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Social behavior in crowds, such as herding or increased interpersonal spacing, is driven

by the psychological states of pedestrians. Current macroscopic crowd models assume

that these are static, limiting the ability of models to capture the complex interplay be-
tween evolving psychology and collective crowd dynamics that defines a “social crowd”.

This paper introduces a novel approach by explicitly incorporating an “activity” vari-
able into the modeling framework, which represents the evolving psychological states of
pedestrians and is linked to crowd dynamics. To demonstrate the role of activity, we

model pedestrian egress when this variable captures stress and awareness of contagion.

In addition, to highlight the importance of dynamic changes in activity, we examine
a scenario in which an unexpected incident necessitates alternative exits. These case

studies demonstrate that activity plays a pivotal role in shaping crowd behavior. The
proposed modeling approach thus opens avenues for more realistic macroscopic crowd
descriptions with practical implications for crowd management.

Keywords: Crowd dynamics, macroscopic model, social dynamics, stress, contagion

awareness.
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1. Introduction

In recent years, a growing number of studies in crowd dynamics have focused on

incorporating the social behaviors of pedestrians into modeling. Examples of rel-

evant social behaviors range from herding during crowd evacuations to increased

physical distancing during a pandemic. Social behaviors are rooted in the psycho-

logical states of pedestrians and shape the collective dynamics of a crowd. In turn,

pedestrians’ psychological states evolve in response to changing crowd conditions,

modifying social behaviors. This complex interplay between psychological states

and crowd dynamics defines the concept of the “social crowd”.

Over the years, models describing social crowds have been developed at dif-

ferent levels of granularity, from microscopic (individual-based) to mesoscopic (ki-

netic) to macroscopic (hydrodynamic) (see 7 for a recent review of different scales

of crowd modeling). The first seminal contributions were made at the microscopic

level, showing that the incorporation of a parameter describing pedestrian stress

allows the modeling of several real-world crowd phenomena, such as herding be-

havior and the faster-is-lower effect 16,17,18. Subsequent efforts have moved to the

mesoscale using the versatile framework of active particle kinetic theory 3. This ap-

proach retains the ability to capture the complex nature of crowds, while alleviating

the computational burden associated with microscopic models that require track-

ing the individual state of each pedestrian 23. While microscopic and mesoscopic

models offer detailed insights, the macroscopic level of description provides an ef-

ficient and scalable framework for simulating large crowds in real-world scenarios.

Recent notable contributions include a game-theoretic macroscopic model of crowd

dynamics for analyzing a variety of scenarios ranging from marathons to drafting

in cycling 2, and a model specifically designed for predicting pedestrian movement

and correcting congestion 14. Despite these advances, the macroscopic modeling of

social crowds remains largely underexplored with only a few studies including social

dynamics 12,21.

A common assumption in all of the above work is that pedestrians’ psychologi-

cal states remain static over time, independent of dynamic crowd conditions, which

limits the realism of social crowd modeling. Further advances have been made at

the mesoscale to describe panicking crowds. In 8,24 and 5, models have been devel-

oped that allows pedestrian stress to evolve in response to changing crowd densi-

ties. Related studies have explored how the ability to learn progressively modifies

interaction rules and contributes to the development of self-organizing collective

intelligence 10, the role of leaders trained to choose safe paths in evacuation 22, and

contagious spread within crowds 1,4,19,20.

This paper presents a model that captures the interplay between mechanical

and social behavior in crowds at the macroscopic scale, marking the first macro-

scopic model of a social crowd. Our proposed approach combines a second-order

macroscopic crowd model to describe the “mechanical” behavior of the crowd with

a transport equation to capture its “social” behavior. The use of a second-order
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model to describe the mechanical behavior of the crowd is an additional novelty

of this work that should be highlighted. Unlike first-order models, which consider

only density as the primary variable, focus on conservation of mass, and establish

a velocity-density relationship, the second-order model is distinguished by the in-

clusion of the velocity balance equation. Although the computational complexity

increases 14, this addition significantly improves its ability to accurately represent

pedestrian behavior, especially in dynamic scenarios involving pedestrian accelera-

tion or deceleration. It is also noteworthy that the second-order model developed

in this paper builds on previous mesocopic crowd models 5 and follows the unified

modeling approach across scales outlined in 6.

