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Abstract

Unsupervised representation learning with variational inference relies heavily on
independence assumptions over latent variables. Causal representation learning
(CRL), however, argues that factors of variation in a dataset are, in fact, causally
related. Allowing latent variables to be correlated, as a consequence of causal
relationships, is more realistic and generalisable. So far, provably identifiable
methods rely on: auxiliary information, weak labels, and interventional or even
counterfactual data. Inspired by causal discovery with functional causal models,
we propose a fully unsupervised representation learning method that considers a
data generation process with a latent additive noise model (ANM). We encourage
the latent space to follow a causal ordering via loss function based on the Hessian
of the latent distribution.

1 Introduction

The objective of extracting meaningful representations from unlabelled data is a longstanding pursuit
in the field of deep learning [2]. Conventionally, methods of unsupervised representation learning have
concentrated on unveiling statistically independent latent variables [9, 15,41} 27, [10], demonstrating
appreciable success in synthetic benchmarks and datasets where generation parameters can be
carefully manipulated [28]]. However, it is essential to acknowledge the differences between controlled
environments and real-world scenarios. In the latter, the factors contributing to data variation are
often intertwined within causal relationships. Therefore, it is not merely advantageous but imperative
to integrate causal understanding into the process of learning representations [39], which can improve
the models from a generalisation, and interpretability, viewpoint.

The main challenge in learning meaningful and disentangled latent representations is identifiability,
i.e. ensuring the true distribution of a data generation process can be learned (up to a simple
transformation, given the inherent limitation that we can never observe the hidden latent factors from
observational data alone), implying the model to be injective (one-to-one mapping) onto the observed
distribution. Identifiability ensures that if an estimation method perfectly fits the data distribution,
the learned parameters will correspond to the true generative model. For example, discovering
independent sources of variation which are observed via a nonlinear mixing function is impossible
[13]. This established result from the nonlinear ICA literature has been replicated for disentangled
representation learning with variational autoencoders [28]].

Preprint. Under review.



Representation learning becomes identifiable when non-i.i.d. (independent and identically distributed)
samples from a given data generation process are considered [19, [14]]. For instance, temporal
contrastive learning [12]] and iVAE [19]] can provably ensure identifiability by utilising knowledge of
auxiliary information. Indeed, [19] develops a comprehensive proof that generative models become
identifiable when variables in the latent space are conditionally independent, given the auxiliary
information. Conditional independence given external information allows variables to be dependent
(or correlated) [20], which is more realistic. Further reinforcing the notion of dependence between
latent variables, the identifiability of unsupervised representations can be proven by assuming a latent
space to follow a Gaussian Mixture Model (GMM) and an injective decoder [23]]. Any distribution
can be approximated by a mixture model with sufficiently many components, including distributions
following a causal model. In fact, [23]] assumes that latent variables are conditionally independent,
given a component of the mixture model. The mixture component can correspond to using a “learned”
auxiliary variable [44], bridging the gap with [19].

These works [[12, 19} 20} 144} [14] on identifiable representation learning from observational data do not
consider latent causal structure. They build up, however, a theory around identifiable representation
learning which allows arbitrary distribution encoding statistical dependencies in latent variables.
Discovering the dependency structure in the latent space is at the core of causal representation
learning (CRL) [39] via the common cause principlzﬂ [36]. Learning causally related variables enable
(i) robustness to distribution shifts via the independent causal mechanism (ICM) principle; (ii) better
generalisation, e.g. in transfer learning settings; (iii) answering causal queries, i.e. estimation of
interventional and counterfactual distributions. Previous work on CRL, however, utilise data from
interventional [[1, 42] or counterfactual (pre- and post-intervention) [29, 13} 26] distributions for
learning identifiable causal representations.

In this work, we bridge the gap between identifiable representation learning from observational
data and CRL by using functional constraints (which are very common in the causal discovery [33]]
literature). We propose the first (to the best of our knowledge) method for unsupervised CRL under
some data and model assumptions. This can be done by assuming a data generation process in which
the latent space adheres to an additive noise model (ANM) and applies an injective nonlinear mapping
to generate observational data. The main contributions in this work include (i) Based on the universal
approximation capabilities of GMMs, we show that models with a latent ANM prior are identifiable
to block diagonal transformation; and (ii) We propose an estimation method that encourages the
latent space to follow an ANM by leveraging asymmetries in the learned latent distribution. More
specifically, the latent distribution’s second-order derivatives (Hessian) can be incorporated into a
loss function that promotes latent ordering. We term models trained with the proposed estimation
method as COVAE (causally ordered Variational AutoEncoders).

2 Related Works

Disentangled Representation Learning. Early efforts on unsupervised representation learning
focused on the Variational Autoencoder framework [22]]. 5-VAE [9] and extensions [21} 16} 130] rely
on independence assumptions between latent variables to learn disentangled representations [27, [10].
Despite showing some success, there is a lack of theory around the identifiability of independent
representations. In fact, learning independent (disentangled) representations from i.i.d. data in an
unsupervised manner is provably impossible [13} 28]].

Representation Learning with Auxiliary Information. A line of work based on nonlinear ICA
leverages auxiliary information to learn identifiable models. [19] derive a more general proof of
identifiability using the concept of conditional independence given auxiliary variables. An extension
of nonlinear ICA, called Independently Modulated Component Analysis (IMCA) was proposed
in [20]], where the components are allowed to be dependent. On the contrary, [23]] prove that
identifiability of deep generative models can also be achieved without auxiliary information by
considering a GMM prior in the latent space. In the same line, empirical results in [44] show that the
GMM prior assumption is as efficient as utilising auxiliary information in terms of learning stability
(latents learned for different training seeds are correlated).

