
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reinforcement Learning and Data-Generation for Syntax-Guided
Synthesis
Citation for published version:
Parsert, J & Polgreen, E 2024, Reinforcement Learning and Data-Generation for Syntax-Guided Synthesis.
in The 38th Annual AAAI Conference on Artificial Intelligence: AAAI Technical Track on Knowledge
Representation and Reasoning. 9 edn, vol. 38, Proceedings of the AAAI Conference on Artificial
Intelligence, AAAI Press, pp. 10670-10678, 38th Annual AAAI Conference on Artificial Intelligence, Canada,
20/02/24. https://doi.org/10.1609/aaai.v38i9.28938

Digital Object Identifier (DOI):
10.1609/aaai.v38i9.28938

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
The 38th Annual AAAI Conference on Artificial Intelligence

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 11. May. 2024

https://doi.org/10.1609/aaai.v38i9.28938
https://doi.org/10.1609/aaai.v38i9.28938
https://www.research.ed.ac.uk/en/publications/4b1907e5-87de-4f1a-bf46-e45c5715f311


Reinforcement Learning and Data-Generation for Syntax-Guided Synthesis

Julian Parsert1 2, Elizabeth Polgreen2,
1University of Oxford

2University of Edinburgh
julian.parsert@gmail.com, elizabeth.polgreen@ed.ac.uk

Abstract
Program synthesis is the task of automatically generating code
based on a specification. In Syntax-Guided Synthesis (SyGuS)
this specification is a combination of a syntactic template
and a logical formula, and the result is guaranteed to satisfy
both. We present a reinforcement-learning guided algorithm
for SyGuS which uses Monte-Carlo Tree Search (MCTS) to
search the space of candidate solutions. Our algorithm learns
policy and value functions which, combined with the upper
confidence bound for trees, allow it to balance exploration
and exploitation. A common challenge in applying machine
learning approaches to syntax-guided synthesis is the scarcity
of training data. To address this, we present a method for
automatically generating training data for SyGuS based on
anti-unification of existing first-order satisfiability problems,
which we use to train our MCTS policy. We implement and
evaluate this setup and demonstrate that learned policy and
value improve the synthesis performance over a baseline by
over 26 percentage points in the training and testing sets. Our
tool outperforms state-of-the-art tool cvc5 on the training set
and performs comparably in terms of the total number of prob-
lems solved on the testing set (solving 23% of the benchmarks
on which cvc5 fails). We make our data set publicly available,
to enable further application of machine learning methods to
the SyGuS problem.

1 Introduction
Syntax-Guided Synthesis (Alur et al. 2013) allows a user to
synthesize code that is guaranteed to satisfy a logical and
a syntactic specification, as shown in Example 1. The log-
ical specification is given as a quantified formula: in the
example, we must find a program such that ∀x, y.f(x, y) ≥
x ∧ f(x, y) ≥ y ∧ f(x, y) = x ∨ x(f, y) = y. The syn-
tactic specification is given as a context-free grammar. Ap-
plications of SyGuS include planning (Chasins and New-
comb 2016), deobfuscation (Jha et al. 2010), invariant syn-
thesis (Fedyukovich et al. 2019), verified lifting (Kamil et al.
2016), and generating rewrite rules in SMT solvers (Reynolds
and Tinelli 2017).

Surprisingly, the dominant techniques for SyGuS are still
based on enumerative synthesis (Reynolds et al. 2019; Alur,
Radhakrishna, and Udupa 2017), where the synthesizer ex-
haustively enumerates a grammar, and checks resulting pro-

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

grams against the specification until a correct solution is
found. Good search heuristics can lead to extreme differ-
ences in performance (Reynolds et al. 2019), so one would
expect machine learning techniques to be prominent.

