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Abstract

Many previous accounts of causal structure induction have focused on atemporal
contingency data while fewer have described learning on the basis of observations
of events unfolding over time. How do people use temporal information to infer
causal structures? Here we develop a computational-level framework and propose
several algorithmic-level approximations to explain how people impute causal
structures from continuous-time event sequences. We compare both normative
and process accounts to participant behavior across two experiments. We consider
structures combining both generative and preventative causal relationships in the
presence of either regular or irregular background noise in the form of spontaneous
activations. We find that 1) humans are robustly capable learners in this setting,
successfully identifying a variety of ground truth structures but 2) diverging from
our computational-level account in ways we can explain with a more tractable
simulation and summary statistics approximation scheme. We thus argue that hu-
man structure induction from temporal information relies on comparisons between
observed patterns and expectations established via mental simulation.

1 Introduction

We naturally think about the world in terms of the progression of events that cause and affect one
another. Causal reasoning helps us abstract from a real-time experience to stable causal mechanisms
that we can use to explain, predict and sometimes control our environment. How do people form
these causally structured representations? What algorithms best capture human-like causal learning
from evidence arriving in continuous time? Research has focused on several aspects of human
causal learning, including 1) learning the form of generative and preventative relationships [1],
2) distinguishing relationships from spurious correlations [2]; 3) inferring causal structure across
multiple relata [3]; 4) leveraging temporal order and delay information [4]. However, while all
these dimensions are inseparable in real-world causal learning [5], to our knowledge no study
has yet combined them in a single learning task. Previous studies of temporal structure induction
have typically focused on generative relationships, while quantitative accounts of both generative
and preventive causation have been restricted to contingency settings and frequently to pairwise
relationships.

In this paper, we propose a causal learning task in which causal systems unfold over time due to
potentially generative and preventative causal relations against a background of exogenous influences.
We formulate a normative model of exact inference in this setting but note that it scales poorly,
becoming computationally infeasible when reasoning about more than a handful of events. Thus
we posit that in practice, human learners adopt more efficient approximations [6]. As such, we
consider a class of process-level algorithms those based on establishing easy-to-measure features of
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Figure 1: Gamma density distributions. (a) A regularly spontaneously occurring event. (b) A
randomly spontaneously occurring event. (c) The effect of a generative cause and (d) the effect
following a preventative cause. Circles indicate cause events and diamonds indicate effect events.The
shaded area indicates the prevention window during which any activation of the effect would be
blocked.

generative, preventative and non-causal relationships and using these as indirect cues to structure [7].
We compare this approach against exact inference, finding it provides the more compelling account
of human responses across two experiments.

2 Background

Prevention and generation in causal structure learning There have been numerous studies and
models describing causal learning from contingency information — i.e., patterns of co-occurrence of
discrete variable states across independent trials. Early accounts of causal cognition focused modeling
judgments of the strength of a causal relationship between pairs of (usually binary) variables. This
research distinguished between two basic forms of causal power — generative power, whereby the
presence of a cause increases the probability of its effect occurring and preventative, whereby the
presence of the cause decreases the probability of its effect. �P [8] — meaning the change in the
probability of an effect occurrence with vs. without the cause (�P = P (E|C) � P (E|¬C)). It
provides a basic index for the strength and direction of such effects. However, it turned out to be
a poor model of human causal judgments from contingencies. People are additionally sensitive to
the base rate of the effect P (E|¬C), i.e., how frequently the effect occurs in the absence of the
cause. Cheng’s Power PC theory captured this sensitivity [1] by assuming people intuitively partial
out the influence of background causes when making judgments of the strength of a focal causal
relationship. This conceptual move explains findings that under fixed �P , people infer stronger
generative influences when base rates are high, while inferring stronger preventative influences when
the base rates are low [9]. In extreme cases, people regard evidence as uninformative with respect
to generative judgments if the base rate is 1 — the effect always occurs anyway, so there are no
opportunities to see if the cause was effective – and with respect to preventative judgments if the base
rate is 0 — where there is nothing for the causal influence to prevent [10].