“If two observables X and Y are statistically dependent, then there exists a variable Z that causally
influences both and explains all the dependence in the sense of making them independent when conditioned on
Z. As a special case, Z can coincide with X or Y.”
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Figure 1: [Left] Independence assumption used in previous work for disentangled representations
such as beta-VAE and extensions. [Right] We propose to model causally related latent variables.
CRL is made possible by using a mixture model in the latent space which approximates an structural
causal model (SCM) with functional constraints. zi,zo are latent variables, and u correspond to
mixture components.

Causal Representation Learning.  Following the common cause principle [36]], causal relation-
ships between variables also imply statistical dependencies. Recent works have shown that it is
possible to model causal relationships given access to either interventional or non-i.i.d. data. To
this end, the method in [I]] uses an injective polynomial decoder and the overall model is trained on
both observational and interventional data. Similarly, [42] consider the case of an injective linear
decoder and directly optimize the score function of the distribution (in both the latent and observation
space). In [29] a setting where observations are collected before and after unknown interventions (i.e.
counterfactual data) is introduced, while [3]] extends this idea to causal graphs of higher complexity.
Under the non-iid scenario, [26] focuses on extracting causal factors from spatiotemporal data by
performing interventions across different time steps. There also exist works that assume some level
of supervision, i.e. having access to ground-truth causal factors. [40] propose a method based on
the GAN framework where the prior follows a nonlinear Structural Causal Model (SCM). Others
[43] instead model exogenous noise directly, which is then mapped to causal latent variables via a
linear SCM. Table[T]describes data and latent space assumptions of previously existing models in
comparison to the proposed method.

Table 1: Comparison of assumptions for identifiability proofs. We classify methods by type of training
data: observational (obs), interventional (int) or counterfactual (count); and latent assumptions:
independent (ind), conditionally independent (cond ind), with auxiliary information (aux) or structural
causal model (SCM).

Method Data Latents

ADA-GVAE [29] count ind

IVAE [19] obs + aux cond ind | aux

VADE [16l[44], MFC-VAE [7,23] obs cond ind | learned aux
CAUSALVAE [43], DEAR [40] obs + aux SCM

[, int SCM

ILCM [3]], CITRIS [26] count SCM

Ours (COVAE) obs SCM (ANM)

3 Identifiability of Latent Additive Noise Models

A key challenge in unsupervised representation learning is identifiability. The intuition is that if two
parameters result in an identical distribution of observations, then they must be equivalent in order to
ensure model identifiability. Note that identifiability is the property of the data generation process,



and not of the estimation method. Model identifiability is important because it gives theoretical
guarantees that an estimation method is capable of learning the true variables that generated the
observed data. Therefore, we first define our model assumptions, show identifiability results and
leave the description of the estimation method for the next section. In this section, we define and
distinguish between the different forms of identifiability and theoretically show that stronger forms
of identifiability can be guaranteed when the latent variables are causally ordered.

3.1 Preliminaries

We assume the data generation process maps a latent space z, following a structural causal model
(SCM), to an observational space x as

x = £,(z) + €a, P(z) = HP(ZZ- | pa(z;)). (1)

f, : R — R? is a non-linear injective mapping (or mixing function), d is the number of latent
variables and o = |O| > d. P(z) is a distribution entailed by a SCM following a directed acyclic
graph (DAG) G, containing d nodes, which describes the true causal structure of the latent. pa(z;)
are the parents of z; in G.

Additive Noise Models. We assume that the latent SCM
consists of a collection of assignments following an additive
noise model (ANM) z; == f;(pa(z;)) + €;. €; is a noise term a e @
independent of x;, also called exogenous noise. ¢; are i.i.d. from
a smooth distribution P°. When using an ANM assumption e e e\a
over z, the latent distribution in[T]becomes \

P(z) = [[ Pz | pa(zi) = [[P*(zi - filpa(z))). @ ° @

This assumption is particularly important to demonstrate guar- Fjgure 2: Data generation process
antees on stronger forms of identifiability. Assuming a func- wjth a Jatent SCM (endogenous and
tional form for the causal mechanism between variables, such  exogenous variables) causing an ob-
as ANMs [111, 34], is an established method for identifying  gervation space.

causal relationships [33} 8] due to asymmetries in the joint dis-

tribution. Moreover, the ANM assumption has been shown to

perform well on real benchmarks from various domains such as meteorology, biology, medicine,
engineering and economy [31]], for the task of causal discovery.

Causal Ordering. Since we assume G to be a DAG, there is a non-unique permutation 7 of d
nodes such that a given node always appears first in the list compared to its descendants. Formally,
T; < T; <= j € de(z;) where de(z;) are the descendants of z; in G (Appendix B in [33])).

3.2 Identifiability Equivalence

The exact definition of model identifiability can be too restrictive. In reality, identifying a represen-
tation up to a simple transformation is enough. Therefore, we now formally define identifiability [I]
and its weaker forms, which guarantee identifiability up to affine transformation [2| permutation and
scaling[3] and block diagonal and scaling transformations ] In the case of an ANM data generating
process, [35] demonstrates the identifiability of models with only observational data; further, [37]
discuss the identifiability of these models under data score functions. However, they do not discuss
the identifiability of latent ANM models.

In this section, we define and make a distinction between different forms of identifiabilities and
theoretically show that stronger forms of identifiability can be guaranteed when latent variables are
causally ordered.

