the field 
now called Mathematical Neuroscience, “Mathematical Models of Threshold Phenomena in the 
Nerve Membrane”, Fitzhugh (1955) presents an autonomous dynamical model that can handle 
phenomena like ours, where thresholds are far more complex than repellors. These models 
complexify the notion of threshold by adding a new level of system self-regulation. Besides the 
variable F, these accounts propose that there is another variable, which we will call I, that 
interacts dynamically with F in a simple way: I opposes the growth of F, but I is itself due to F.11 
Specifically, if I is positive, it inhibits F, i.e., it reduces the value of F. But if I is negative, it 
excites F, increasing it. What makes this account autonomous is that I is not an external force, 

 
11 In Section 5 we will offer one possible interpretation of what I is, but for now, it will simply be regarded as a 
necessary dynamical regulator of F. 
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but a variable that is itself regulated by F: if F is positive, I increases, and if F is negative, I 
decreases. The resulting system specifies two coupled differential equations for F and I, where 
the coupling specifies how each plays a role in regulating the other. Fitzhugh (1955) proposed a 
general type of system, now called the Fitzhugh-Nagumo12 (F-N) system), in which F and I 
regulate each other as above. We have tailored their system to the demands of the MAE pitch 
accent system by making it non-oscillatory, while maintaining its insights about complex 
thresholds to produce this F-N System:   

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= 𝑘𝑘𝑘𝑘 − 𝐹𝐹3 − 𝐼𝐼 + .5
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= .2𝐹𝐹 − .4𝐼𝐼
        (2) 

          
4.2.4 An in-depth look at the F-N system 
In this subsection we describe the meaning of the F-N system of differential equations, showing 
its solutions, and providing a graphical analysis of its implications. The goal here is to explain 
and illustrate, in some detail, how the system of differential equations in (2) generates the 
desired dynamical properties required to model our empirical data.   

The  differential equation for F is the same as for the IPB system in (1), except that another 
effect on F now comes from the -I term. This means that if I is positive, F is reduced, and if I is 
negative, F is boosted. The oppositional effect of I on F is, in turn, regulated by F through the 
positive .2F term in the differential equation for I. So, if F is positive, I increases, and if it’s 
negative, I decreases. I also self-regulates by negative feedback due to the -.4I term. The specific 
values of coefficients in the second equation of (2) were chosen to make sure that the system 
does not oscillate, as required in most applications of the F-N system. The autonomy of this 
system is due to the interlocked nature of the two variables: Each of the two variables changes 
due to themselves and their relation with the other variable, creating a self-organizing system. 
The IC for I is .2, which is consistent with starting the system in an inhibited state, as we have 
previously assumed (recall that I is the inhibitor in this system, so a positive value promotes 
inhibition). The solutions of this system, and their velocity, are shown in Figure 12a,b. The 
trajectories generated by this system capture the distinctive shapes of the empirical trajectories 
shown in Figure 2 (top panel). Most importantly, some of the F trajectories (cyan) fall before 
rising, creating the characteristic scooped rise, as can be seen in how the corresponding velocity 
curves in Figure 12b start with negative velocity, then assume positive velocity (cyan). This panel 
also shows that for rises (trajectories with higher and higher k), peak velocities increase in value 
and occur with later delay (latency). Figure 12c also shows that as the value of k increases across 
the k-interval of the rising accents, the extreme value of F (the stable attractor) also increases, 
and then abruptly falls when k enters the k-interval for the falling accent. Also, peak velocity and 
time to peak velocity are highly consistent with the data. 

 
 
 

 
12 Nagumo, an electronics engineer, developed the same system at the same time to account for nonlinear 
electronic components. 
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Figure 12. Final model, with 2 interacting variables: F and an inhibitor variable I. a) F 

Solutions; b) Velocities; c) Maxima and minima of F as k varies; Peak Velocity as a function of k; 
and Time to Peak Velocity (= latency) as a function of k. 