In fact, in programming-by-example (PBE), where the
specification is in the form of input-output (I/O) examples,
the dominant heuristics are now machine-learning based (Ba-
log et al. 2017; Bavishi et al. 2019). In PBE, training data
is easy to generate by taking any program and generating
I/O examples for it. We hypothesize that the reason these
machine-learning techniques have not yet had a significant
impact in SyGuS with logical specifications is the lack of
easily available training data.

We present a synthesis algorithm that can learn its own
heuristics via a reinforcement learning (RL) loop with rela-
tively small quantities of training data. We use a Monte-Carlo
Tree Search (MCTS) based approach to search for solutions
within the syntactic specification using policy/value functions.
The policy and value functions are iteratively improved via
an RL loop. To evaluate a candidate program, we use a Satis-
fiability Modulo Theories (SMT) solver. Implementing these
techniques we were able to achieve an improvement of over
26 percentage points (34.7% baseline vs 60.9% in the best
iteration) on the testing set, and similar results on the training
set. Compared with the state-of-the-art tool cvc5 (Barbosa
et al. 2022) we can solve 182 problems that cvc5 cannot solve
and on average 25 more problems on the training set while
solving 6 fewer problems on the testing set.

To obtain training data, we develop a novel method for
automatically generating SyGuS problems, based on anti-
unification. Generating training data for logical specifications
is challenging. In PBE, the standard approach to generat-
ing data is to randomly generate solutions and their corre-
sponding input-output specifications. For example, we might
generate the solution (ite(≥ x y) x y) for f , where ite is
the if-then-else operator, and the specification f(2, 1) = 2,
f(2, 2) = 2, f(1, 1) = 1. This approach cannot be easily
applied to SyGuS with logical specifications because, if we
randomly generate solutions, it is extremely hard to infer a
meaningful logical specification that captures that solution
without also revealing the solution in the specification. This
means that any inferred specifications are unlikely to be rep-
resentative of real SyGuS problems. We could also randomly
generate logical specifications, but these are highly unlikely



1 ;; The background theory
2 (set-logic LIA)
3 ;; function to be synthesized
4 (synth-fun f ((x Int) (y Int)) Int
5 ;; syntactic constraint
6 ((S Int) (B Bool)) ;; non-terminals
7 ((S Int (x y 0 1
8 (+ S S)(ite B S S)))
9 (B Bool ((and B B) (or B B) (not B)

10 (= S S) (>= S S)))))
11 ;; universally quantified variables
12 (declare-var x Int)
13 (declare-var y Int)
14 ;; semantic constraints on the function
15 (constraint (>= (f x y) x))
16 (constraint (>= (f x y) y))
17 (constraint (or (= x (f x y))(= y (f x y

))))
18 (check-synth)

Example 1: SyGuS problem, expressing the semantic con-
straint: ∀x, y.f(x, y) ≥ x ∧ f(x, y) ≥ y ∧ (f(x, y) =
x ∨ f(x, y) = y), and a syntactic constraint.

to be feasible (i.e., to have solutions). Another approach used
in the literature for invariant synthesis problems is to mutate
existing specifications (Si et al. 2020), but 1) we must be
careful not to mutate the specification in a way that renders
the specification infeasible and 2) the approach in the litera-
ture does not generate training data with any new solutions,
only new specifications.

In contrast, the novel method we present for generating
training data for SyGuS generates new, meaningful logi-
cal specifications beyond PBE. We use syntactic unification
(where assignments to variables are found to make two ex-
pressions equal) and anti-unification (where a generalization
of two terms is found) techniques on existing SMT problems
to generate feasible and interesting logical specifications.
This, as opposed to mutating existing specs randomly, gener-
ates feasible problems with new solutions.

The main contributions of this paper are:
• We frame SyGuS as a tree search problem so that we

can use a Monte-Carlo tree search (MCTS) based synthe-
sis algorithm that uses machine learned policy and value
predictors trained in a reinforcement learning loop.

• We train policy and value predictors in an RL loop.
• We present a method for generating SyGuS problems from

first-order SMT problems using anti-unification and unifi-
cation to overcome a lack of training data.