Incorporating reasoning about background causes implies that local causal judgments are not made
in isolation, but rather take surrounding structure into account. Indeed, Griffiths and Tenenbaum
[2] show that human causal judgments from contingencies in experiments reflect rational inferences
about the probability that a particular causal relationship exists at all, as well as its functional
form, essentially distinguishing between candidate causal Bayesian network structures, one with a
connection from C to E and one without. This combination of directed acyclic graphs (DAGs) with
Bayesian inference also allows rational models of structure learning for arbitrary numbers of relata.
The framework of causal Bayesian networks [11] further enables incorporation of other forms of
evidence such as that resulting from interventions on the system of interest and use of the resulting
model for hypothetical and counterfactual thinking. By using these tools, researchers have built
models to explain human judgments and active learning strategies in contingency-based structure
learning [3, 12, 13], albeit focusing predominantly on generative relationships.

Time in causality Besides contingency information, time also plays an important role in human
causal reasoning. Bringing temporal information into causal learning thus adds to the ecological
validity of experiments, since causes often take time to reveal their effects in reality [14]. Generally,
people make stronger causal attributions for short temporal delays than long temporal delays [15], but
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Figure 2: Causal devices tested in this paper. a-d) Experimental interfaces. e) the setting of regular
vs. irregular base rate. f) The response hypothesis space (all possible causal structures where G =
generative; N = non-causal; P = preventative).

this is moderated by expectation, with shorter-than-expected delays also reducing causal judgment
strength [16]. People are also sensitive to delay reliability with causal judgments decreasing as
increasing interval variability between putative causes and effects increases [4, 17]. In order to
capture a general preference for the predictable and reliable delays, we can model causal influences
over time using gamma distributions. Gamma distributions Gamma(↵,�) define a density over
(0,+1) with two parameters controlling the expectation and central tendency of the delay (e.g. with
a shape ↵ and rate �, see Figure 1). Memoryless exponential distributions are special cases of gamma
distributions when ↵ = 1, where the expected delay remains constant, no matter how long you have
already waited for (Figure 1b).

Several recent studies have adopted gamma distributions directly (or indirectly via the mathematically-
related Poisson process) to model temporal causal representation and reasoning, including between
pairs of events [18], for structure learning [4], imputing hidden causes [19], and making judgments
of actual causation given a known causal structure [20]. However, as with contingency work, these
studies have largely focused on cases of generative causal influence. Additionally, past studies have
focused on inference from sets of independent clips, in which root components are usually activated
at the start and effects followed. Yet a more realistic setting is where causes and effects to intermingle
and components can exhibit multiple activations, and both cause and prevent one another within
a single episode. Therefore, in this paper, we focus on a fully continuous setting involving both
multiple relata, generative and preventative relationships under both regular and irregular background
conditions.

3 Learning environment

As shown in Figure 2a, the causal devices we investigated in this paper were made up of two “control
components” (i.e., Cause A, B) and one “target component” (i.e., Effect E). The connection between
each control component and the target component could be generative, preventative, or they could
be unrelated. Thus, we focus on learning in a nominal hypothesis space of 9 possible structures
(Figure 2f). However, we note that the experimental paradigm and computational models we introduce
here can be directly generalized to learning in arbitrarily broader causal hypothesis spaces, as well as
under different prior expectations about plausible delays and relations (see below).

We focus on relationships between point events (i.e., activations) occurring at a device’s components
at particular moments in time. As mentioned above, preventative inference is only possible when
there is something to prevent [1, 10], e.g., when an effect component has a non-zero chance of
occurring in the absence of the preventative influence. Here we thus focus on a setting in which the
relevant target component does occasionally spontaneously activate and we contrast two patterns
for these base rate activations: (1) moderately regular (5±0.5 s, sampled from Gamma(100, 20),
Figure 1a) vs. (2) perfectly irregular (5±5 s, sampled from Gamma(1, 0.2), Figure 1b). Meanwhile,
an activation of a generative component will always produce an “extra” activation of the target
component (i.e., the causal power equals 1 [1], Figure 1c), while an activation of a preventative
component will block any activations of the target component for a short time window of gamma

3



t t

Intervention-based segmentation

t
A1 E1 E2 

…
B1 B2 E0 

A

B
E

G

G

E

E A1 B1 B2

E B1 B2 E B1 B2 E A1 B2 E B1

E0 

E1 

E2 A1 A1

A

B
E

P

G

E

E B1 B2

E B1 B2 E B2 E B1

E0 

E1 

E2 

a)

b)

t
A1 E1 E2 

…
B1 B2 E0 

Fixed-window segmentation

t
A1 E1 E2 

…
B1 B2 E0 

A1 B1 B2

A1
B2

Regular base rate Irregular base rate

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
0.00

0.25

0.50

0.75

1.00

Count (intervention−based)