 
 Having observed that the F-N system exhibits behaviors needed to model the empirical 
behavior, we now turn to a dynamical explanation for these behaviors, and in particular, the 
potential for scooped trajectories. To do so, we need to find the equilibria for F and I, and for 
changes in these equilibria as k changes. This may seem to be more complex for 2 variables 
than 1, but the nullcline plot technique (Fitzhugh, 1955; Izhikevich, 2010) makes this task much 
easier.  Figure 14 shows four such nullcline plots for 4 values of k. We will now gradually 
introduce the reader to the meaning  of these plots, the curves on them, and how they explain 
the dynamical structure which we claim to underlie the MAE pitch accents. The axes  represent 
specific values for F and I, and if these values are plugged into the right-hand side of (2) we get 
a value for the left-hand side �𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�, which is drawn as an arrow at the (F,I) point. The arrow 
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points to the next state of the dynamical system given the previous state. One can therefore 
start at any point (F,I) as the initial condition, and follow, graphically, the evolution of solutions 
(F(t),I(t)) by following from arrow to arrow from each time step to the next. In each panel of 
Figure 14, we show solutions emanating from the same IC at the red cross for four systems with 
different values of k and show the evolving solution by following the arrows. The direction of 
the arrow signifies the direction of change for F and I as follows: 
 
    
    

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

> 0  𝑎𝑎𝑎𝑎𝑎𝑎  
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

> 0 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

> 0  𝑎𝑎𝑎𝑎𝑎𝑎  
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

< 0 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

< 0  𝑎𝑎𝑎𝑎𝑎𝑎  
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

< 0 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

< 0  𝑎𝑎𝑎𝑎𝑎𝑎  
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

> 0 

F increases; I increases F increases; I decreases F decreases; I decreases F decreases; I increases 

Figure 13. Key to arrows on nullcline plots in Fig. 14, 18 
 

Figure 14. Nullcline plots for 4 k values corresponding to traditional AM labels: k = 0 is H*-like, k 
= .75 is L+H*-like, k = 1.55 is L*+H-like, and k = 2.3 is L*-like. Each point in the (F,I) plane 

represents an IC. The arrow at each point expresses �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�, so for example, a rightward arrow 

expresses 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

> 0, and a downward arrow expresses 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

< 0. The black line expresses (F,I) that 

make 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0, while the black cubic expresses 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0. The red cross expresses the constant IC for 
all simulations for pitch accents, and the colored curves show (F(t),I(t)). Roman numerals in 

panel a label each discrete region discussed in the text. 
 

I 

II 

III 

IV 
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There are many possible (F,I), and accordingly, many arrows in the nullcline plots. A 
cursory look at these vector fields may lead one to believe that the dynamics for this system are 
incredibly complex due to the continuous variation in and large variety of vector magnitudes 
and directions. However, despite the enormous quantitative differences in arrows there is a 
small number of discrete behaviors in each panel. To see this qualitative simplicity, we also plot 
in each panel the black curve Fequi all of whose (F,I) points make 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 0. This curve is obtained 

by setting 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

  in Equation (2) to 0, then rearranging the top equation so that I is a cubic 
polynomial of F, hence the cubic shape of this curve. The straight line on the plots signifies Iequi 

points at which 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0, and it’s a line, since when 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 is set to 0, the second equation of (2) can 
be rearranged so that I is a linear function of F. Fequi and Iequi are the nullclines, as the vectors on 
the nullcline have null magnitude in one direction. Of paramount importance to the 
explanations that follow is the fact that as nullclines approach each other, both F and I change 
less and less. Where they actually intersect are the combined (F,I) equilibria of the system. The 
Fequi curve and Iequi  line intersect at one or more points depending on the value of k as can be 
seen in Figure 14. The Fequi curve and Iequi line divide the vector fields into a few uniformly 
behaving regions. This is most easily seen in the k = 0 plot (Figure 14a), where the and Fequi 

curve and Iequi line divide the (F,I) plane into 4 basic dynamical regions:  I) above both curves, 
both F and I decrease; II) to the left of the cubic and above the line, F increases and I 
decreases; III) below the line and to the left of the cubic, both F and I increase; IV) below the 
line, and to the right of the cubic, F decreases and I increases. Within each region, there is 
quantitative variation, but all arrows point in one direction. Therefore, the infinite continuum of 
the (F,I) plane is divided into 4 types of discrete behaviors.  

The increase in the linear term coefficient k in Equation (2) leads to a more and more 
pronounced positive-sloped linear portion of the cubic nullcline. As that positive-sloped portion 
gets longer and longer, the left half of Fequi goes lower and lower, coming increasingly close to 
Iequi, as can be seen if one scans from panel a to panel d of Figure 14. And as the shape of the 
cubic changes, there is a major qualitative shift. For k values below a certain bifurcation value 
(panels a-c), there is only one intersection of Fequi curve and Iequi line, and therefore one 
equilibrium, at a high value of F. For such values of k, wherever (F,I) starts, it will eventually get 
to that high equilibrium value. For k values above the critical point of k, there are 3 intersection 
points: an attractive high value, an attractive low, and a third intersection between them.  We 
also note that the (F,I) plane is discretized into 6 qualitatively distinct regions when there are 3 
equilibria. If the IC is to the right of the middle intersection, the high equilibrium will be 
achieved, and if it’s to the left, then the low equilibrium will be achieved. Since we assume a 
fixed IC with negative F and positive I (marked by the red cross), then for k values below the 
critical value (i.e., the bifurcation), this model predicts rises such as for the pitch accents H* , 
L+H*, and L*+H, and a simple fall for k above the critical value. 