The rest of the paper is organized as follows. In Section 2, we present the general

mathematical formulation of our macroscopic social crowd model, specializing it

to consider two different social behaviors, namely stress and contagion awareness.

In Section 3, we give a brief overview of the finite volume method used to solve

the model numerically. We then present simulation results for two case studies.

First, we simulate a pedestrian evacuation where the activity variable captures

stress and contagion awareness to demonstrate how different social behaviors can

significantly affect crowd dynamics. Second, we simulate a scenario in which an

exit door closes unexpectedly to illustrate the importance of incorporating dynamic

changes in activity into the model to produce realistic crowd behavior. Finally, in

Section 4, we provide a summary of our findings and outline potential avenues for

future research.

2. Mathematical formulation

We study the behavior of a crowd in a domain denoted by Ω. The state of the crowd

is described by three primary macroscopic fields: density ρ, velocity ξ, and activity

u. The first two variables describe the “mechanical” behavior of the crowd, while the

third variable is designed to capture its “social” behavior. The mathematical model

we employ consists of a second-order macroscopic model governing the mechanical

variables, coupled with a scalar transport equation for the social variable,

∂ρ

∂t
+∇ · (ρ ξ) = 0, (2.1a)

∂(ρξ)

∂t
+∇ · (ρξ ⊗ ξ) = ρA[ρ, ξ, u;x], (2.1b)

∂(ρu)

∂t
+∇ · (ρuξ) = ρB[ρ, ξ, u;x], (2.1c)

where the square brackets indicate that A and B depend functionally on the density,

velocity and activity fields, and locally on the spatial position x.

Impermeability conditions, similar to those used in fluid dynamics, are applied

to enforce restrictions on pedestrian movement at walls,

ξ · n = 0, x ∈ ∂Ω− ∂Ωe, (2.2)
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where ∂Ωe are the points of the boundary representing exits and n is the unit vector

normal to the boundary.

To establish a closed system, it is necessary to provide expressions for the source

terms A and B in Eqs.(2.1b) and (2.1c), and this requires specifying the social

behavior to be modeled. Subsection 2.1 provides general guidelines for modelling

these source terms, while subsection 2.2 focuses on detailed expressions, particularly

when the activity variable represents stress and contagion awareness.

It should be noted that Eqs. (2.1) and (2.2), as well as equations that will be

presented in the following sections, are expressed in dimensionless form. As reference

quantities for density, position, and velocity, we assumed the maximum pedestrian

packing (i.e., 6 people per square meter), a characteristic length (i.e., 1m), and the

highest average speed that pedestrians can achieve in a low-density flow within a

high-quality venue (i.e., 5 km/h), respectively. The use of dimensionless quantities

is intended to ensure that model variables such as density and velocity vary between

zero and one. However, there is no mathematical proof that these bounds are met

when the model is solved numerically. Exceeding these bounds indicates a departure

from physical relevance and invalidates the numerical results.

2.1. Modelling the source terms

While the specific expressions for the source terms depend on the social dynamics

being modeled, a common assumption that applies consistently across different

social dynamics is that pedestrians make decisions about their walking behavior

in a sequential fashion. First, they choose their walking direction, and then adjust

their speed and modify their activity based on the local flow conditions and those

in the chosen direction of movement. The source terms can thus be modeled as

A[ρ, ξ, u;x, t] = φ[ρ, u;ω,x]ω, (2.3a)

B[ρ, ξ, u;x, t] = ψ[u;ω], (2.3b)

where the two functional expressions φ and ψ depend on the particular social

dynamics under consideration, and ω = ω[ρ, ξ, u;x] is the walking direction.