• We evaluate our method on a combination of pre-existing
benchmark sets from the SyGuS competition (Alur et al.
2017) and our newly generated problem set and compare
it to the state-of-the-art SyGuS solver cvc5.

Related work: Machine-learning based synthesis methods
have been applied to PBE program synthesis problems (Ba-
log et al. 2017; Bavishi et al. 2019; Morton et al. 2020; Bunel
et al. 2018; Odena et al. 2021) where the specification of cor-

rectness is a set of input-output examples, and strategy syn-
thesis (Medeiros, Aleixo, and Lelis 2022). Two approaches
in literature use RL. The first uses a pre-trained policy that
is then updated using deductive reasoning guided RL (Chen
et al. 2020). The second applies RL training an agent to inter-
act with a Read-Eval-Print loop (Ellis et al. 2019). Neither of
these approaches are applied to synthesis with logical specifi-
cations, and so neither offers solutions to the challenges of a
relatively sparse training data set.

Common algorithms for solving SyGuS are based on Ora-
cle Guided Inductive Synthesis(OGIS) (Jha and Seshia 2017;
Solar-Lezama 2009), which alternates between a search phase
that enumerates the space of possible programs with various
heuristics (Reynolds et al. 2019; Feng et al. 2018; Alur, Rad-
hakrishna, and Udupa 2017; Abate et al. 2018; Lee et al.
2018), and an oracle that returns feedback on candidate pro-
grams. Previously, traditional MCTS has been applied with-
out learned guidance to expression search (Cazenave 2013),
and with learned guidance to program search (Toni, Erculiani,
and Passerini 2021). The closest to our work is Euphony (Lee
et al. 2018), which learns a probabilistic grammar and uses
this to guide an A∗ style search algorithm. Euphony is pre-
trained and requires a corpus of training data problems with
solutions, whereas we learn through RL and do not require
solutions in our training data.

RL (Laurent and Platzer 2022) and graph neural net-
works (Si et al. 2020) have been applied to invariant synthesis,
which is a version of synthesis with logical specifications,
without syntactic templates. This domain also suffers from
training data scarcity and data-driven approaches have to
consider ways to overcome this. For instance, (Si et al. 2020)
take existing loop invariant specifications and mutate them in
ways that are guaranteed to keep the solution the same.

The algorithm that we adapt to enumerative synthesis is
based on AlphaZero (Silver et al. 2018) and has successfully
been applied to first-order logic theorem proving (Kaliszyk
et al. 2018) and combinator synthesis (Gauthier 2020).

Anti-unification was first presented by Plotkin (Plotkin
1970). It is the dual of unification, which is widely used in the-
orem proving, logic programming, and term re-writing (Kut-
sia 2013; Yernaux and Vanhoof 2019; Baader and Nipkow
1998). Anti-unification has been applied to solving PBE prob-
lems (Raza, Gulwani, and Milic-Frayling 2014).

2 Background
Syntax-guided synthesis (SyGuS): A SyGuS problem, see
Example 1, is a tuple ⟨τ, f, ϕ,G⟩ where τ is a background
theory, f is the function to be synthesized, ϕ is a quantifier-
free formula and G is a context-free grammar. The task is to
find a body for f such that f is in the language specified by
G and the formula ϕ is τ -valid, i.e., the formula ∃f∀x⃗.ϕ(f)
must be true where x⃗ is the vector of free variables in ϕ.

Context-free grammars: A grammar G is a tuple G =
(N,T,R, St), where N is a finite set of symbols (non-
terminals); T is a finite set of symbols (characters of the
language); N and T are disjoint; R is a set of production
rules, where each rule is of the form N → (N ∪ T )∗, where
∗ represents the Kleene star operation; and St is a symbol



E

C

1 2

E + E

C + E

1 + E

1 + C

1 + 1 1 + 2
1 + E + E

. . .

2 + E

. . .

E + E + E

. . .