Going from panel a to c in Figure 14, as the positive-slope valued portion of Fequi gets 
closer to Iequi, the magnitudes of the arrows get smaller, since greater proximity of Fequi and Iequi 

leads to reduction in the magnitudes of �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�. Therefore, as the value of k increases, but 

with only one high equilibrium (from panels a-c), the F trajectories get slower and slower in 
moving towards that high equilibrium, leading to greater and greater latency, which we 
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associate with going from H* to L+H* to L*+H. Therefore, AM’s notion of a linear sequence of 
an L before H in L+H* and L*+H, but not in H*, emerges from this model: when k is very small, 
for H*, F heads for the high equilibrium right away; as k gets larger, for L+H* and L*+H, the 
greater proximity of Fequi and Iequi leads to significant lingering in the low F region, before it 
escapes to the high equilibrium. The linear concatenation of L and H in the two bitonal accents 
L+H* and L*+H, we claim, emerges from this k-variation below the critical point. 

What distinguishes panel a and b from panel c is that in the former, the IC is in region II 
(to the right of the cubic curve), and in this region F monotonically increases to the high 
equilibrium. In panel c, the IC is now in region I, where F decreases. And as I is positive, F 
decreases further, which further decreases I, until I is negative. And when that happens, I starts 
to boost F, therefore F moves to the high equilibrium. Therefore, the scooped shape of many 
rising trajectories in the L*+H category in our empirical data emerges from the dynamic at k 
values just below the critical point. Turning now to panel d, with an even higher value of k, the 
IC is again in region I, so F decreases, but there is now an attractor in the low F region, where 
Fequi intersects Iequi, and the F trajectory (F(t),I(t)) is attracted to this low equilibrium after the 
initial fall. This trajectory corresponds to L*. What this F-N model has added beyond the 
behavior of the IPB system in (1) is the possibility of an F trajectory that is briefly attracted to a 
lower F equilibrium before turning to the higher one—falling then rising. One of the predictions 
of this model is that the F0 minimum of L*+H is not as low as the minimum in L*.13  

To summarize our observations from the nullcline plots, we find discreteness arising 
from two properties in this system: 1) the location of the IC with respect to equilibria; 2) the 
number of intersections. Together, these properties determine behaviors that correspond to 
qualitative, categorical distinctions among AM pitch accent categories, as well as finer-grained, 
quantitative distinctions among F0 trajectories as seen in Figure 12a.  
 Our observations from the nullcline plots in Figure 14 reflect only one set of initial 
values for F and I, so the question arises whether similar system behaviors would be observed 
under different initial conditions. Would we observe the same changes in the attractor 
landscape? We tested this and the findings show changing F-IC and I-IC results in system 
behaviors that are very similar to what is shown in Figure 14. The relatively stable behavior of 
the system reflects the fact that it is the presence of the IC within the 4 or 6 discrete regions, 
and not its precise placement in the region, that matters. That said, it is also possible that L*+H, 
for instance, could start with a lower F-IC than H*, as long as the IC’s are in the same regions of 
the (F,I) plane we have assumed. Therefore, the theory we have proposed does not necessitate 
any particular or precise values for the F-IC and I-IC, nor does it require that all pitch accents 
start at the same value. 
 
 

 
13 This difference in F0 minima has not, to our knowledge, been explicitly addressed in prior work, and the 
comparison is difficult when taking coarticulatory effects from upcoming intonational features into account. For 
instance, our empirical data confirm a lower F0 minimum for L* compared to L*+H, but only in the L-L% edge tone 
context. We leave further testing of this prediction to future work. 
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Figure 15. k's estimated from our empirical data, using the coupled system of differential 

equations for F and I. 