Definition 1. (Strong Identifiability) For parameter domain © and equivalence relation ~ on O, the
considered model is ~-identifiable if equation[3]is satisfied.

Py, (x) = Py, (x),= 01 ~ 0s. 3)



Remark 1. According to [19]], strong model identifiability makes the latent space P(z) identifiable.
Definition 2. (Affine Equivalence, ~4) For § = {f,p} a set of parameters corresponding to the
mixing function and prior, the affine equivalence relation ~ 4 on © is defined as:
(£,p) ~a (£,9) &= 3 AcR™"ceR" st. flx)=Af'(x)+c,VxcO. @)
where A is an invertible matrix and O is an observational data space.
Remark 2. ~ 4 states that the images of f ! and -1 are related by an affine transformation.
Definition 3. (Permutation Equivalence, ~p) For § = {f, p} a set of parameters corresponding to
the mixing function and prior, the permutation equivalence relation ~p on © is defined as by:
(f,p) ~p (£,p) «= 3 PR ceR" st flx)=Pflx)+c¥xecO. (5
where P is a block permutation matrix and O is an observational data space.
Remark 3. ~p states that the images of f ! and £~ are related by rotation, scaling, and translation.
Definition 4. (Block Diagonal Equivalence, ~ ) For § = {f p} a set of parameters corresponding
to the mixing function and prior, the identity equivalence relation ~p on O is defined as by:

(f,p) ~p (£,p) < I D,c st f'(x)=DFf*(x)+c,VxeO. (6)

where D is a block diagonal matrix, ¢ € R4 is a shift vector, and O is an observational data space.

Remark 4. ~p states that the images of f~! and -1 are related just by translation and scaling.

3.3 Identifiability of Latent ANMs

Universal Approximation of GMMs. Assuming the data generating process is an affine or
piece-wise affine function, GMMs with a sufficient amount of components can model any densities
in the limiting case [32], which in turn breaks the symmetry in the latent space behaving like
auxiliary information in iVAE [44] 23]. In light of this, we model our latent distribution P(z) =

ILP(z; — fi(pa(z))) = E}]:1 7N (115, ;) as a mixture of densities.

Theorem 1. (Identifiability of z under G) Let f,, f,, satisfying injectivity assumption with y ~
P(z),y ~ P(z), where P, P follow the same causal graph G. Suppose £,(y) and £,(y') are equally
distributed, then, P(z) ~ P(z).

Remark 5. This theorem is similar to, but goes beyond, Theorem E.1 in [23]]. We show equivalence
up to ~ rather than ~ p, given that the latent variables are constrained with respect to some causal
graph (with all conditional independencies).

The proof is detailed in the appendix. The main outline of this proof includes showing that, under the
constrain that the latent distribution respects the same causal graph G, the block permutation matrix
(in Theorem E.1 of [23]]) can be reduced to a diagonal matrix. Similar to [23] we approximate the
posterior distribution using GMMs.

Lemma 1. (Identifiability of z under causal ordering) In the case when only causal ordering is
known, the strong identifiability in theorem[I|reduces to block diagonal identifiability (~p).
Remark 6. Given the fact that constraining latent variables based on the complete causal graph may
not be feasible, the lemma relaxes this constraint to enforce causal ordering, which guarantees ~p
identifiability. In section 4] we show how to achieve causal ordering in the latent space.

Theorem 2. (Model Identifiability) Let f,, £, satisfy the injectivity assumption withy ~ P(z),y" ~
]f”(z), where P, P follow the same causal graph G and let D C R®, where 0 = |O| such that £,, £, are
injective on to D. Suppose £,(y) and £,(y) are equally distributed, then, £,(z) = f,(z).

Remark 7. This theorem is similar to, but goes beyond Theorem D.4 in [23]]. We show equivalence

up to ~ rather than ~ 4, given that the latent variables are constrained with respect to some causal
graph (with all conditional independencies).

We detail the proof in the appendix. Similar to the proof of Theorem [I} we use GMMs to model
our posterior distribution. The main component of the proof is to reduce affine transformation in
Theorem D.4 [23] to an identity transformation.

Lemma 2. (Model identifiability under causal ordering) In the case when latent variables follow
a particular causal ordering T rather than the entire causal graph G, there exists a block diagonal

transformation D such that £,(z) = (£, o D)(z).



4 Estimation

We now derive an estimation procedure for learning the data generation process in equation[I] The
findings of the previous section show that a data generation process with an ANM in the latent space
is identifiable if the causal graph (or causal ordering) is known. Therefore, we proceed to define a
loss function that will ensure that the latent space is causally ordered. Then, we describe a variational
inference estimation method which models latent variables using a GMM.

4.1 Causal Ordering Loss

In causal representation learning, the goal is to learn causal variables from observations without
information about the causal structure. However, there is always a causal ordering associated with a
DAG. It is well known in the causal discovery literature that a complete causal graph is not identifiable
from observational data without extra assumptions. If the functional form of the causal mechanism
is assumed to be an ANM, causal directions become identifiable due to asymmetries. Interestingly,
previous works on causal discovery [37,138] explore a property of the distribution of ANMs to find a
causal ordering. Here, we use the same property to enforce causal ordering instead of discovering it.