Pr
ob

ab
ilit

y

Generative Non−causal Preventative 

Regular base rate Irregular base rate

0 5 10 15 20 0 5 10 15 20
0.0

0.2

0.4

0.6

Delay

Pr
ob

ab
ilit

y 
D

en
si

ty

 Generative  Non−causal  Preventative

Regular base rate Irregular base rate

0 5 10 15 20 0 5 10 15 20
0.0

0.2

0.4

0.6

Delay

Pr
ob

ab
ilit

y 
D

en
si

ty

 Generative  Non−causal  Preventative

Evidence: d Hypothesis: s1 Hypothesis: s7Pathways: Zs1 Pathways: Zs7

B1

Figure 3: Illustrations for model algorithms. a) Causal path constructions under the normative
solution. Circles indicate cause events and diamonds indicate effect events in the evidence. The ideal
observer builds different possible pathways (each branch) according to the evidence and hypothetical
structures. b) Simulation-and-summary solution. Evidence is segmented under different approaches
and learners update beliefs according to statistical distributions of two cues given pre-simulated data.

distributed duration (Figure 1d), irrespective of whether those activations would have been caused
by a generative causal influence or would have occurred spontaneously. Preventative influences are
thus conceived as having a broad preventative scope [21]. Activations of non-causal components
have no impact on the behavior of the target component. In our experiments, we assumed generative
delays were sampled from Gamma(9, 6) (i.e., 1.5±0.5 s), and preventative blocking windows were
sampled from a Gamma(36, 12) (i.e., 3±0.5 s). These were chosen simply as an illustrative setting in
which base rates are generally lower than casual influences (i.e. activity is relatively sparse without
any generative events) and preventive influences last long enough to have a reasonable chance of
preventing something. The actual sampled values for any actual influence are unknown to the learner
(human or model), but for simplicity we trained participants on the typical patterns of base rate
activations and on typical generative delays and preventative durations in the instructions and so
assumed these were available to the model.

In our learning task, participants observed a range of 20-second clips, each showing an abstract causal
device’s patterns of activation over time resulting from a set of 6 pre-chosen and fixed interventions on
control components A and B. Participants then judged which of the 9 potential structure hypotheses
best described each device. Each clip began with a base rate activation of the target component then
included three interventions on A and three on B randomly spaced and intermingled over 20 seconds.
After twenty seconds the clip would end and no further activations could be observed. Figure 3a
shows an example timeline for a possible subsequence of around 5 seconds in which there is a single
intervention on A, two on B, and three occurrences of E.

4 Modeling continuous-time causal inference

We develop both a normative benchmark for inference and an approximation scheme that may be
more psychologically plausible.

We write the effect data (E’s activations) as d{d(1), . . . , d(n)} indexed in chronological order, con-
ditioned upon a set of intervention i{i(1)X , . . . , i(m)

X } with X indicating the activated cause (A or B).
The learner then updates the prior over structures P (S) (here assumed as uniform), with a likeli-
hood function p(d|S,w; i) to obtain a posterior distribution P (S|d,w; i), given the set of gamma
parameters w:

P (S|d,w; i) / p(d|S,w; i) · P (S) (1)

The next two sections will illustrate two different ways of calculating likelihood p(d|S,w; i).

4



4.1 Normative solution

Normative likelihood calculation depends on an enumerative actual causal attribution step [22].
The basic idea is that the accurate judgments about type-level causal relationships (i.e., about the
underlying causal structure) depend on detailed considerations about the token-level causation giving
rise to the observable evidence (i.e. which particular event actually caused which particular effect).
There is often a very large number of possible ways that even a single causal hypothesis could
have produced a particular pattern of observed events. For instance, if A was activated at 100
ms and B was activated at 1200 ms (i{i(1)A = 100ms, i(1)B = 1200ms}), and the learner observed
two subsequent effects (d{d(1) = 1500ms, d(2) = 2800ms}), even assuming A and B are both
generative causes, the data could be produced in multiple ways. A could have caused the first effect
and B the later one (i(1)A ! d(1),i(1)B ! d(2)) or A could have caused the later effect and B the earlier
one (i(1)A ! d(2),i(1)B ! d(1)). Alternatively one or both links could have failed and meaning either
or both effects could simply be base rate activations. Therefore, in order to maintain rational beliefs
about causal structure, the ideal reasoner considers all possible causal paths Zs that could describe
what actually happened given each possible structural hypothesis s 2 S, summing up the individual
likelihood of these possibilities to assess the overall likelihood:

P (d|s,w; i) =
X

z02Zs

P (z0|s,w; i) (2)

Building each possible pathway z follows two steps:

1. Explaining each effect that has been observed.

2. Explaining away any effects that might have occurred but were not observed (for instance that
may be still to occur at the end of the observation, or that were prevented from occurring).