E → E + E | C
C → 1 | 2

Figure 1: Grammar and corresponding grammar tree.

in N (the start symbol). We use LG to denote the language
specified by the grammar G.

Given a context-free grammar G = (N,T,R, St), the
grammar tree is defined as follows: St is the only root (i.e.
node with no parent), and for every node r, r[1α → β] is
a child of r if α ∈ vars(r) and α → β ∈ R. Note that
r[1α → β] is the substitution of β for α for the leftmost
occurrence of a non-terminal variable α in r.

Figure 1 shows an example of a grammar tree. Every valid
parse tree according to the grammar is a path from the root
node to a leaf node of the grammar tree. Hence, every leaf
node denotes a complete program and if the language of the
grammar is infinite the resulting tree is also infinite.

3 Monte-Carlo Grammar Tree Search
We describe enumerative function synthesis as a single-player
game. Let P = ⟨τ, f, ϕ,G⟩ be a SyGuS problem. Each game
state consists of a static component, the specification ϕ which
does not change throughout the game, and a dynamic compo-
nent which corresponds to the vertices in the grammar tree of
G. Hence, every state s ∈ S of the synthesis game is a pair
⟨ϕ,H⟩ where H is a partial program generated by G. The set
of actions A that can be taken in a state solely depends on the
dynamic component – the expression H . If H is a complete
program we have a final state where no further actions can be
taken and we use an SMT solver to check if H is a solution
to P . If we have not reached a final state the possible actions
correspond exactly to all leftmost reductions for H . Thus, the
game tree corresponds to the grammar tree of the grammar
G where the root is the state ⟨ϕ,St⟩ with St being the start
symbol of G. For all other nodes, we have that if s = ⟨ϕ,H⟩
is a node in the game then s′ = ⟨ϕ,H ′⟩ where H ′ can be
obtained from H by one application of a grammar rule in G
is a child node of s

We now present the search algorithm as an agent playing
the synthesis game to find solutions. In Section 3.2 we discuss
how we incorporate machine learning with a balancing of

exploration and exploitation to guide this agent.

3.1 Algorithm
Similar to Kaliszyk et al (Kaliszyk et al. 2018), we adapt the
Monte-Carlo based tree search used in AlphaZero (Silver et al.
2018). The algorithm consists of four main phases: Big-Steps,
Rollout, Expansion, and Backpropagation. The algorithm’s
input is a SyGuS problem P = ⟨τ, f, ϕ,G⟩ and the output
is either a solution f ∈ LG that satisfies the constraints or
a general failure (i.e. timeout). During the search we keep a
record of the visit count N(s) with the default visit count 0
as well as other statistics that we will discuss in Section 3.2.
During backpropagation, these records are updated. We also
keep track of whether or not a node has been expanded. In
detail, the four phases work as follows:

Big-Steps: As the outermost loop of the search procedure,
we start at the root of the grammar tree by setting the active
node to the root of GT (G) as depicted in Algorithm 1. Start-
ing from the active node we execute the other phases of the
algorithm which among other things update the visit counts
of all nodes. If the rollout finds a solution, we are finished
and return the solution. Otherwise, we update the active node
to the most visited immediate child for the next iteration, i.e.,
the child node with the highest visit count.

Algorithm 1: Big-Steps
Data: SyGuS problem P = ⟨τ, f, ϕ,G⟩
Result: fail or solution to P
active nd← root(GT (G));
for i← 0 to MAX BIGSTEPS do

r ← rollout(active nd, P );
if r is solution then

return r;
else

active nd←
most visited child(active nd, GT (G))