Enforcing causal ordering allows us to approximate the assumption of known causal ordering from
Lemmal[l] We use this property as a loss function for learning the latent representations. The property
is based on the Jacobian of an ANM distribution’s score function. Firstly, let the latent distribution be
P(z) which follows an ANM and P¢ be any quadratic exponential noise prior (e.g. Gaussian-like)
[37, 38]. We can express its score function as

_ OlogP*(z; — fi(pa(z))) 3 0f; 0logP<(z; — f;(pa(z;)))

0z; ) 0z; 0z;
j€ch(z;)

V., logP(z) NG

Based on the above formalism it can be derived that Vgi loglP(z) = a <= 1z, is a leaf node, where
a is some constant and Vi log P(z) is i*" diagonal element of the distribution’s Hessian.

Proposition 1. Assuming that P(z) follows an ANM and let H}!

var

(z) = var (Vf log P(z)). The
latent space z can be causally ordered by minimising the causal ordering loss defined as

d—1 . -1
H! (z;y...,Z
Eorder = - E IOg 4 var(- d) —1 (8)
i Zj:i Hgar(ziw--azd)

Proof. The proof directly extends from analysing equation [/| As described in [37]], the minimum
variance in the latent log-likelihood’s hessian corresponds to a leaf node. The loss term L4, is
minimum if, and only if, the nodes at position ¢ are leaves. We show this by contradiction; without
loss of generality, consider the random latent order 7, s.t. 7; # i, then HSW.(Z) > €= Lorder > 0.
Based on the above expression L.qer — 0, <= 7; = 7, where 7; correspond to true causal order.
It is important to note that as the representations are learned end-to-end, enforcing this loss would
organise the latent order to follow the sorted true causal ordering. O
Hessian Estimation. To compute H! . (z), we approximate the score’s Jacobian (Hessian) with
Stein kernel estimators [25]] as described in [37]]:

JStein _ 7diag(GStein(GStein)T) + (K + 771>71<v?iiagv K> 9)
Where G®%¢1" = — (K + nI)~}(V, K) is the Stein gradient estimator [25], K is the median kernel,

I is the Identity matrix, and (a, b) correspond to applying operation a on b element-wise. The final
algorithm for computing L, 4e, is described in Alg.

4.2 Variational Inference

We are now interested in modelling a latent space with an arbitrarily complex distribution based on
an ANM using the deep variational framework. That is, learning a posterior distribution that can
approximate the ANM prior IP(z) given a sample from the observational distribution. A multivariate



Algorithm 1 Compute topological loss (Lyrger)

1: Inmitialize: £, 4 = 0
2: Given: z = f~1(x)
3: fori =0,...,d—1

4 zZ=2z[i]

5. v =var (J5¢"(z)) > Compute variance of a Jacobian of a score
6: v = softmax(—logv) > Smallest variance — highest v
7 Lorder+ = BCE(V,[1,0...0]) > First element should have smallest variance
8: return L, 4cr

diagonal Gaussian prior cannot model these distributions. Therefore, we consider a prior following
a GMM, following established literature [15} [17, [7]], which is proven to be identifiable and have
universal approximation capabilities [23]].

In particular, we utilise the framework from MFC-VAE [7]]. We consider the generative model to
be P(x,z,u) = P(x | 2)P(z | u)P(u). MFC-VAE choose a posterior Q(u,z | x) = Q(u |
x)Q(z | x), where Q(z | x) is a multivariate Gaussian with diagonal covariance and Q(u | x) a
categorical distribution over GMM components. Similar to MFC-VAE [7], we consider our inference
model as described above, where the mixture components are inferred via prior (as Q¢(u | x)
exp(Eqy (z/x) log Pp(u | 2))). In this case, the posterior Q(u, z | x) is a GMM and can approximate
the prior P(z) following a ANM. The ELBO for this model is described in Eqn. [L0} where E is over
Q(z | x) distribution.

Lripo = ~ElogP(x | z) + KL(Q(z | %) || (@) + EKL(Q(c [ ) || B(c [2))  (10)

Lemma 3. (Training Objective) Based on the proposition|[I|and lemmas[I)and 2] models trained
with the following objective: Liotqi = LerBO + 0Lorder, where will converge at true latents with
~p equivalence.

4.3 Neural Network Constraints

Injective Decoder. It is common to assume an injective decoder for proving the identifiability
of a data generation process [23]. When implementing a deep generative model in practice, some
constraints in the decoder are necessary to ensure that neural networks are modelling injective
functions. We follow similar modelling assumptions of ICE-BeeM [20]: (i) Monotonicity: The
latent dimension of the decoder is monotonically increasing, i.e., djy1 > d; Vi€ {0,..., L — 1},
where d; corresponds to the feature dimension at layer [ and L is the total number of layers in
the decoder. (ii) Activation: The activation function after every layer corresponds to LeakyReLLU
(max(0,z) + amin(0,z),« € (0, 1)). (iii) Full rank: All weight matrices f; are full row ranked, as
the number of rows is greater than or equal to the number of columns. (iv) Invertible sub-matrix: All
weight sub-matrices f] of size d; x d; are invertible.

Discussion: Proposition |1|shows that, given sufficient data and compute, under the non-linear ANM
assumption, latent representations are organised with respect to evidential ordering. Additionally,
given the organised latent representations, the causal relationships among the representations can
be estimated using conditional independencies similar to [37, |38} [18]]. We later discuss how latent
causal discovery can be achieved. As previously discussed in equation|[I] it is important to note that
we consider all features in z to be direct parents of x, thus any indirect cause y — (z; € z2) — X
cannot be recovered by our approach.