Figure 3a shows two examples of the tree of possible causal attributions under two of the possi-
ble structural hypotheses. Details of calculations based on gamma distributions are provided in
Appendix A.

Since one must consider all possible structure- and all time-consistent cause–effect combinations,
the complexity of this inference scheme scales in a worse-than-polynomial manner as the number
of events a learner observes increases. This normative inference procedure shows how to solve
the current causal learning task in principle. However, in the next section we will introduce a
less-demanding method to approximate the normative solution that we will argue provides a more
plausible account of how bounded human learners solve the task.

4.2 Simulation-and-summary approximation

Mental simulation has recently been hypothesized to play various important roles in inference
[23, 24], while abstraction of complex inputs into useful features and cues is a general principle
across learning and decision making. Inspired by this, we consider one way that simulations and
abstraction might play into inferences in the current setting. Ullman et al. [7] model inferences about
the latent properties of physical objects (such as masses and forces) from observed dynamics using a
use a simulation–reality comparison process. They argue that what people compare is not precise
spatiotemporal similarity between observations and any single mental simulation but rather the
indirect comparison of summary statistics extracted from the detailed observations and simulations
under different ground truths. As a simple example, if imagined heavy objects tend to move more
slowly than imagined light objects, this could license the use of speed as a (fallible) cue to heaviness.
We adopt a similar approach to our causal learning task, exploring whether there are simple local
features of event sequences that are diagnostic (if fallible) guides to local causal relationships. The
implied cognitive process is that learners draw on (imagined) evidence under different causal ground
truth structures develop statistical cues that can be directly applied to pairwise causal judgments
within a large causal network. Here we investigate two very simple cues that people might be sensitive
to in the current task:

1. Delay: the delay between the control component’s activation and the first subsequent target
component’s activation.

5



2. Count: the number of the following target component’s activations after the control compo-
nent’s activation.

These cues are far from exhaustive their utility is somewhat context-specific, but they are simple to
track and turn out to discriminate reasonably well between different causal link types (see Figure 3b).
Moreover, they are straightforward to interpret qualitatively. For the delay cue, we would generally
expect to see shorter intervals between a control component’s activation and the target component’s
next activation if the control component is a generative cause, a medium and variable interval if
there is no connection or a longer interval if it is preventative. For the count cue, more than one
effect activation is likely to follow the activation of generative component, which results from the
existence of base rate activations, while frequently, no effect activations will follow the activation of
preventative components before the next control component event. The former cue considers concrete
delay information but ignores the possibility of different causal pathways, while the latter cue also
ignores the exact temporal interval between events.

Segmentation approach Given tight limits on human working memory, it is implausible partici-
pants would utilize cues based on the full event sequence. Rather, people are found to often use local
(i.e., recent) information to make causal inferences [3]. Therefore, we assume that people segment the
observation as it unfolds, using recent events to update their beliefs and then discarding their memory
of them. A learners’ posterior belief distribution is thus conceived as being shaped throughout
each clip by a rolling revision. There are at least two ways to segment continuous-time evidence
(Figure 3b). A unit of evidence under both approaches begins with the intervention (i.e., the activation
of a control component), capturing the basic principle that causes can only influence what happens
later. An Intervention-based approach thus treats one unit of observation as the interval between one
intervention and the next. This removes the distraction of other interventions that might also influence
the effect, but also ignores actual effects that may not been able to reveal before the occurrence of the
next intervention. A Fixed-window approach ends one unit of observation after a fixed time window.
This has the advantage of stability in its chance of including all relevant effects’ but opens the door to
confounding influences of multiple interventions occurring within the window. This also depends on
some parallel processing since different fixed post-intervention windows are likely to overlap in the
timeline. We chose 4-second as a principled fixed-window length in our analysis on the grounds that
this is is long enough for different types of links to reveal their influence. We additionally conceive
of these cues as modular and independent, i.e., treating the possible influence of the other causal
components as noise [25]. For more details, refer to Appendix B.