 
4.3 Induction of k  
So far, we have built a complex dynamical system molecule from small constituents, 
appropriately combined to generate the properties we discussed earlier. It is important to note 
that the F-N system of coupled differential equations in (2)  has only 1 parameter, k, whose 
variation results in the generation of an entire scale of trajectories, some of which correspond 
to the F0 trajectories used for prominence signaling in MAE. An important question to ask is 
whether k can be induced from the data presented in Section 3. If so, this would lead to a very 
concise and inferable parameterization, with only one degree of freedom, of highly variable 
empirical F0 trajectories. To attempt this induction, we generated 1000 trajectories from this 
system of differential equations and for each, we calculated the velocity (the difference 
between two consecutive samples divided by dt).  Then we computed velocity in the same way 
for each of the 12,743 of empirical trajectories. We then used the inner product to measure 
similarity of each empirical velocity trajectory to each of the 1000 theoretical velocity 
trajectories, and picked the k  that leads to the highest inner product. Figure 15 shows the 
result of such induction, plotting the distribution of  k values for each empirical F0 trajectory 
according to its pitch accent label (recall that these F0 trajectories are elicited in an intonation 
imitation paradigm; the labels identify the pitch accent of the model utterance presented on 
each trial). Elicited H* trajectories yield the lowest induced k values, though the distribution is 
notably large, indicating a lower internal consistency in the imitated production of H* 
compared to the other accent categories. (Recall from the discussion of Figure 2a that speakers 
appear to have neutralized the contrast between H* and L*+H in the edge tone context H-H%.) 
The k values of elicited L+H* trajectories overlap with those of H* but positioned higher in the 
range of the H* distribution. Elicited L*+H trajectories have a very narrow distribution with k 
values that go right up to the value that defines the IC boundary crossing. The distribution of 
induced k values for L*+H trajectories corresponds to the k values in the nullcline plots for L+H* 



36 
 

and L* in Figure 14 (panels c, d).14  Induced k values above the top of the L*+H range 
correspond only to elicited L*. Despite considerable variability, we see that the sole parameter 
of this model, k, can be extracted with good reliability from empirical F0 trajectories. Of course, 
our database was collected under a very specific experimental design eliciting imitated nuclear 
tunes, and so it remains to be seen in further work whether the induction algorithm we have 
outlined, or modifications thereof, is useful for automatic labeling of F0 trajectories elicited 
through other methods, or spontaneously produced. If so, this approach holds promise as it 
may eliminate the need for human labeling of F0 trajectories, which is a major bottleneck in the 
study of intonation.  
 

 
Figure 16. Solutions of the stochastic F,I system of differential equations, with noise in the initial 
conditions, as well as the F  term. k-value is coded by color from lowest (red) to highest (blue). 

 
4.4 A Stochastic Dynamical System 
A body of experimental work investigating pitch accent production reports a striking degree of 
within-category variation in the F0 trajectories corresponding to the rising pitch accents 
(Chodroff & Cole, 2018, 2019; Im, Cole & Baumann, 2023; Ouyang & Kaiser, 2015; Ouyang, 
Spala, & Kaiser, 2017; Turnbull, 2017; see Cole, 2015 for general discussion)15. Our dynamical 
model addresses this, at least in part, by using a continuous variable k to parameterize 

 
14 The values of k selected to illustrate trajectories with different dynamics in Figure 14 do not exactly match the 
values of induced k values for our empirical F0 trajectories, though with additional iterations of the procedure we 
used to generate F trajectories from the F-N system, e.g., adjusting the constants in the model and the parsing of 
the tune into pitch accent and remainder, we could have generated k distributions that more precisely match the 
values selected in the illustrations of Figure 14. However, as it is not our primary goal to fit the model to this 
particular dataset with high precision, we chose not to optimize the algorithm for that purpose in this 
demonstration. We think it is even more remarkable that even without such data-fitting optimization, the F-N 
system in (2) generates F trajectories that capture the relationship between the pitch accents in our empirical 
data, both in terms of their relative k-distributions, and in terms of the empirical measures described in Section 3. 
15 We note here that there has been relatively less work examining F0 trajectories in production of the L* pitch 
accent. Also, related findings of phonetic variability in pitch accent production are reported for German and Italian 
(e.g., Baumann, Mertens, & Kalbertodt, 2019; Grice et al., 2017; Niebuhr et al., 2011;  Röhr, Baumann, & Grice, 
2022; see also Post, D’Imperio & Gussenhoven, 2007). 
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trajectories. This allows the theory to account for variability in F0 maxima and latency (i.e., peak 
height and alignment), but we do not claim that variation of these types cover all the types of 
variability observed. The deterministic dynamical systems we have introduced so far are 
idealizations of stochastic dynamical systems whose study has increased tremendously in the 
last several decades (Longtin, 2010), since most natural phenomena are highly variable. As an 
initial exploration we implemented a stochastic version of our model by adding gaussian noise 
to the right-hand side of each of the F differential equation, and setting the initial values of F 
and I (F-IC, I-IC) from gaussian distributions centered around -.2 for F and .3 for I. The results 
are shown in Figure 16. We now see some of the basic patterns we have seen before but with 
quite a bit of variation, which can be controlled by changing the standard deviation of the 
gaussian distributions. Observe that this model fairly closely replicates the dynamical properties 
of our non-stochastic implementation, in particular, the relationship between the F0 latency 
and maxima of the rising trajectories. We note that in very few instances, when a particular 
pitch accent is expected, a trajectory can be generated that is quite different from those 
expected for that accent, as can be seen in an L* tone being realized as a highly unexpected 
rising accent (the few rising blue curves in Figure 16). Current understanding of the extent and 
nature of stochastic variability does not allow us to insightfully determine the noise probability 
distribution and width, but this model is advanced to show that this framework is highly 
compatible with stochastic phonological models (Gafos and Benus, 2006).  