5 Experiments

Here, we demonstrate the effectiveness of latent ANM models with topological constraints on both
tabular (including a synthetic data generating process) and image (MorphoMNIST and Causal3DIdent)
datasets. We compare the proposed model against two baseline methods 5-VAE and MFC-VAE with
a single facet on mean correlation coefficient (MCC) and causal ordering divergence (COD).



5.1 Metrics

We compute different variants of MCC: (i) across multiple random seeds (MCC-R): measures the
stability of the training process given the model; (ii) with respect to ground truth variables (MCC-GT):
measures the faithfulness of the estimated latent variables to true latent variables [20]; and (iii) subset
MCC (MCC-SGQG): in the case when all parents of X are not observed, we measure the faithfulness
by considering a subset of latent variables. All three variants are formally described in definition [5}
As these MCC measures are permutation invariant by nature, to capture the perceived order among
latent variables, we also calculate COD, which measures the divergence of the topological order in an
estimated causal graph from the causal order, formally defined in equation[I3] In addition, to quantify
the injectiveness of the model we compute MIC and RRO defined in[7]

Definition 5. (Mean Correlation Coefficient) We compute the mean correlation coefficient with
respect to ground truth (MCC-G) as described in [20]. MCC-SG and MCC-R are based on MCC-G
and are described as:

MCC—SG(Z,Z):max{MCC—G(i[Sj],z), Vi={1,....|SI}, S:(:ZD} (11)
1

MCC-R({Zo, - 2x}) = 7o

> MCC-G(2, 70), (12)
k

where 2, = f;_'(X), S is the set of all the partition indices of 2 with the size of |z, z corresponds to
the ground truth latent features and K total number of experimental runs.

Definition 6. (Causal Order Divergence, COD) Similar to divergence metric in [37, 38]], we define
COD as:

d d
COD(7,A) => > Ay (13)
i=0 j>i
where 7 = {0, ..., d} is the expected order and A is an estimated adjacency graph predicted using

the resulting latent space after training.

Definition 7. (Mean Injectivity Coefficient, MIC) Based on the network constraints described in
section[4.3] we compute the MIC to measure the injectivity of the model. MIC is formally described
as:

MIC(f):mm{wzj:m, Vze{O,...,|f|}} (14)
where, ci, ri correspond to number of columns and rows of f;, with abuse of notation, we use C = (jﬁ)
as a set of all partitions of column indices with size 74, and | S| is the cardinality of set .S.

Remark 8. We measure the average row rank ratio RRO = (% > Randi]j(ﬁ» and MIC (ref.
definition [T4) to measure the injectivity of the decoder.

5.2 Data Generation

Simulation Data: To generate the synthetic dataset we first randomly generate a latent causal DAG
with n nodes and e edges using [46]. We randomly select all the involved structural causal models f;
with an injective mapping from pa(z;) to z,. Finally, we select an injective random transformation
function f, mapping from latent space z to observational data X. In our experiments we generate
2,000 datapoints from SYN-2, SYN-15, and SYN-50 processes, where SYN-K correspond to the
above data-generating process with latent variable z € R* and observational data X € R2*,

Image Datasets: We further extend our method on imaging datasets, which include MorphoMNIST
[4] variants and Causal3DIdent [43]. In the case of MorphoMNIST, we use MorphoMNIST-IT,
MorphoMNIST-TI, MorphoMNIST-TS, and MorphoMNIST-TSWI variants where I, T, S, and W
correspond to latent variables z with the semantics of intensity, thickness, slant, and width respectively.
We detail all the data-generating processes in Appendix. All the MorphMNIST variants have 60,000
training images and 10,000 testing images. Similarly, Causal3DIdent includes 252,000 training



samples and 25,200 test samples that were generated using a fixed causal graph with 10 nodes (more
details about this dataset can be found in [43], Appendix B).

5.3 Results

In each of our experiments, we adopt a model

adhering to the properties delineated in Section Taple 2: MCC and COD results on synthetic
Observations pertaining to MIC and RRO  gagasets with 2, 15, and 50 nodes in the latent space

measures suggest that the injectivity of the de- ajong with imaging datasts MorphoMNIST-IT and
coder is predominantly influenced by choice of MorphoMNIST-TSWI.

architecture and the dataset under consideration.

For instance, the MIC for the SYN-2, SYN- ﬁgg?c])sig)) SYN-2
15, and SYN-50 datasets are recorded as 1.0, COD () ~ MCCR() MCC-G(T)
0.68, and 1.0, respectively, while the correspond- VAE 0.13 £0.08 0.11 0.26+ 0.03

ing RRO values are 0.88, 0.93, and 0.95. To ~ MFC-VAE  0.174£0.09 0.14  035+0.06
. . L1 COVAE 0.00 £ 0.01 0.62 0.52 + 0.07

gauge the effectiveness in terms of stability and

faithfulness, we tabulated the results concerning SYN-15

MCC-R and MCC-GT metrics for synthetic and VAE 1.68 +0.22 0.21 0.22 £0.02

image datasets in Table[2] Here, we employed MFC-VAE 143 024 0.26 0.26 4 0.03

COVAE 0.03 + 0.01 0.42 0.34 + 0.03

five random seeds to compute the MCC-R and

report the mean and standard deviation across SYN-30

these five runs for COD and MCC-G. These re- MF\(’jASAE 2?3 i g-g é 8-2 8-32 i g-(z)‘l‘