end
end
return fail

Rollout, Expansion, and Backpropagation: In this phase
we perform rollouts from a given starting node in the gram-
mar tree, i.e., traversing the grammar tree starting from that
node. The purpose of this process is to collect extensive visit
count data by applying expansion steps, checking potential
solutions where appropriate, and applying backpropagation
so that Algorithm 1 can make the best decision possible in
choosing the next active node. As shown in Algorithm 2 we
follow a path in the grammar tree starting from a node called
active nd to the first unexpanded node by always select-
ing the best successor of the current node. In Section 3.2 we
derive a notion of “best” to improve the search guidance, us-
ing the upper confidence bound on the values of the nodes. If
the first unexpanded node is a leaf node we take the complete
function it represents and the verify function uses an SMT
solver to check if the function is a solution to P . If it is, we
return the solution, otherwise, we set the value (i.e. reward)



of the node to 0. If the node is not a leaf node, we expand the
node by setting the visit count to 1. Finally, the backpropaga-
tion function increments the visit counts by 1 and adds the
value of the current node to all nodes along the path we have
taken. This whole process is repeated MAX ROLLOUT times.
In the experiments, we also account for a decay factor that
decreases with every big step. Since we terminate the search
upon successful verification (i.e. we found a correct program)
backpropagating a positive reward is not necessary.

Algorithm 2: Rollout
Data: active nd and P
Result: fail or solution to P
for i← 0 to MAX ROLLOUTS do

current nd← active nd;
sub path = [current nd];
while is expanded(current nd) do

/* select best successor node based on UCT */
current nd←
best successor(current nd);

/* append the current node to the path */
append(sub path,current nd)

end
if isLeaf(current nd) then

if verify(P,current nd) then
return current nd;

else
W(current nd)← 0;
break;

end
else

expand(current nd,P)
end
/* add the value of the current node to all nodes on the

path and increment the visit counts */
backpropagate(sub path, W(current nd))

end

3.2 Guiding the search
In this section, we introduce concepts for the quality of nodes
and actions as well as a method to balance the exploitation
of known – with the exploration of unknown subtrees.

Similar to AlphaZero, we use the notions of value and
policy of each state and edge in the game tree of the synthesis
game. The value function ν(s) : S 7→ R maps each state
in the grammar tree s ∈ S to a real number that represents
the “quality” of the state s. This estimates the likelihood of
reaching a successful state in the subtree starting from the
given state. The second heuristic that we use is the policy
function π(s, a) : S × A 7→ R mapping a state s in the
grammar tree and action a to a real number, which estimates
the probability of success when committing to action a from
state s. For readability we use the notation π(s, s′) where
s, s′ ∈ S to denote the policy of the action a that leads from
state s to s′. In addition to the visit count as mentioned above
we also keep a record of the cumulative value W(s) and

policy π(s, s′) for each state s, s′ ∈ S in the search graph
these values are queried and saved during the expansion
phase. During the backpropagation phase, we also add the
value ν(end) of the last node end in the path to all other
nodes resulting in the cumulative value.

Upper Confidence Bound for Trees: If we always select
the subtrees with the highest average values and policies we
would never explore unseen parts of the tree and gain more
information about other parts of the graph. Moreover, if the
value and policy are not perfect (i.e. bias against subtrees that
contain the solution) we might end up repeatedly exploring
a path that does not lead to a successful node. Conversely,
if we only look for unseen paths in the search tree we do
not use the information provided by the value and policy
functions rendering them useless. Hence, our goal is to strike
a balance between exploration of unknown parts of the graph
and exploitation of the information we have already obtained
in order to reach a solution as fast as possible. To this end,
we use the upper confidence bound for trees (UCT) (Kocsis
and Szepesvári 2006) as a heuristic to select the “best” child
node, whilst balancing the trade-off between exploration and
exploitation. Given a parent node p ∈ S and child node c ∈ S
the UCT value of the child node when starting in the parent
node is calculated as follows:

uct(p, c) =
W(c)

N(c)
+ γ ∗ π(p, c) ∗

√
logN(p)

N(c)

This is the sum of two terms: an exploitation term W(c)
N(c) which

calculates the average value per visit of the child node and

an exploration term π(p, c) ∗
√

log N(p)
N(c) . The constant γ de-

fines the relation between exploration and exploitation (i.e. if
γ = 0, we only consider exploitation). The exploration term
weighs the policy π(p, c) (i.e. likelihood of success when
choosing the action that leads from p to c) with a term that
increases in value when the visit count for p increases and
the visit count for c stagnates. Conversely, if the child c visit
count increases comparatively to the parent visit count the
term decreases in value, and thus the exploration value de-
creases. In combination, this leads to child nodes with fewer
visits than their siblings having a larger exploration value.