Figure 17. Pitch range variation introduced by the coefficient b of the cubic term. a) Simplest 
system with only linear positive feedback and negative cubic feedback—the narrowest F0 range 

is for the largest cubic b; b) Pitch range = highest equilibrium – lowest equilibrium, obtained 
across the k-range, as a function of b for the full coupled (F,I) differential equations. 

4.5 Scale 
Pitch range has often been observed to vary according to several factors, and the model we 
have presented is indeed scalable. The cubic negative feedback loop is responsible for 
stabilizing rising and falling trajectories at the high and low attractors, corresponding to High 
and Low tone targets, so it should not be surprising that this term can be modified to include 
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scale. Adding a positive parameter b on the cubic to obtain the differential equation in (3)  adds 
scale.  

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐹𝐹 − 𝑏𝑏𝐹𝐹3            (3) 
 

Figure 17a shows the F trajectories generated by (3) with ICs of .01 (for trajectories above 0) 
and -.01 (for trajectories below 0), but where b varies from .1 (light copper) to 2 (dark copper). 
Observe that as the cubic parameter changes, the scale changes. This is also true for the more 
complex model F-N model proposed here for the MAE pitch accent system. Figure 17b plots the 
F range (the distance between the top and bottom range, as shown in both branches of Figure 
17a) for increasing values of b. Here it is important to distinguish between two concepts of 
scale. Earlier, in relation to the IPB system in (1) we discussed variation in the scaling of the high 
F equilibrium resulting from variation in k (see Figure 11). We think of this as a pitch accent-
intrinsic scale, since the F0 maximum, or accentual peak, appears to increase in scale across 
different rising pitch accents, from H* to L*+H. The scale concept we now discuss is an extrinsic 
scale that modifies the whole pitch range. It remains to future research to examine how this 
extrinsic scale is dynamically modified in phenomena such as downstep. 

5. Discussion 
5.1 Emergent dynamical properties of the proposed model 
The most specific goal for this work has been to provide a new, unified model of the phonetics 
and phonology of MAE pitch accents. Beyond that goal, our work also has theoretical import. 
We have introduced a dynamical theory of intonation from which the fundamental constructs 
of AM emerge, rather than being pre-specified, thereby addressing the critique offered by 
Pierrehumbert and Pierrehumbert (1990) for previously proposed dynamical models of speech 
production. The full model, accounting for all the measured empirical properties in our dataset, 
is the stochastic version of our model (2), repeated here as (4):  

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑘𝑘 − 𝐹𝐹3 − 𝐼𝐼 + 𝑁𝑁(.5, .1)
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= .2𝐹𝐹 − .4𝐼𝐼 + 𝑁𝑁(0, .1)
        (4) 

 
In developing this model, we adopted a combinatorial/hierarchical approach that allows us to 
claim that this model is minimal, as we started with the simplest differential equations, and 
built up, term by term to produce a minimally complex system that accounts for the 
generalizations from our data and other published data. The smallest nucleus of this system, 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑘𝑘, a positive feedback system, already accounts for the distinction between rising and 
falling F0 configurations. The addition of the negative feedback cubic term stabilizes these 
trajectories to level out at attractor states, the F equilibria, that correspond to the level tones, 
Low and High. The addition of a constant, the mean of the distribution N(.5,.1), has two related  
consequences: 1) it captures variation in latency, differentiating rises with early vs. late onsets, 
thereby eliminating the need for the distinct representational devices used in AM to encode 
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linear sequences of tones (+) and the anchoring of one tone in a bitonal accent to a 
phonological landmark (*); 2) it captures the rise-later-rise-higher generalization seen in our 
data and observed elsewhere in the literature. The addition of the inhibitor, I, with its 
excitation-inhibition relation to F, allows for the possibility of trajectories that fall before rising, 
important for capturing the scooped shape of the late-aligned accent L*+H in the MAE system. 
Introduction of the dynamical noise sources into the dynamics and the initial conditions allows 
for variation in F0 trajectories as discussed in Cole (2015) and observed in many (if not all) prior 
studies.  