§ults, illustrate that given additive noise model§ COVAE 078 £ 0.46 0.39 0.34 £ 0.02

in latent space, the proposed loss enforces evi-

dential structure as COD goes to 0 and achieves MORPHOMNIST-IT

stronger identifiability which can be inferred COD ()  MCCR() MCC-SGM)
from MCC-R and MCC-G values. VAE 1.61 +0.44 0.29 0.23 +£0.11

o . o MFC-VAE ~ 1.04+046 036 0344009
Similarly, in the case of imaging datasets for COVAE 0.0 0.59 0.47 + 0.08
both MOI‘phOMNIST—IT and MOI‘phOMNIST— MORPHOMNIST-TSWI

TSWI we observed MIC of 1.0 and RRO of

0.85, and the resulting MCC-SG (as previously MF\QSAE ?:g; i 832 gig 8%;; i 8:82
described, in the case of image datasets, all the COVAE 0.0 0.61 0.31 4+ 0.04
parents are not observed) and COD measures are
described in Table E} In all our experiments, we
observed that topological ordering with respect
to the evidential graph is better enforced in COVAE and even in terms of stability and faithfulness
of the latent representations, COVAE outperforms VAE and MFC-VAE. Additional experiments on
other variants of the MorphoMNIST dataset and Causal3DIdent are detailed in the Appendix.

6 Conclusion

In this work, we propose the first fully unsupervised causal representation learning method for data
adhering to ANM by imposing a topological ordering on the latent space that corresponds to the
underlying causal graph. We present a multitude of results pertaining to the identifiability of latent
representations, demonstrating these outcomes both empirically and experimentally. Evaluations
on synthetic and image datasets corroborate the efficacy of the proposed estimation method, which
in practice exhibits superior identifiability. Possible future works would be to investigate sample
efficiency and robustness of the models trained with the proposed estimation method. Additionally,
extending the proposed approach from ANM to post-ANM and simplifying modelling assumptions
would be of particular interest. Although modelling assumptions are standard and widely used in
practice, formulating a model and estimation methods without these assumptions would be ideal.
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A Proofs

Theorem 3. (Identifiability of z under G) Let 1, £, satisfying injectivity assumption with y ~
P(z),y’ ~ P(z), where P ~IP’follow the same causal graph G. Suppose £,(y) and £,(y/') are equally
distributed, then, P(z) ~ P(z).

Remark 9. This theorem is similar to, but goes beyond, Theorem E.1 in [23]]. We show equivalence
up to ~ rather than ~ p, given that the latent variables are constrained with respect to some causal
graph (with all conditional independencies).

Proof. The proof is detailed in the Appendix. The main outline of this proof includes showing that,
under the constrain that the latent distribution respects the same causal graph G, the block permutation
matrix (in Theorem E.1 of [23]]) can be reduced to a diagonal matrix. Similar to [23]], we approximate
the posterior distribution using GMMs.

Based on our formulation, we consider the following:

Yy~ ]P H]Pg Zz | pa(zz)) = ﬂ-(j)N(lLLj’ E])

M-

I
=)

J
J

y NP HPQ Zz|pa Zz Z ,uja )
=0

Now, we consider i/ = Ay + b; we show that when the latent causal distribution is known, A is the
identity matrix.

Without loss of generality, we consider 3’ to belong to component k& € {0,...,J}. Given that
y' = Ay + b, a linear transformation of a Gaussian random variable results in:

Y = AN AT

As both matrices are diagonal and positive semi-definite (PSD), spectral decomposition using singular

value decomposition (SVD) results in ¥, = ViViE =V V! ;‘:, where V},, V'}, are PSD matrices and
are unique up to orthogonal transformation = Vj, = RV} for some unitary matrix Rj, for each and
every k € {0, ..., J}, resulting in:

52 = iRy, = A%/
Without loss of generality, let’s consider two components k£ = 1 and k = 2,

2;1/22;1/2 _ 251/2251/2 N VlR1Zfl/2 _ %RQZ;I/Q
By rearranging terms, we get:

R1(2;1/2 1/2)R — VW,

As Ry, Rs are unitary, 31, X9 are diagonal and PSD, and y, 3’ follow the same causal structure G,
the SVD decomposition of V;*V; results in R’ such that:

ViR, = AS? for A" := ViRy, wehave (A) 'A="* = A=1

This concludes the proof. O
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Description: The theorem mainly focuses on showing identifiability results when latent distribution
follows the same factorization with respect to a known causal graph and has an injective and a perfect
mixing function. Here, we show that based on the fact that GMMs are universal approximators of
any arbitrary latent density.

Lemma 4. (Identifiability of z under causal ordering) In the case when only causal ordering is
known, the strong identifiability in theorem[I|reduces to block diagonal identifiability (~p).

Proof. Similar to the previous theorem, we consider here the case of latent variables that can be
factorized w.r.t. two different causal graphs G, G’ with the same causal order 7.

J

y ~ P(z HPg z | pa(z)) =Y 7(HN (1, %)
§=0
J

y ~ Pz HPg (z: | pa(z:) = > _ 7N (@, %
=0

J

;)

(115,

Now, we consider y' = Ay + b; we show that when the causal ordering is known, A is a block
diagonal matrix.