3.3 Learning policy and value functions
Features: To facilitate the use of machine learning mod-
els we have to design vector representations for synthesis
states and actions. The main features we use are term walks
which are parent/child pairs in the syntax tree of a term.
These syntactic features are similar to those used in first-order
logic theorem provers (Jakubuv and Urban 2017; Chvalovský
et al. 2019; Färber, Kaliszyk, and Urban 2021; Kaliszyk et al.
2018). We use a bag-of-words representation where the words
are the hashes of all constants, variables, and term walks of
size two. This results in a feature vector of size n, where the
entry at the ith position denotes the number of features with
hash congruent to i mod n. The constant n is the hash base
and describes the maximum number of distinct features.

Finally, we apply this method to the formula ϕ and term
H to obtain two feature vectors the concatenation of which



is the feature vector of the state ⟨ϕ,H⟩. Similarly, we encode
the action a that leads from state s = ⟨ϕ,H⟩ to s′ = ⟨ϕ,H ′⟩
as the concatenation of the feature vectors of H and H ′. Thus,
the feature vector for policy estimation is the concatenation
of the feature vectors for ϕ, H , and H ′.

Learning: Policy and value prediction can be described as
a regression model, so many machine learning models can
be used here. However, due to the speed of tree traversal and
node selection in our algorithm, the calls to the learning mod-
els are the bottlenecks, much like in theorem proving (Chval-
ovský et al. 2019; Irving et al. 2016). Hence, choosing models
with low prediction latency is vital. In our experiments, we
use gradient boosted trees provided by XGBoost (Chen and
Guestrin 2016), which have been successful in theorem prov-
ing. We discuss more details in Section 5.

Reinforcement Learning: We use an RL loop to train
the policy and value models. In the first iteration, we run
the synthesis procedure on all training problems using a
default policy of 1 for each action and a default value of
0.95#(NT ) where #(NT ) is the number of non-terminals in
the synthesized expression. Once completed, we collect the
following training data from the problems and their solutions:
Policy training data: For each pair of consecutive states

s = ⟨ϕ,H⟩ and s′ = ⟨ϕ,H ′⟩ in each successful search
path we take the pair (⟨ϕ,H,H ′⟩, p) where p is the num-
ber of visits of s′ in relation to the sum of all visits of all
children of s.

Value training data: For each state s = ⟨ϕ,H⟩ on every
path we take the pair (⟨ϕ,H⟩, 0.9D) where D is the dis-
tance from the last (i.e. successful) node as training data.
In case of a failed search, we use the pair (⟨ϕ,H⟩, 0).

At the end of every RL iteration, this data together with the
data of previous iterations is used to train new policy and
value functions that will be used for the next iteration.

4 Generating SyGuS Problems
The algorithm above is trained using an RL loop that learns
policy and value functions. Consequently, the larger the cor-
pus of training data, the better the algorithm is likely to
perform. Randomly generating SyGuS problems as data is
not practical: if we randomly generate the specification ϕ, it
is highly unlikely that a valid f exists; and if we randomly
generate the solution f , we need to find a way to infer a
meaningful specification ϕ that admits f and does not give
away the answer. The number of benchmarks available in
the linear arithmetic (LIA) category of the SyGuS competi-
tion is relatively small (less than 1000), due to the relative
immaturity of the field, but there are many more first-order
LIA SMT problems, so we now describe a novel technique
for generating SyGuS problems from SMT problems, us-
ing syntactic unification (Martelli and Montanari 1982) and
anti-unification (Cerna and Kutsia 2023; Plotkin 1970). The
former finds variable assignments to equations that make
the terms syntactically equal. For example when applying
unification to the equation (5⊙x) • (3⊖ c) = (y⊙ 1) • z we
get the unifier {x 7→ 1, y 7→ 5, z 7→ (3⊖ c)}. If we apply the
mapping of variables to the term above we get the two terms

