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Noise Morphing for Audio Time Stretching
Eloi Moliner, Leonardo Fierro, Alec Wright, Matti S. Hämäläinen, and Vesa Välimäki, Fellow, IEEE

Abstract—This letter introduces an innovative method to
enhance the quality of audio time stretching by precisely de-
composing a sound into sines, transients, and noise and by
improving the processing of the latter component. While there are
established methods for time-stretching sines and transients with
high quality, the manipulation of noise or residual components
has lacked robust solutions in prior research. The proposed
method combines sound decomposition with previous techniques
for audio spectral resynthesis. The time-stretched noise com-
ponent is achieved by morphing its time-interpolated spectral
magnitude with a white-noise excitation signal. This method
stands out for its simplicity, efficiency, and audio quality. The
results of a subjective experiment affirm the superiority of
this approach over current state-of-the-art methods across all
evaluated stretch factors. The proposed technique notably excels
in extreme stretching scenarios, signifying a substantial elevation
in performance. The proposed method holds promise for a wide
range of applications in slow-motion media content, such as music
or sports video production.

Index Terms—Audio systems, interpolation, signal restoration,
spectral analysis, timbre.

I. INTRODUCTION

Audio time-scale modification (TSM), a critical process
in audio signal processing, involves adjusting the temporal
duration of a sound signal without altering its pitch [1]–[4].
This operation is integral in various applications, such as music
production [5], sound design [6], [7], and multimedia content
manipulation [8], [9]. This task becomes especially challeng-
ing with large stretching factors, where conventional methods,
such as the phase vocoder, often introduce perceptual artifacts,
e.g., transient smearing, loss of presence, and phasiness [3],
[4], [10]. The subjective nature of audio time stretching further
complicates the problem, as there is no clear objective metric
for evaluation [9], [11]. The inherently ill-defined nature of
this task, as there is no ideal reference signal, is shaped by
subjective expectations and perceptual nuances.

The best performing TSM methods apply the Short-Time
Fourier Transform (STFT), manipulate the spectrogram of the
signal to change its duration, and then apply the inverse STFT
to reconstruct the time-scaled signal [3], [4], [12]. Established
TSM methods have predominantly focused on the separation
and accurate manipulation of sinusoidal and transient com-
ponents of sounds [13]–[15]. The noise component describes
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sound nuances and textures, e.g. plucking or bowing noise
from stringed instruments, and is often the main descriptor for
environmental sounds [16], [17]. Common TSM approaches,
including phase vocoder-based methods, struggle to provide
precise descriptions and scaling for such sound nuances,
compromising the final time-stretched audio quality [16], [18].
The use of a three-way decomposition to isolate the noise
component from sines and transients [19]–[22], in combination
with phase randomization [23], [24] in the resynthesis process,
showed a first improvement in the quality of the stretched noise
component [4], [22]. A solution involving a Wavenet neural
synthesizer for the noise component has also proved successful
for extreme time stretching of environmental sounds [17].

Previous solutions targeting time-stretching of real-world
sounds modeled the stretched noise component via linear inter-
polation of white Gaussian noise, with the spectral magnitude
of the original sound around detected transients [8], [25],
or with the residual component of the original sound after
the sines were removed [26]. These solution compromise the
audio quality when applied to general sounds as they are
designed for noisy signals and do not feature a three-way
decomposition for transient handling. An alternative technique
leveraged generative adversarial networks for TSM of speech
signals [27], but its data-driven nature imposes limitations on
its application to general audio.

This letter introduces “Noise Morphing” (NM), an approach
that combines the core idea behind the aforementioned tech-
niques and the sines-transients-noise decomposition (STN).
This involves producing a white-noise excitation signal of
equal length to the output signal of the TSM processing. The
white-noise signal is morphed with interpolated log-magnitude
spectra of the noise component extracted from the target
signal. The novelty lies in the application of spectral morphing
within the STN framework, which adds a new layer of preci-
sion to the TSM processing chain: in the proposed approach,
each of the three components is individually processed with
the most suitable technique, before being recombined into a
time-stretched mixture [22], [28].

This letter is structured as follows. Section II describes
the STN decomposition and TSM principles that this work
builds upon. Section III details the proposed NM technique.
Section IV reports the methods and results of a subjective eval-
uation conducted against other TSM algorithms to validate the
effectiveness of the novel approach, and Section V concludes.