Without loss of generality, we consider ¢’ to belong to component k € {0,...,J}. Given that
y' = Ay + b, a linear transformation of a Gaussian random variable results in:

Y = AN, AT

As both matrices are diagonal and positive semi-definite (PSD), spectral decomposition using singular

value decomposition (SVD) results in ¥, = ViViE =V v {, where V},, V'}, are PSD matrices and
are unique up to orthogonal transformation = V3, = RV} for some unitary matrix Rj, for each and
every k € {0, ..., J}, resulting in:

S2 = ViRy = A%/
Without loss of generality, let’s consider two components k£ = 1 and k = 2,

2;1/22;1/2 _ 251/22;1/2 = V1R12;1/2 = VQRQZ;/Q

By rearranging terms, we get:

RSP R = Ry Ry = Vi

As Ry, Ry are unitary and X1, X5 are diagonal and PSD with all distinct entries, and y and 4’ follow
same causal order 7, the SVD decomposition of Vl_1V2 results in R’, with transformation matrix D
such that:

ViR\D = A%1? for A’ :=ViR,, wehave (4)"'A=D%"?*= A=D
As the entries of 31, X5 are distinct and y, y’ follow the same causal order 7, the resulting transfor-
mation matrix is either diagonal or block diagonal in nature.
This concludes the proof.
O

Description: Given the fact that constraining latent variables based on the complete causal graph
may not be feasible, the lemma relaxes this constraint to enforce causal ordering, which guarantees
~ p identifiability. Intuitively, the transformation is diagonal in the case when the graph follows a
Markov chain structure, and block diagonal when the graph consists of multiple sister nodes at each
level.
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(a) Inference model (b) Generative model

Figure 3: Variational posterior Q(u, z | x) used during inference on the left and generative model on
the right. We do not give a causal interpretation for c in this case.

Theorem 4. (Model Identifiability) Let £,, f,, satisfy the injectivity assumption with y ~ P(z),y' ~
P(z), where P, P follow the same causal graph G and let D C R®, where o = |O| such that £, £, are
injective on to D. Suppose £,(y) and £,(y') are equally distributed, then, f,(z) = f,(z).

Remark 10. This theorem is similar to, but goes beyond Theorem D.4 in [23]. We show equivalence

up to ~ rather than ~ 4, given that the latent variables are constrained with respect to some causal
graph (with all conditional independencies).

Proof. We detail the proof in the Appendix. Similar to the proof of Theorem I} we use GMMs to
model our posterior distribution.

Similar to the proof of Theorem C.7 in [23]], we assume both f,, f'o are piece-wise affine functions and
are invertible on B(zg,26) N f5(RY), where B is a ball with radius §. Given both y, 3’ are sampled

from the same causal latent distribution, f, ~ f,. Since, f, is invertible on D, y = (£, o f,)(y) on
£-1(D). This results in f,(y) = £,(y’) for every v € £,1(D).

o

Given that the latent distribution follows the same causal distribution, the injectivity assumption
holds, and the mixing functions share the same pre-image, both mixing functions are identifiable.

O

Lemma 5. (Model identifiability under causal ordering) In the case when latent variables follow
a particular causal ordering T rather than the entire causal graph G, there exists a block diagonal
transformation D such that £,(z) = (f, o D)(2).

Proof. Similar to Lemma |l] l we consider the latent space to be factorized with respect G, G’ with
the topological order 7' resulting in block diagonal transformation function D : R — R such that
' =Dzforx ~ G, 2’ ~ G

As described in the previous theorem, we consider both f,, f, are piece-wise affine functions and are
invertible on B(x, 20) Nfy(R?). Based on the transformation D, f,(y) ~ (f,oD)(y) ¥ y € £, (D).

Since f,, f, are invertible, above expression can be rewritten as y ~ (£, o f, o D)(y) on £, (D). In
some special cases, where D is invertible (Markov chain structure in latent space), where D is mostly

diagonal matrix y ~ (D' of,of;1)(y) on f; 1 (D), we can infer that D is a diagonal transformation
on f,—1(D). In general cases, there exists an invertible transformation D1, D5 such that:

0"

o

of,oD)~ (Ditof,of, 1)+ (D of,0f )

From which we can conclude th%t D, D; are diagonal transformations on f‘o—l(D), for which we
have f,(y) = (f, o D)(v') Vy € £, 1(D).
O

Lemma 6. (Training Objective) Based on the proposition 1 and lemmas([l| 2} and models trained
with the following objective: Liotqi = LerBo + aLorder, where will converge at true latents with
~p equivalence.

Proof. ELBO Derivation:
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For this, we start with the data distribution as IP(x), and the aim is to maximize the log-likelihood of
this distribution:

log P(x

log// (z,u,z)dzdu

Let’s consider variational distributions Q(u, z | x).

log// X,U,2) z: ;dzdu

P(x,u,z)
Q(u,z | x)

Based on modelling assumption described in figure 3] Q(u, z | x) decomposes as Q(u | x)Q(z | x)

> IE(Q}(u,z|x) log

P(u|z P(z
= Bz [1ng(x =) +log qu || x)) +log Q(z( )X)}

P(z)
Q(z | x)

= Eq(apx) l0g P(x | 2) — Eq(apo KL (F(u | 2)Q(u | %)) — KL(P(@)|Q(z | x))

= Eq(ajx) log P(x | 2) + Eq(a)x) Eq(ulx) 108 + Eq(a1x) l0g

P(u]z)
Q(u | x)

= Lr1po = ~Eg(up 10g P(x | 2) + Egupo KL(P(u | 2)|Q(u | %)) + KL(P(2)|Q(z | %))
Based on proposition 1, we can infer that as L,,.4., — 0 the causal order is enforced in latent space:

z) = H]P)(zi | {Zig1, - -24})

Based on our assumptions, the considered model is injective, and based on lemmaﬂ] and@] we know
that the latent distribution and model converges to a unique solution with ~p equivalence given the
causal ordering of latent space.