We have shown, through the proposed model, that dynamical computation can 
generate discrete qualitative behaviors attributed to the MAE pitch accent system in AM 
analyses. We take this to constitute an upgrade in Task Dynamics, because our equations 
(unlike those of AP) do not have specific constants that specify that a Low or High value is to be 
achieved, that there should be a specific amount of delay, or that a particular high value of F0 
should be preceded or not preceded by a low value. All these aspects are predicted by the 
interaction between terms in the dynamical equations parameterized by one interaction or 
kinetic parameter k that weighs the linear term. Pierrehumbert and Pierrehumbert (1990) 
conclude their article with “In ‘discrete linguistics’ we skip the dynamical middleman and go 
directly to trying to understand the behavior in terms of discrete representations obtained from 
observing the phenomenon itself (language produced by speakers). If any of these phenomena 
are ever to be accounted for on another level by a continuous dynamic representation, 
knowledge of the discrete dynamics will no doubt prove an essential clue to the reconstruction” 
(p. 476). AM is a theory of the “discrete linguistics” of pitch accent, and work in the AM 
framework constitutes a very important and useful step in the exploration of intonation in 
speech production, but we argue that skipping the dynamical middleman is no longer 
necessary. Because, as we hope to have shown, basic dynamical systems analysis is actually 
sufficient to allow discrete constructs to emerge, rather than be stipulated.  

Yet some may wonder “why bother”? If discrete linguistics is a sufficient language for 
describing linguistic entities, perhaps knowing the dynamical origins is a nice implementational 
addition, but not necessary for describing language. We disagree. Knowing the dynamical 
theory from which the constructs emerge is essential for understanding the relation between 
pitch accents, and possibly other tonal constructs, of the languages of the world, and for 
describing the many possible bases of variability within and between speakers, dialects, and 
languages. The dynamical system, as a model of state change over time, is what takes the study 
of intonation from a set of observations into a predictive theory that describes a complex set of 
observations with as few dynamical atoms and parameters as possible. Furthermore, we may 
gain new insights into intonational systems by considering how dynamic properties vary in 
relation to linguistic function. For instance, our dynamical model of MAE pitch accents captures 
variation among the rising accents (H*, L+H*, L*+H) through variation in the free parameter k. 
There is a systematic ordering of these accents in terms of their empirical measures of F0—
specifically, their velocity, latency, and span—which is mirrored by the same ordering of the k 
values associated with each accent category: H* < L+H* < L*+H, as shown in Figure 6.   

The relationship between variation in F0 dynamics and variation in k  values across the 
rising accents suggests that k may function to encode prosodic prominence. This interpretation 
is further strengthened by research on prominence perception showing that, when listeners 
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rate words for perceived prominence, the likelihood of a prominence rating varies according to 
the pitch accent status of the word, with the same ranking among the rising accents (Cole, et 
al., 2019; Im, Baumann, & Cole, 2023). Yet, observing this relationship between prominence 
and k for the rising accents leaves us to wonder about the status of L*, which in our model is 
associated with the highest k values. On one hand, work on intonational meaning (e.g., Büring, 
2016; Hirschberg, 2006; Hobbs 1990; Pierrehumbert & Hirschberg, 1990) describes L* as having 
low informational value: It is variously described as encoding “givenness”, or the absence of 
predication or assertion, e.g., for words that are referentially or lexically salient from prior 
context. This suggests that L* marks words with lower informational prominence vis-à-vis the 
rising accents. On the other hand, the same prominence rating studies of MAE, cited above, 
that show a gradient likelihood of prominence rating across the rising accents from H* to L+H*, 
also show substantial variation in prominence rating for L* words, which are similar to H* in 
terms of their likelihood to be perceived as prominent. Thus, while L* is not at the top of the 
rating scale of perceived prominence, it is also not at the bottom (Cole et al., 2019; Im et al., 
2023).16  It seems, then, that if even if L* is not informationally prominent, it nonetheless 
registers as prominent for MAE listeners. Putting these observations together, it appears that 
while k relates to differences in information status and perceived prominence for the rising 
accents, it does not track the status of L* on either of those scales. An alternative may be to 
think about k in relation to markedness, in which case implementing an L* accent on a 
prominent word with a drop in pitch may be considered marked, in that it may be perceptually 
salient as distinct from the alternative of leaving the word unaccented. We leave this and other 
challenging questions about the linguistic functions of k for future research.  