II. BACKGROUND

According to the STN model [19], [22], any sound can be
described as the summation of tonal content (sines), impulsive
events (transients), and sound nuances (noise). In this letter,
audio signals are decomposed into these three components via
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soft spectral masking of their spectrograms, which leads to a
fuzzy decomposition with perfect reconstruction and is the best
method to date for this specific task [22].

Given an audio signal x ∈ RN and its Short-Time Fourier
Transform (STFT) X ∈ CM×K , one can obtain a set of class
masks following the methodology of Fitzgerald [29]. A median
filter is applied to the magnitude spectrogram |X| in the time
and frequency directions, and is used to retrieve the tonalness
Rs ∈ RM×K and transientness Rt ∈ RM×K , respectively.
Soft masks are then computed as follows [22]:

S = f (Rs) , (1)
T = f (Rt) , (2)
N = 1− S−T, (3)

where f(a) is an element-wise saturating function [22]:

f(a) =


1, if a ≥ βU

sin2
(π
2

a− βL

βU − βL

)
, if βL ≤ a < βU ,

0, otherwise

(4)

where βU and βL are the upper and lower boundaries of the
transition region, respectively.

The masks (1), (2), and (3) are imposed onto the complex
spectrogram X via element-wise multiplication to decompose
the three components. The process is repeated for two con-
secutive stages using different analysis window lengths and
separation factors βU and βL to improve the decomposition
quality [22], [30], [31]. The first stage extracts the sines
from the transient and noise residual mixture, using a large
analysis window and βU = 0.80 and βL = 0.70 for better
frequency resolution; the second uses a short analysis window
for better temporal resolution, separating the residual into
transients and noise [22], using βU = 0.85 and βL = 0.75. Thus,
three spectrogram representations are obtained, one for each
component. As a consequence of the fuzzy classification, each
time-frequency bin can belong to two classes simultaneously:
to the sine and noise, or to the transient and noise classes [22].

After performing the STN decomposition, different TSM
algorithms can be applied for each individual component. The
sines are time-stretched using a phase vocoder with identity
phase locking [32], as this has been found successful in
previous studies [4], [9], [17], [22]. Transients are preserved
after extraction by segmenting them into individual events and
repositioning each segment in the correct position according
to the TSM factor [33].

The noise component has been previously time stretched
by randomizing the phase of each signal frame containing
noise [4], [12]. However, this leads to an audible disturbance at
large time-stretching factors [4]. This letter proposes to use a
morphing technique to time-stretch the noise component with
an improved perceptual quality, as described next.

III. NOISE MORPHING

This section introduces NM, a spectral morphing technique
designed for the independent stretching of the noise compo-
nent. A similar concept has been explored in previous works
of Moinet et al. [8], [25] and Apel [26], although there were

|    |

Fig. 1: Conceptualization of noise morphing, for α = 3.
The original noise log-magnitude spectra (yellow) are time-
interpolated (red) and used to modulate the white-noise spectra
(green) to produce the time-stretched output.

small but significant differences. The core principle of the
NM method revolves around applying random phases while
maintaining a magnitude consistent with the original audio, in
such a way that perfect correlation between successive STFT
frames is ensured. The proposed approach is grounded in the
assumption that the noise or residual component, being quasi-
stochastic, has little perceptual impact from its phase, allowing
us to discard it.

The proposed algorithm, depicted in Fig. 1, follows a
structured analysis and synthesis procedure. The original noise
component norig ∈ RN is first processed with the STFT, using
a Hann window of 2048 samples (46 ms) and a hop size of
1024 samples (23 ms) at a sample rate fs = 44.1 kHz. The
log-magnitude spectrum of each STFT frame Norig ∈ RM×K

is computed as

Norig = 10 log10(|F(norig)|), (5)

where F() represents the STFT operator. The log-magnitude
spectrum is then linearly interpolated according to the stretch-
ing factor α based on the two neighboring spectra, occurring
before and after the interpolation point, following

Nα = lerp(Norig, α), (6)

where lerp(·) is the linear interpolation function and α is
the stretching factor. In the time dimension, the length of
the spectrogram Nα ∈ R⌈αM⌉×K is α times that of the
spectrogram Norig ∈ RM×K rounded up to the nearest integer.

In the synthesis phase, a white-noise excitation signal ϵ ∈
R⌈αN⌉ is first generated matching the length of the output
signal after time stretching, as shown in Fig. 1. According to
our experiments, the perceptual impact of the noise sequence’s
distribution is negligible, provided its spectrum is white, and
the sequence is standardized with zero mean and unit variance.
Consequently, uniformly or Gaussian distributed noises, when
normalized, are both viable options. In this work, the noise
signal is sampled from a standard Gaussian distribution.