Given infinite training data and compute, as L;otq; — 0, Lgrpo — 0 converging the obtained
unique distribution to true prior distribution. O

B Data Generating Process

B.1 MORPHOMNIST dataset

Here, we synthetic data based on MNIST digits [4]. We define multiple data-generating process
with four different variables thickness, width, slant, and intensity, and evaluate our proposed method
in terms of MCC'’s and COD. Here, thickness corresponds to the stroke thickness of a digit, width
corresponds to the total width of a written digit, slant corresponds to the shear factor along a hor-
izontal direction, and intensity corresponds to the average intensity of pixels in a digit. Functions
SetIntensity(x;i), SetSlant(x; s), SetWidth(x;w), and SetThickness(x;t) refer to the oper-
ations applied to the original MNIST digit to generate new image x with desired properties by
controlling image morphology. We use the data-generating process similar to the ones described in
[24], we formally describe them below.

Morpho-MNIST-TT: In this setting we consider two causal variables thickness and intensity, where
thickness causes intensity. Mathematically the functional relationship between variables are defined
as described in equation
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t:=f205+e¢ ¢ ~T(10,5)
i=fi264+191x0(2xw+5)+e € ~N(0,1) (15)
x = f, = SetIntensity(SetThickness(X;t);1)

Morpho-MNIST-IT: In this experiment we inverted a directionality from previous setting resulting
in intensity to cause thickness, which is mathematically described in equation

t:=f; 23 +0(i/255) + €5 €5 ~N(0,0.5) (16)
x = f, = SetThickness(SetIntensity(X;1);t)

Morpho-MNIST-TS: In this setup we use thickness and slant as causal attributes, where thickness
causes digit slantness, which is formally described in equation

t:= ft e €t €~ F(O, 5)
s:=f=10+5%0(2%t—5)+es e ~N(0,0.5) a7
x = fy = SetSlant(SetThickness(X;t); s)

Morpho-MNIST-TSWI: In this setup we increased a complexity by using intensity, thickness, slant,

and digit width as a causal attributes, where thickness causes slant, thickness and slant causes width,
and width causes intensity. This data-generating process is formally described in equation [I§]

t:i=fite e ~T(0,5)

s:=f,210+20%t + ¢, e ~N(0,5)

W= fu 210+ 15%0(0.5% 1) —0.25% 5+ € € ~N(0,1) (18)
i=fi 264 +191 x0(w/25) +¢ € ~N(0,1)

x := f, = SetIntensity(SetWidth(SetSlant(SetThickness(X;t);s);w);1)

C Experimental Setup

C.1 Code and Implementation

We use the latent GMM loss from MFC-VAE [7] inspired in the implementation from https:
//github.com/FabianFalck/mfcvae, We also append the code for the model and loss functions
used in the paper to the supplemental material.

C.2 Hyperparameters

In Table [3| we detail all the hyper-parameters used in our experiments. We use a fixed decoder
standard deviation in the case of CAUSAL3DIDENT and MORPHOMNIST, while in the case of
SYN-K dataset it remains learnable (described as ¢ in the table). It is also worth mentioning that
for the VAE method on CAUSAL3DIDENT, we trained a deeper model and also set the KL weight
term [ equal to O to ensure fair comparison with the other two methods and avoid posterior collapse,
respectively.

D Results

Table [2] depicts final results on MORPHOMNIST-TI, MORPHOMNIST-TS, and CAUSAL3DIDENT
dataset, respectively. For each method, we re-run all experiments and collect metrics across 5
different random seeds for MORPHOMNIST-TI and MORPHOMNIST-TS, and 3 random seeds for
CAUSAL3DIDENT. For the latter dataset, we observed that all three metrics exhibit high variance
across runs; however, it is clear that both MFC-VAE and COVAE are comparable methods.
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Table 3: Experimental details w.r.t models and datasets

DATASETS(]),
METHODS(—) VAE MFC-VAE CcoVAE
No. Layers 3ifk<3else 6
Training Steps 15600
No. Samples 2000
Batch Size 256
SYN-K Optimizer Adam
Learning Rate Se-4
o - 0.0 1.0
B 1.0 1.0 1.0
Decoder o o
No. Layers 6
Training Steps 6000
No. Samples 60000
Batch Size 256
MORPHOMNIST  Optimizer Adam
Learning Rate le-4
o - 0.0 1.0
B 1.0 1.0 1.0
Decoder o 0.5 0.5 0.5
Input resolution 64 x 64
No. Layers 4 3 3
Training Steps 19687
No. Samples 252000
CAUSAL3DIDENT  Batch Size 128
Optimizer Adam
Learning Rate Se-4
Hidden dim 256
Latent dim 256 16 16
Q@ - 1.0 1.0
B 0.0 0.01 0.01
Decoder o 0.1 0.1 0.1

Table 4: MCC and COD results on MorphoMNIST and Causal3DIdent datasets

METHODS(/), MORPHOMNIST-TI
METRICS(=)  "cop(])  MCC-R(1) MCC-SG(1)
VAE 131 +0.28 031 0.24 + 0.06
MFC-VAE 133+ 0.38 038  0.39+0.07
COVAE 0.0 058  0.38+0.06
MORPHOMNIST-TS
VAE 1.47 + 0.65 048 038+ 0.05
MFC-VAE  1.75 + 0.60 0.51 0.36 + 0.06
COVAE 0.0 056  0.41+0.05
CAUSAL3DIDENT
VAE 239+149 0.5 0.15 + 0.0
MFC-VAE  3.56 + 0.87 028 027 +001
COVAE 3.94 + 0.86 026  0.25+0.02
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