Figure 18 Possible falls from different positive F's. 

 
 

 
16 The perceptual prominence rating reported for L* in these studies of MAE differs from findings reported for 
German L* words, from studies using the same or similar prominence rating task (Baumann & Winter, 2018; 
Baumann & Röhr, 2015). German listeners preferentially perceive L* words as not prominent. To understand 
whether and  how this difference in perceived prominence between MAE and German relates to empirical 
measures of the pitch accents (as in Table 2) in both languages would require a dynamical model of German pitch 
accents along the lines presented here for MAE.  
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5.2 Limitations of the proposed model and future extensions  
To extend the proposed dynamic theory beyond the current focus on the analysis of MAE pitch 
accents to examine pitch accent systems of other dialects and languages, further research is 
required to examine the values of k and the scaling variable b (introduced for the cubic term in 
equation (3) above) that generate the patterns of F0 trajectories used in those languages. 
Taking a dynamic theory approach allows the possibility, for instance, of comparing English and 
Spanish L*+H with each other, without recourse to a representational level between discrete 
phonology and continuous phonetics (c.f., Hualde and Prieto, 2016; Ladd, 2008b) by 
hypothesizing that different languages choose different regions of k-space. Our focus in the 
present work is admittedly narrow. First, looking only at MAE, we have restricted our analysis 
to the three rising pitch accents of the AM model, augmented with the sole low-falling accent, 
which leaves out the high-falling accent H+!H* and the scaling-related phenomenon of 
downstep. The F-N model developed here is in fact capable of generating falling F0 trajectories, 
which is illustrated in the nullcline plot in Figure 18, where leftward F trajectories occur at 
different positive values of F-IC, with k=1. For all three of the trajectories shown in red, IC-F  is 
higher than Fequi , the high attractor, so F falls (a leftward shift on the x-axis). Note that the 
H+!H* tone is considered to start by first raising the baseline IC, before the High equilibrium is 
achieved. These examples also show different types of system behavior with trajectories that 
only fall and those that fall and then rise. Research is necessary to classify falls in MAE and 
other languages in terms of where they fall from and how they fall, but the possibility of such 
F0 trajectories is already present in the proposed F-N system.  

Second, we have not presented a dynamical model of the F0 trajectories arising from 
edge tone context (phrase accents and boundary tones in the AM model: H-H%, L-H%, H-L%, L-
L%). We believe that the well-studied shapes of these combinations can be generated using the 
framework we have proposed—e.g., the F0 trajectory for L-H% is similar to that of L*+H, a rise 
that starts with a brief fall, and this is one reason we have expended substantial effort to show 
how this kind of trajectory arises in our dynamical system. Our ongoing work aims to extend the 
dynamical approach to model these phenomena, including edge tones and their coarticulatory 
interactions with pitch accents.  We believe that the dynamical building blocks provided here 
have potential for developing a more general cross-linguistic theory of intonation, and that a 
similar approach may serve to develop a dynamical theory of lexical tone.  

A further goal of our ongoing work concerns tonal systems in general. Some tonal 
systems have both High and Low tones, and we believe that k and b variation in our final 
system could provide a foundation for these systems as they do for the MAE pitch accent 
system. However, some tonal systems, such as many Bantu languages (Hyman, 2017; 
Goldsmith, 1976; Odden and Bickmore, 2014), revolve around H only, which from a dynamical 
systems perspective would require only a single equilibrium. We aim to show in future work 
that a system based on a quadratic, instead of a cubic, a refinement of the very first differential 
equation: 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝐹𝐹 − 𝐹𝐹2, will show only one H equilibrium. These are of course promissory notes 

at this stage, and it remains for further work by us, and we hope others, to develop the 
dynamical theory approach to tonal behavior.  
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5.3 Looking ahead: Unifying the phonology and physiology of intonation 
In the article “On Distinctive Features and their Articulatory Implementation”, Halle (1983) 
presents a theory of how agonist-antagonist pairs of muscle groups of the tongue, 
interconnected via excitation and inhibition, can implement the concepts of feature theory for 
vowels. He also argues that this excitation-inhibition “circuitry” can explain measurements on 
muscular activation during vowel production (Alfonso et al., 1982). This work is extremely 
interesting as it shows the abstract similarity of a cognitive theory of phonological opposition 
and a motor theory of interactive muscular opposition. Both systems seem to follow the same 
oppositional logic. For Halle (1983), we believe, that similarity of phonological and motor 
systems is taken to be just a surface similarity, as the design principles of language such as 
feature organization, and laws governing speech behavior such as motor circuits, are distinct. 
This can be seen in the very title, where the circuits are implementational. This view carries 
over in much of phonology, including intonational phonology, where phonetics provides bodily 
implementation of phonological patterns of the mind.  