Furthermore, in our modeling approach, which builds on the foundation laid by

previous kinetic theory models 5, we assume that the pedestrians’ choice of walking

direction is made based on three guiding stimuli, represented as unit vector fields

νT , νS , and νV . These fields correspond to the desire to reach a defined destination,

νT , the attraction of the mean flow, νS , and the attempt to avoid crowded areas,

νV .

Specifically, the target direction, denoted as νT , is a spatially dependent and

time-invariant unit vector field. It indicates the direction at any spatial location

that efficiently guides pedestrians to their destinations, where ’efficiently’ is subject

to different definitions. While other approaches could have been used, in this paper

this field was determined by solving a Poisson equation for a potential field ϕ,
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assuming that ϕ has a value of zero at the exit points and unity elsewhere, i.e.,
∇ϕ = 0, x ∈ Ω,

ϕ = 1, x ∈ ∂Ω− ∂Ωe,

ϕ = 0, x ∈ ∂Ωe,

(2.4)

and then normalizing the solution to unity. Note that this produces a vector field νT

analogous to the streamlines of an incompressible fluid flowing out of the domain.

The vacuum direction, νV , and stream direction, νS , are unit vector fields that

vary in space and time through their dependence on the density and velocity fields,

respectively. The former indicates the direction of the lowest density at any point

in space while the latter is the direction of movement when pedestrians are herding.

They are defined as

νV = − ∇ρ
||∇ρ||

, νS =
ξ

||ξ||
· (2.5)

Based on the discussion above, the walking direction is expressed as

ω[ρ, ξ, u;x] = ω(νT ,νS ,νV ; ρ, u), (2.6)

where we assume that, in addition to the three unit vectors, pedestrian choices are

also influenced by local density conditions and activity levels

2.2. Modelling stress and contagion awareness

The definition of the pedestrians’ walking direction ω plays a critical role in the

modeling of the source terms, as shown in Eqs. (2.3). Initially, pedestrians choose a

tentative walking direction, ω∗, based on local density conditions, where higher local

densities encourage walking toward less crowded areas, while lower densities steer

pedestrians toward their intended destination. However, their choice evolves when

their activity factor becomes relevant. Specifically, when the activity represents a

state of stress, higher levels of stress result in a more pronounced tendency toward

the mean flow (i.e., herding behavior). Conversely, when the activity represents

contagion awareness, heightened awareness increases the tendency to deviate from

the mean flow.

This modelling approach translates into the following mathematical structure.

(1) Selection of the walking direction: If the density is high, pedestrians will

move away from the more crowded areas, in the direction of νV , whereas, if the

density is low, pedestrians will move toward the target identified by νT . Therefore,

the tentative walking direction is

ω∗ =
ρνV + (1− ρ)νT

||ρνV + (1− ρ)νT ||
· (2.7)
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However, when pedestrians are under stress, they will tend to deviate from ω and

follow the mean flow as indicated by νS , while the opposite happens when pedes-

trians are aware of potential contagion. Accordingly, the final walking directions ω

when pedestrains are under stress (denoted by ωs) and under contagion awareness

(denoted by ωc) are as follows

• Stress:

ωs =
uνS + (1− u)ω∗

||uνS + (1− u)ω∗||
· (2.8a)

• Contagion awareness:

ωc =
(1− u)νS + uω∗

||(1− u)νS + uω∗||
· (2.8b)

After choosing their walking direction, pedestrians adjust their speed and their

activity changes based on the local density and activity, as well as the density gra-

dients ahead. Specifically, under stress (contagion awareness), pedestrians decelerate

when facing crowded areas ahead, with the amount of deceleration influenced by

their stress level and local density. Higher stress leads to less (more) deceleration,

and higher local density leads to more deceleration. Conversely, less crowded areas

ahead cause pedestrians to accelerate, with higher stress increasing (decreasing) this

acceleration tendency and higher local density dampening it.

Regarding the activity variable, whether it represents stress or contagion aware-

ness, pedestrians are assumed to mimic the activity levels they perceive, increasing

their own activity when the level in the walking direction is higher and decreasing

it when the level is lower.