5 Experiments

We conducted two exploratory experiments with human participants to test how reliably they could
infer the structure of causal devices, under different ground truth and delay conditions. Experiment 2
was a replication of Experiment 1 with different instructions and an expanded range of observation
sequences.

5.1 Methods

Participants A total of 310 participants (regular vs. irregular: 93 vs. 94 in Experiment 1 and 63 vs.
60 in Experiment 2) were recruited via Amazon Mechanical Turk. They were paid between $1.00
and $2.08 depending on their performance.

Design & Procedure The base rate setting was manipulated between subjects with one group
experiencing a semi-reliable base rate (5±0.5 s, Gamma(100, 20)) and others a fully random one
(5±5 s, Gamma(1, 0.2). Participants observed 18 clips in random order. In each case were asked to
judge causal structures by selecting among the 9 possibilities (Figure 2d). In Experiment 1, all stimuli
were generated by simulating from the ground truth structure. Participants faced two clips for each
of the nine structures. As such, the normative model was always more or less confident in the true
ground truth structure while the heuristics were more fallible. Therefore, to make a more extensive
comparison between models, half the trials in Experiment 2 were generated without a particular
ground truth, simply by sampling six interventions and between 1 and 9 effect events in 20 seconds
and picked sets of stimuli that differed in their dominant answers under the normative model. We
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used a Latin square design to simulate and allocate stimuli, by firstly generate stimuli seeds and then
generate stimuli of different causal structures from each seed (See details at Appendix C).

In the experiment interface, component activations were visualized by the requisite component
lighting up yellow for 350 ms. The activation of control components was accompanied by a hand
symbol and participants were told that this meant the control components were intervened on by
someone else, which occurred at random moments (Figure 2b). Participants clicked a “Start” button
to watch the clip in each trial, and then marked their answers for two connections during or after the
clip by clicking the connection (Figure 2d). Each clip could only be played once.

In Experiment 1, participants were told about and trained on the timing of three types of connections
as well as the target component’s self-activation prior to the inference task. To help participants
understand the regular vs. irregular base rate conditions, we used two different metaphors (Figure 2e).
Participants on the regular condition saw an illustration with a circular sign to enforce the impression
of a roughly periodic activation, whereas participants on the irregular condition saw an illustration
with an exogenous link to the cue that something sometimes activates the target component directly
but one cannot anticipate when this will next happen. Participants also completed one practice
trial with a causal device that included one generative connection and one non-causal connection.
Feedback was provided in the practice trials but not the test trials. However, the video training on
timings and the practice trial actually provide a form of “labeled data” to participants. Since this
slightly confound with the assumption of the simulation-and-summary approach that statistical cues
emerge from learners own mental simulation, we opted to remove the video training and practice
trials in Experiment 2. To properly incentivize judgments, we paid a 3-cent bonus for each correctly
identified connection during the main experiment in addition to the basic $1 payment.

5.2 Results

We first analyze participants’ accuracy by ground truth (focusing on all clips in Experiment 1 and the
stimuli in Experiment 2 that had a ground truth). We investigate whether participants’ performance
was influenced by base rate regularity, causal structures, and observed intervention orders.

Accuracy The accuracy for each participant per connection was significantly above chance (33%)
in both the regular condition (EXP1: 66%± 22%, t(92) = 14.89, p < .001; EXP2: 67%±22%,
t(62) = 12.05, p < .001) and irregular condition (EXP1: 61%± 18%, t(93) = 14.84, p < .001;
EXP2: 59%±19%, t(59) = 10.24, p < .001). Accuracy was above chance for all three connection
types taken separately in both regular and irregular conditions (ps < .001). The accuracy for each par-
ticipant at the structure level (1 = correct in both connections; 0 = otherwise) was again substantially
higher than chance (11%) in the regular condition (EXP1: 49%±27%, t(92) = 13.87, p < .001;
EXP2: 49%± 29%, t(62) = 10.67, p < .001) and the irregular condition (EXP1: 41%±22%,
t(93) = 13.32, p < .001; EXP2: 39%±23%, t(59) = 9.24, p < .001).