The similarity pointed out by Halle (1983) between phonological and physiological 
systems, namely, that operations in both domains are governed by relationships of opposition 
(distinctive features in phonology; excitatory-inhibitory forces in motor control), can be viewed 
simply as a coincidental surface similarity between the systems. However, we believe it is 
possible that the similarity is a signature of the computational architecture of linguistic action. 
Indeed, the F-N system presented in this paper has a straightforward interpretation as the law 
of the interaction of two sets of muscles. One set of muscles are the agonists F that set F0 in 
upward motion, via tensing of the vocal folds, and the other is a set of agonists I that oppose 
vocal fold tensing. Note that the F-N equations emerged in mathematical neuroscience, and 
have been used to describe motor systems, and therefore it is conceivable that the motor 
systems of the larynx that govern vocal fold tension could work in a way consistent with the F-N 
system in (2). We suggest this only as a conjecture at this stage. Taking this idea a step further, 
a  phonological theory of vowel systems that is defined using the F-N architecture in (2) would 
provide a unified architecture for studying vocalic and intonational aspects of speech behavior.  

One argument against such a unified theory of phonological and physiological systems, 
rests on the observation that linguistic systems differ across communities of practice,  e.g., in 
the vocalic or prosodic realms, even though all humans have roughly the same physiology -- 
vocal tracts and larynges. Does not a unified theory of physiological-phonological structure 
predict one language corresponding to the one muscular architecture shared by all humans? 
The answer is no. What a system like the F-N system provides is a basic dynamical architecture, 
or set of principles (Goldsmith, 1994), that may be parameterized differently in different 
languages through choice of different interactional parameters like k and b. The regions of 
these parameters (or their distributions within set regions) that are available for association 
with distinctions in (pragmatic or lexical) meaning would constitute a phonological choice of a 
system for a linguistic community of practice. Here we must acknowledge that a great deal of 
further work on the tone and intonation systems of other languages may call for further 
complexification of the F-N system. For instance, a tone or intonation system with no 
phonological opposition between high and low tones, as has been proposed for some Bantu 
languages (Hyman, 2017; Goldsmith, 1976; Odden and Bickmore, 2014), can be represented by 
exclusion of the cubic term by setting b to 0, and replacing it by a quadratic term. The 
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dynamical architecture required for such a system could be defined as in (5), replacing the 
model in (2) proposed here for MAE:  
 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑘𝑘 − 𝑏𝑏𝐹𝐹3 − 𝑞𝑞𝐹𝐹2 + .5
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= .2𝐹𝐹 − .4𝐼𝐼
        (5) 

Further examination of systems that are not organized around pitch accents (e.g., Korean, 
Hindi, French; see Jun, 2005, 2014) could reveal an even more intricate set of parametrized 
principles of linguistic action. 
 
5.4 Correspondence with dynamical model of intonation planning 
A surprising aspect of the work we have presented is that there is a very precise mathematical 
relation between our penultimate model, given in (1), and the model of intonation planning 
proposed by Roessig, Mücke, and Grice (2019) and Roessig (2021). If the right-hand side of the  
differential equation (1) is integrated, and multiplied by -1, we would obtain a double potential, 
where k variation changes the depth of the potentials, a model that is equivalent to that in 
Roessig et al. (2019). The approach taken in that work is, of course, based on a sequence of 
models starting with Haken et al. (1985) showing how producing one behavior vs. another, 
perceiving one percept vs. another, or intending one thing vs. another can be modeled by 
varying the depth of a double-well potential to make one behavior more stable and therefore 
more likely by lowering its potential. These theories of intentional dynamics (or, planning 
theories) are quite deep and have influenced many other theoretical works in speech 
production (Tilsen, 2019), but they are fundamentally different from the dynamical approach 
taken here. Their focus is the planning and selection of behaviors or intention, not about the 
detailed temporal unfolding of produced behaviors, aspects of what is usually termed 
execution, as we have shown in this paper. A long line of anti-dualist research in cognition (e.g., 
Grossberg, 1973; Fowler, 1985) has suggested that planning and execution are made of the 
same cloth. What our work points to is that this cloth is encoded in the dynamical framework 
we have provided. And while planning and execution are usually regarded as different 
behaviors, they may involve similar computational organizing structures (Iskarous and Pouplier, 
2022). This is a compelling perspective that we leave for future research. 
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