This modeling approach translates into the following mathematical structure.

(2) Selection of the walking speed: Pedestrians tend to adjust their walking

speed based on density and activity fields,

φ[ρ, u;ω,x] = α(x) a[ρ, u]ω, (2.9)

where α is a scalar field denoting the quality of the environment in which pedestrians

walk, and the functional a takes different expressions depending on whether it refers

to pedestrians under stress (denoted by as) and under contagion awareness (denoted

by ac), i.e.,

• Stress:

as[ρ, u] = w(∂ωρ) [ρ(1− u)H(∂ωρ) + (1− ρ)uH(−∂ωρ)] , (2.10a)

• Contagion awareness:

ac[ρ, u] = w(∂ωρ) [ρuH(∂ωρ) + (1− ρ)(1− u)H(−∂ωρ)] . (2.10b)
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∂ΩeExit ∂Ωe Exit
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Figure 1. Geometry of the walking venue, where Ω represents the entire domain, Ωo corresponds
to the region occupied by obstacles, ∂Ωe denotes the exits, and Ωp indicates the area where

pedestrians are initially located.

In Eqs. (2.10), H(·) is the Heaviside function that takes zero/one for nega-

tive/positive arguments, and w(·) is a weighting function that depends on the

derivative of the density in the walking direction, i.e.,

w(∂ωρ) = − ∂ωρ√
1 + (∂ωρ)2

, (2.11)

so that w → ∓1 when ∂ωρ→ ∓∞.

(3) Update of the activity: Pedestrians modulate their own activity levels based

on the activity levels they perceive around them,

ψ[u;ω] = β (uω − u) , (2.12)

where β is a constant and uω is the perceived activity in the walking direction

defined as

uω = u+
∂ωu√

1 + (∂ωu)2
[(1− u)H(∂ωu) + uH(−∂ωu)] , (2.13)

Note that uω → 0 and 1 when ∂ωu→ ∓∞.

3. Numerical results

This section is devoted to the numerical resolution of the model presented in Sec-

tion 2. First, the numerical method used and the simulation setup are presented.

Then, two case studies are discussed to assess the model’s ability to capture the

complex crowd behavior resulting from the interplay between pedestrian psychology

and collective dynamics.
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3.1. Numerical scheme and simulation setup

The macroscopic model is solved numerically using the Finite Volume Method

(FVM) 15,11 to ensure that the balance properties inherent in the continuum formu-

lation of the model are preserved within the discrete equations. The set of macro-

scopic equations, Eqs. (2.1), can be rewritten as

∂U

∂t
+
∂F

∂x
+
∂G

∂y
= S, (3.1)

where

U =


ρ

ρξx
ρξy
ρu

 , F =


ρξx
ρξ2x
ρξxξy
ρξxu

 , G =


ρξy
ρξxξy
ρξ2y
ρξyu

 , S =


0

ρϕωx

ρϕωy

ρψ

 . (3.2)

We use the Lax-Friedrichs scheme 9, which discretizes the system of equations for-

ward in time and centered in space, yielding

Un+1
i,j = Un

i,j −∆tn

[
Fn
i+ 1

2 ,j
− Fn

i− 1
2 ,j

∆x
+
Gn

i,j+ 1
2

−Gn
i,j− 1

2

∆y

]
+∆tnS

n
i,j , (3.3a)

where

Fn
i± 1

2 ,j
=

1

2
[F (Un

i,j) + F (Un
i±1,j)± αn

x(U
n
i,j − Un

i±1,j)], (3.3b)

Gn
i,j± 1

2
=

1

2
[G(Un

i,j) +G(Un
i,j±1)± αn

y (U
n
i,j − Un

i,j±1)], (3.3c)

being

αn
x = max

i,j
(ξx)

n
i,j , αn

y = max
i,j

(ξy)
n
i,j . (3.3d)

In Eq. (3.3a), the time step ∆tn = min{∆x/αn
x ,∆y/α

n
y} is adjusted for each n to

satisfy the CFL condition.