As shown in Fig. 1, the STFT is also applied to the
white noise, using the same window and hop size as above.
The resulting complex time-frequency signal E ∈ C⌈αM⌉×K

must be normalized by the window energy to ensure that the
flat spectral magnitude equals one. Subsequently, the noise
spectral frames are modulated by the interpolated magnitude
spectra via element-wise multiplication:

Nα
NM = E ⊙ 10N

α/10. (7)
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Fig. 2: A can opening sound (a) at normal speed and stretched with α = 3 (b) without transient separation, which leads to
transient smearing, and (c) with the proposed method, which preserves transients with apt handling of the noise component.

Finally, the morphed noise signal in the time-domain nα
NM ∈

RαN is obtained by applying the inverse STFT using the same
parameters as in the analysis (see also Fig. 1):

nα
NM = F−1(Nα

NM). (8)

A notable difference between our method above and the
work of Moinet et al. [25] is that the latter directly replaces the
magnitude of the time-frequency signal E with the interpolated
magnitudes through polar coordinates, neglecting the white-
noise magnitude spectra. Our observations suggest that the
modulation approach of (7) yields a more organic effect, as
the stochastic variations in the magnitude of the white-noise
signal contribute to a perceptually smoother and less artifact-
prone sound. Apel [26] combines the white-noise spectra and
the interpolated magnitude spectra in the same way as here,
but in his work, the residual component contains a mixture
of noise and transients, which leads to the need for additional
spectral smoothing techniques to enhance the sound quality.

A crucial parameter shaping the quality of the synthesized
time-stretched audio is the window length. A long window
introduces a smoother signal, akin to noise, but comes at the
expense of diminished temporal detail in the output signal, and
rapidly changing nuances tend to get smeared. On the contrary,
a short window captures finer nuances of the sound, enhancing
overall clarity, but has the potential of introducing musical
noise artifacts, which may compromise the quality of the syn-
thesized sound. Moinet made similar observations regarding
the window length [8]. However, the challenges associated
with long windows become more pronounced when transients
are not separated. Moreover, our approach of multiplying the
noise spectral frames with the interpolated magnitude spectra
achieves more natural results with a short window, compared
to replacing the magnitudes as Moinet et al. suggested [25].

A. Audio Time-Stretching Example

A comprehensive insight into the efficacy of the proposed
TSM method is offered by the example visualized in Fig. 2.
The waveform and spectrogram of the unprocessed signal,
featuring hisses and clicks from the opening of a soda can,
are shown in Fig. 2(a). The stretched noise is highlighted in
Fig. 2(b), as well as the need for transient preservation: when

the signal is stretched by a factor of 3, transients between
1.5 and 1.75 s are clearly smeared over time, resulting in a
characteristic undesirable effect. In striking contrast, Fig. 2(c)
showcases the proposed method’s performance by preserving
the transients between 1.5 and 1.75 s during the time-stretching
process. Notably, the method adeptly manages the stretching of
the noise component appearing around 5 kHz starting at about
1.5 s. when transients are separated, emphasizing its ability to
achieve desirable audio TSM outcomes.

IV. EVALUATION

The proposed method has been evaluated against a set of
relevant baselines by means of a formal blind listening test.
The evaluation process and results are reported in this section.

A. Compared Methods

We considered several baseline methods to provide a com-
prehensive benchmark for our proposed approach (NM). To
establish a lower performance threshold, we included a stan-
dard phase vocoder [18], [34] as anchor (AN). As additional
baselines, we incorporated the fuzzy phase vocoder [4] (FZ)
and its enhanced version with transient preservation [22]
(FT). Furthermore, we integrated a prior method in which the
stretching of the noise component was achieved using a neural
synthesizer [17] (WN).

In addition to these baselines, we conducted two ablation
studies aimed at elucidating crucial factors influencing the
time-stretching quality of the proposed method. One variant
of our approach involved applying noise morphing without
prior decomposition and transient separation (ND), resembling
previous works by Moinet [8] and Apel [26]. Lastly, we
included a version of our proposed method in which the noise
morphing employs spectral magnitude replacement instead of
multiplication (NI), as suggested by Moinet [8].

B. Listening Test Design

Our test approach, a variation of the standard MUSHRA
test [35], has been used earlier in TSM studies [4], [17],
and employs a multiple-stimuli method with the original,
unprocessed sound as the reference. Across 15 trials, we
presented sets of 7 stimuli, with 5 trials being conducted for
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Fig. 3: Listening test results, showing MOS with 95% confidence intervals for (a) α = 2, (b) α = 4, and (c) α = 8.