We used logistic mixed-effect analyses to compare participants’ performance under different levels
of base rate regularity. At the connection level, with subjects, stimulus seeds, and connection
types (generative, non-causal, preventative) as random factors, the accuracy in the regular group
was higher than the accuracy in the irregular group (EXP1: � = 0.31, z = 2.07, p = .04; EXP2:
� = 0.45, z = 2.22, p = .03). At the structure level, with subjects, stimulus seeds from Latin
square design, and ground truth structures as random factors, the accuracy in the regular group was
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Table 1: Model accuracy and fitting results

ACC Parameters BIC CV BestN (BIC) BestN (CV)

Experiment 1

Normative 93%/70% ⌧ : 0.44 12170 -6084 31 34
Simulation-and-Summary (intervention-based): (84) (94)
Delay 60%/58% ⌧ : 0.31 11990 -5994 26 24
Count 42%/32% ⌧ : 0.2 12134 -6065 47 45
Combined ⌧d : 0.50; ⌧c : 0.39 11719 -5855 11 25
Simulation-and-Summary (fixed-window): (35) (50)
Delay 65%/63% ⌧ : 0.35 12084 -6040 16 15
Count 58%/46% ⌧ : 0.33 12461 -6228 17 19
Combined ⌧d : 0.48 ;⌧c : 0.87 11987 -5990 2 16
Random 11%/11% 14859 -7430 37 9

Experiment 2

Normative 95%/69% ⌧ : 0.57 8845 -4433 13 13
Simulation-and-Summary (intervention-based): (65) (70)
Delay 68%/62% ⌧ : 0.33 8277 -4136 20 20
Count 40%/36% ⌧ : 0.20 8343 -4173 38 34
Combined ⌧d : 0.55; ⌧c : 0.36 8111 -4053 7 16
Simulation-and-Summary (fixed-window): (27) (37)
Delay 74%/64% ⌧ : 0.39 8393 -4196 15 17
Count 63%/43% ⌧ : 0.36 8585 -4292 9 9
Combined ⌧d : 0.54; ⌧c : 0.90 8336 -4166 3 11
Random 11%/11% 9774 -4887 18 3

Note: Model accuracy (in identifying the ground truth structure) was calculated prior to the fitting of
human data under regular/irregular conditions separately.

also higher than the accuracy in the irregular group (EXP1: � = 0.44, z = 2.35, p = .02; EXP2:
� = 0.55, z = 2.19, p = .03).

Structure differences We used F1-score as an index to compare participant’s performance in
detecting different causal structures. Because F1-scores for a single participant would be invalid if
they never chose a certain structure, we calculated F1-scores based on groups of clips that used the
same seed. This led to 27 data points (18 in Experiment 1 and 9 in Experiment 2) for each type of
structure in regular as well as irregular conditions. As shown in Figure 4, participants were best at
identifying structures that contain two generative links (GG) and worst at detecting structures that
were made of two non-causal links (NN). They generally performed better in structures without
non-causal links (GG, GP, PG, PP).

Observed intervention orders Finally, we explored whether intervention order affected perfor-
mance. This was considered due to the theoretical deviation between holistic vs. modular thinking
in normative vs. simulation-and-summary models. We classify different intervention orders ac-
cording to the extent that one control component is intervened repeatedly. The most repetitive
pattern is AAABBB or BBBAAA (Level 4, the mirrored orders that begin with B are omitted in
later demonstration), and the least repetitive is ABABAB (Level 0). As shown in Figure 4, par-
ticipants’ accuracy increases as the intervention orders become more repetitive, for both regular
(� = 0.11, z = 2.05, p = .04) and irregular (� = 0.16, z = 3.22, p = .001) base rate, after
controlling for the subject, ground truth structure, and even the exact intervention timings (i.e., the
seeds).
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6 Model fitting

We fit our normative and heuristic models to both aggregate and individual structure judgments
(including stimuli with or without the ground truth answers). We assumed that participants selected
their responses according to a softmax rule controlled by “temperature” parameters⌧ [26] (See
Appendix D).