In all simulations discussed below, we use α = 1 in Eq. (2.9) over the entire

domain, β = 1 in Eq. (2.12), and we consider a rectangular computational domain

Ω, as shown in Fig. 1. The domain Ω is discretized using a uniform mesh with

a grid size of ∆x = ∆y = 0.02. There are two exits labeled ∂Ωe ⊂ ∂Ω on the

boundary - one on the left and one on the right - for outflow purposes only. The

remaining part of the domain boundary, ∂Ω − ∂Ωe, is considered an impenetrable

wall, like the obstacle inside the domain, bounded by a rectangular region labeled

Ωo. Specifically, the impenetrability condition is

ξ · n = 0, x ∈ (∂Ω− ∂Ωe) ∪ ∂Ωo, (3.4)

where n is the unit vector normal to the wall.

In conjunction with the previously defined boundary conditions, Eqs.(3.3) are sup-

plemented with initial conditions that specify values of the density ρ0, velocity ξo,

and activity u0 fields over the region Ωp ⊂ Ω initially occupied by pedestrians.
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3.2. Case studies

In this subsection, we present two representative case studies for which the model is

solved numerically. In addition to contour plots of the density and activity fields, two

gross quantities are computed to gain further insight into the pedestrian dynamics

during exit. First, the normalized pedestrian density, N , namely the fraction of

pedestrians in the domain divided by the initial number of pedestrians, which allows

us to determine the exit time. Second, the mean activity, U , which is a proxy for

social dynamics. Mathematically, these quantities are defined as follows:

N =

∫
Ω
ρdx∫

Ω
ρ0dx

, U =

∫
Ω
ρudx∫

Ω
ρdx

· (3.5)

Case study I: Evacuation under stress vs. contagion awareness

In this case study, we compare crowd evacuation dynamics under the two proposed

social behaviors, namely stress and contagion awareness. Specifically, we ran two

separate and independent simulations with identical boundary and initial condi-

tions. The initial crowd was at rest, uniformly distributed over the domain Ωp with

a density of ρ0 = 0.5 and an activity of u0 = 0.8, representing the stress in one

simulation and contagion awareness in the other. The symmetry of the initial and

boundary conditions ensures that symmetry is maintained in both halves of the do-

main throughout the evacuation. Therefore, the two social dynamics are contrasted

with side-by-side snapshots of the density and activity fields in Figs. 2 and 3, re-

spectively, where pedestrians move under stress on the left and under contagion

awareness on the right. This comparative approach provides an insightful under-

standing of how different social behaviors affect evacuation time, flow rates, and

congestion.

As can be seen in Fig. 2(a)-(b) and Fig. 4(a), the crowd under stress initially ac-

celerates faster and starts evacuating earlier than under contagion awareness. This

is consistent with the acceleration models given by Eqs. (2.10), which predict a

higher acceleration of pedestrians under stress when close to vacuum regions. The

activity contour plots in Figures 3(a)-(f) show that stress and contagion awareness

spread through the crowd at different rates. The activity contours for stress were

nearly uniform, indicating rapid spread throughout the domain, whereas the activ-

ity contours for contagion awareness have localized areas of high and low values.

Furthermore, as evacuation progresses, the mean activity decreases in both cases,

but with a steeper negative slope for contagion awareness, as shown in Fig. 4(b).

By contrasting the two social dynamics, we can see that stress spreads faster

than contagion awareness and is also a more deeply rooted social trait. This is

because pedestrians with contagion awareness do not exhibit the herding behavior

typical of evacuations under stress. Herding behavior leads to the formation of high-

density regions near walls, as shown in Fig. 2(c)-(d), where pedestrian stress levels

increase and become more persistent.
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(a) t = 1 (b) t = 3

(c) t = 5 (d) t = 7

(e) t = 9 (f) t = 11

Figure 2. Case study I: Snapshots of the density field contour plots. Left side: Evacuation under

stress; Right side: Evacuation under contagion awareness.