TABLE I: Audio excerpts used in the listening test

Item name Description

Car Live recording of a rally car passing by
Soda Hiss and click sounds from a can opening
Cut A knife cutting food on a cutting board
EDM (music) Electronic music sample
PP (Ping Pong) Sounds from an amateur ping pong game

each TSM factor α = 2, 4, and 8. Each set included stimuli
representing the proposed method and the 6 baseline methods
outlined in Section IV-A. A set of 5 representative mono
audio excerpts were included in the experiment. While we
would have preferred to include more examples, we deemed
it impractical as it would have resulted in a lengthy and tiring
listening test for participants. The audio samples under test are
listed in Table I and are available on the companion webpage
for this letter1.

To accommodate the extreme stretching factors involved
in the test, each audio sample’s duration was kept very
short (approximately 2 s). This ensured that the longest time-
stretched sounds remained below 18 s in duration [35].

A total of 13 volunteers participated in the experiment,
ranging from 26 to 35 years of age. None of the participants
had hearing impairments. The participants were instructed to
rate each presented stimulus on a scale from 0 to 100, indicat-
ing the degree to which the sample met their own subjective
expectations for a time-stretched version of the reference,
together with the overall audio quality. The participants were
not obligated to use the full scale, since ideal examples of best
nor worst quality do not exist.

The test software was a customized version of WebMushra
[36]. The audio items were played through a single pair of
Sennheiser HD 650 headphones within a soundproof listening
booth at the Aalto Acoustics Lab in Espoo, Finland.

C. Results

The results of the listening test are presented in Fig. 3.
Notably, the proposed Noise Morphing method consistently
emerged with the highest Mean Opinion Scores (MOS) across
all examples and TSM factors except one, underscoring its
efficacy in delivering perceptually superior time-stretched au-
dio. The recommended Wilcoxon signed-rank test [37] shows a

1http://research.spa.aalto.fi/publications/papers/ieee-spl-noisemorphing

general trend of statistical significance in the data distributions,
despite occasional overlap in some distributions. Results are
reported in the companion website1. In this section, our
analysis centers on comparing situations where confidence
intervals occasionally overlap.

A comparative analysis between NM and NI reveals inter-
esting dynamics. For α = 2, NM and NI exhibited similar
performance. However, as the stretching factor increased to α
= 4 and α = 8, NI received significantly lower scores in most
examples. This reinforces our suggestion that the modulation
of the magnitude spectra produces a more realistic noise out-
put than simple magnitude replacement. Our results indicate
that noise morphing without transient decomposition (ND)
performs poorly on examples containing clear and frequent
transients, such as Cut and EDM. This observation highlights
the beneficial contribution of the STN decomposition in the
time-stretching framework. Interestingly, WN (α = 4) and FT
(α = 8) show comparable performance in the EDM example,
while NI and ND experience a quality drop. This is most likely
due to the nature of the sound, suggesting that WN and FT
are more suited for time-stretching music signals.

Qualitative comparisons with Élastique, a renowned piece of
commercial software for audio TSM, are not directly addressed
here; instead, readers are directed to audio examples available
on the accompanying website1 due to the need for third-
party software. This limitation precluded a direct quantitative
comparison within our controlled testing environment.

To provide an overview of NM capabilities wider than what
is shown in the results, a larger subset of processed examples
is also available for listening on the companion website1.

V. CONCLUSIONS

This letter introduces a method to improve the time-
stretching of the noise component of an audio signal, which
is obtained by separating tonal and transient components.
The proposed Noise Morphing method exhibits consistent
superiority in audio quality across various stretch factors when
compared to baseline methods. The suggested approach shows
potential for extensive use in various slow-motion media pro-
ductions, including music processing or sports videos. Future
work involves exploring how to expand the method for stereo
and multichannel audio signals.

http://research.spa.aalto.fi/publications/papers/ieee-spl-noisemorphing/
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A comprehensive framework for web-based listening tests,” J. Open
Research Software, vol. 6, Feb. 2018.

[37] C. Mendonça and S. Delikaris-Manias, “Statistical tests with MUSHRA
data,” in Proc. 144th Audio Eng. Soc. Conv., (Milan, Italy), May 2018.


	Introduction
	Background
	Noise Morphing
	Audio Time-Stretching Example

	Evaluation
	Compared Methods
	Listening Test Design
	Results

	Conclusions
	References