We evaluate model fit using both cross-validated log likelihood based on leaving out trials from
each seed, and also using BIC. For both cross-validation and BIC, participants were better fit by the
simulation-and-summary approach that combines both the “delay” and “count” cues, and segments
evidence according to intervention actions (Table 1). At the individual levels, more participants
were best fit by one of the simulation-and-summary models than by the normative model or the
random baseline. We also find some patterns that reflect the results of F1-scores and intervention
order analyses (regarding stimuli with ground truths). For example, although participants were worst
at identifying structures with non-causal links, the normative learner was less certain for structures
with two preventative links (PP) (Figure E.1). Also, normative performance was not very affected by
the intervention order while human and the heuristics’ performance was a bit more sensitive to this,
especially for the regular base rate condition (Figure E.2).

We additionally performed a grid search in [2, 2.5, 3, 3.5, 4, 4.5, 5] seconds to find whether any
specific fixed-window length beats the inter-intervention-window-based approach. As shown in
Figure E.3, models with different fixed-window lengths always had substantially larger BICs than the
model with the inter-intervention window approach. This was true despite the fact that the models’
accuracy in causal identification is quite sensitive to the window length.

7 Discussion

In this paper, we explored algorithms for learning causal structure from point events occurring in
continuous time, and compared these to how human learners perform in this setting. While classical
causal cognition research has focused on contingency data and generative relationships, this is some
of the first work that shows that people can learn successfully in situations where causal systems
involving both generative and preventative relationships interact in shaping event sequences over
time.

In terms of modeling, we for the first time introduced considerations of prevention into an “actual
causal attribution” process model [22]. By exhaustively constructing possible actual causal paths to
explain observed data, our normative model demonstrates that near-perfect performance is possible
in this setting, at least given the correct delay assumptions and unlimited processing power. Our
normative models had higher accuracy than both participants and our simulation-and-summary
models, indicating that actual attribution, the top rung of Pearl’s so-called “ladder of causation” [27],
is key for achieving benchmark levels of accuracy. The inference and approximation we present in
this paper while context-specific in its particulars, is very broad in its principles, and is not restricted
to the current setting but can be modified to handle a wide range of inferences about causal systems.
Essentially, any system can be represented with a causal mechanism that produces point events over
time that can be inferred and reasoned about in this way.

Despite the accuracy win for the normative approach, human responses were better captured by the
simulation-and-summary model. This involves identifying locally diagnostic summary statistics that
can be used to make approximate local-structure inferences. This approximation could be further
specified by having different assumptions about what statistical cues people use to make comparisons
efficiently, and how people segment the evidence during an ongoing observation. We explored
two heuristic cues: delay and count, which assumed that people track the delays between putative
cause-effect activations or else count the number of effect events between each putative cause event.
They then compare observed patterns to the patterns characteristic to each edge hypothesis. The
approach sacrifices precision in terms of actual causal attribution but may capture how people manage
the information stream in real-time casual induction, given the basic cognitive limits on real-time
processing [28]. This also demonstrates one possible way that mental simulation could contribute to
temporal causal reasoning, as an extension to current perspectives on the role of mental simulation
in physical reasoning [29, 7]. The adequacy of this local summary information for pairwise causal
attribution is likely to depend on the particulars of the setting (i.e., how sparse the relationships are,

9



how reliable the delays, how much background noise and so on). However, provided there is at least
moderate stability in these dimensions, there is space for such local heuristic cues like the ones we
advance here to emerge and be exploited by bounded human learners.

As for how people segment long observation in continuous time, we investigated two approaches:
based on the intervention actions or based on time windows with fixed length. It turned out that the
intervention-based approaches fit participants’ performance better here, although the fixed-window
approaches had higher accuracy. We take this to suggest that people may struggle to monitor causal
delays from multiple perspectives in parallel. That is, they appear to absorb evidence, update their
local hypotheses and forget the evidence that has been “used” before the next intervention.

In sum, this paper investigated causal structure induction from observation of real-time event patterns
involving prevention as well as generation. Participants were capable of real-time causal structure
induction in this setting and our modeling suggested they may achieve this via statistical cues such
as average delays and counts that are much easier to track in real time than the exact generative
model likelihoods. We also assumed that learners parse evidence in an online learning setting by
segmenting it into chunks, in this case between each intervention, using only the latest chunk to
update their beliefs and doing so modularly, focusing on one pair of components at a time. This work
thus provides a quantitative sketch of how human learners succeed in identifying causal structure
from temporal dynamics. It could contribute to our understanding of natural cognition and sheds
light on the question of how any cognitive agent can make causal inferences in continuous natural
environments.
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