Case study II: Evacuation under stress during an incident

In this case study, the activity variable is used to represent the pedestrians’

stress level, and the goal is to demonstrate how our model can capture stress changes

during an emergency caused by a restricted exit. Specifically, we simulate an incident

where an exit suddenly closes at time tc = 6, forcing pedestrians to reroute to the

remaining open exit. Initially, the crowd is divided into two groups at rest with

identical activity, u0 = 0.5, but different densities of 0.7 (right group) and 0.3 (left

group). These different density values are used to assess their effect on the dynamics
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(a) t = 1 (b) t = 3

(c) t = 5 (d) t = 7

(e) t = 9 (f) t = 11

Figure 3. Case study I: Snapshots of the activity field contour plots. Left side: Evacuation under

stress; Right side: Evacuation under contagion awareness.

of the crowd and the propagation of stress.

Despite the asymmetric initial conditions, the early pedestrian flow appears

symmetric overall. However, there are pedestrians that move from the right side

of the domain to the left as shown in Fig. 7(a). This migration is expected as

pedestrians initially try to avoid the more crowded area on the right. Fig. 7(b) shows

that the mean activity of both groups decreases similarly early on as pedestrians

can find less crowded areas to move to, thus reducing their stress levels.

When the right exit abruptly closes at time tc, the target direction field is imme-
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(a) Normalized pedestrian density (b) Mean activity

Figure 4. Case study I: Mean quantities during evacuation.

diately recalculated based on the changed geometry, so that pedestrians only move

towards the remaining open left exit. In fact, the density contours in Fig. 5(c)-(d)

show that pedestrians on the right are gradually redirected to the left, which is fur-

ther evidenced by the slight negative slope in Fig. 7(a) for 6 ≲ t ≲ 13. Interestingly,

Fig. 7(b) shows a sharp increase in mean activity after tc, confirming that the exit

closure event causes an increase in overall pedestrian stress levels.

In addition, large activity values appear on the right side starting at tc, as

shown in Fig. 6(c), indicating that the sudden loss of the exit creates tension and

discomfort for pedestrians due to diversion and crowding effects. This demonstrates

the ability of the model to accurately capture these real world phenomena.

4. Conclusions

In this paper, we have proposed a novel macroscopic modeling framework to de-

scribe the dynamics of social crowds. There are two main innovations. First, the

introduction of an activity variable that captures the evolving psychological states

of pedestrians, such as stress or contagion awareness. This allows modeling the com-

plex interplay between pedestrian psychology and crowd dynamics, which has not

been done before at the macroscopic level. Second, the “mechanical” and “social”

behaviors of the crowd are coupled by a second-order crowd model. This allows for

a more accurate description of dynamic situations involving pedestrian acceleration

or deceleration.

We demonstrated the capabilities of the model by applying it to pedestrian

egress scenarios and examining the role of activity in shaping crowd flow patterns.

The case studies showed that dynamic changes in activity, representing stress or

awareness, can significantly alter crowd behavior. This highlights the need to move

beyond models that make static assumptions about pedestrian psychology.

The proposed approach opens up exciting research directions for developing more
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(a) t = 2 (b) t = 5

(c) t = 7 (d) t = 10

(e) t = 15 (f) t = 20

Figure 5. Case study II: Snapshots of the density field contour plots (the right door is closed at

tc = 6).

realistic macroscopic models of social crowds, with important practical implications

for crowd management and safety. Future work can build on the foundation estab-

lished in this paper to include additional psychological factors beyond stress and

awareness. For example, emotional states such as anger or fear that cause demon-

strators to shift from peaceful to riotous behavior, or crowd leadership dynamics,

social ties, and communication networks that influence cooperative behavior in re-

sponse to a natural disaster or terrorist attack. Incorporating these factors into

models can greatly expand the breadth of applications that can be studied.
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(a) t = 2 (b) t = 5

(c) t = 7 (d) t = 10

(e) t = 15 (f) t = 20

Figure 6. Case II: Snapshots of the activity field contour plots (the right door is closed at tc = 6).
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