that are syntactically equal (5⊙1)•(3⊖c) = (5⊙1)•(3⊖c).
The latter is a process that produces a generalization common
to a set of symbolic expressions. For example, applying anti-
unification to the two terms (2 • 1)⊕ 8 and (1 • 3)⊕ 5 we
obtain the least general generalizer (LGG) x•y⊕w. In other
words, we obtain a term such that if we apply unification with
either of the original terms we obtain a unifier that turns the
LGG into that original term. Given a τ -valid SMT problem
Q = ⟨τ, ϕ⟩, i.e., an SMT problem that is true for all variable
assignments, we generate a SyGuS problem P as follows:
1. Heuristically select a set S of sub-terms of Q
2. Compute LGG l of S with fresh variables x1, . . . , xn

3. Replace each term t ∈ S in Q with synthesis target
f(x1, . . . , xn) using unifier of t = l to determine the
correct variable mapping

4. Generate a grammar G that produces all terms in τ using
variables x1, . . . xn.

5. Create SyGuS problem P = ⟨τ, f, ϕ,G⟩.
The LGG is one possible solution to the resulting problem
P . The first step has the largest impact on the quality of the
resulting problem as, if the wrong subterms are chosen, the
resulting LGG might be trivial (e.g. for the terms {5+4, 9∗x}
the LGG is basically the identity function). In our case, we
search for sub-terms that have the largest LGG as well as
sub-terms of type int. Sub-terms of type bool often lead
to trivial solutions such as True or False.

4.1 Analysis of new training data
We use SMT problems taken from the LIA and QFLIA
(Quantifier-free Linear Integer Arithmetic) tracks of the SMT
competition (Weber et al. 2019) to generate new SyGuS prob-
lems. We run cvc5 (Barbosa et al. 2022) on the new problems
to group them into the following categories, in approximate
order of complexity: Basic (B) problems that cvc5 can solve
and where a valid solution is a function returning a single
constant or variable); Straight-line (S) problems that cvc5
can solve and are not basic but where a valid solution does not
need control flow (i.e., there is a valid solution that performs
simple mathematical operations); control-flow (C) prob-
lems that cvc5 can solve and where any valid solution needs
control flow (i.e., a valid solution must contain if then else
statements); and unsolved (U) problems that cvc5 cannot
solve with a 120s time-out.

Table 1 reports the number of problems in each of these
categories in our new data-set and in the original (old) data-
set from the SyGuS competition. The SyGuS competition
data comprises all benchmarks in LIA from the General and
Invariant Synthesis tracks with a single synthesis function. If
a benchmark has no grammar, we augment the benchmark
with the same grammar as our generated data.

After running our data generation procedure overnight, we
generate 8186 new SyGuS LIA problems. We remove basic
problems and filter the remaining problems to reduce the
number of very similar problems, using a heuristic based on
the file names and duplicate comments as these are usually
indicative of the source of the SMT benchmark, and correlate
with very similar problems. This gives 944 new SyGuS LIA
problems, and, in total, we have a problem set consisting of



Data set #B #S #C #U Total
SyGuS-comp (old) 290 93 38 536 957
Generated (new) 3760 2495 1693 220 8168
Filtered new (new) – 211 513 220 944

Table 1: Number of problems by category: basic problems
(B), straight-line problems (S), problems with control-flow
(C), and unsolved problems (U).

1901 SyGuS LIA problems. This more than doubles the total
number of SyGuS LIA problems, and increases the number of
solvable benchmarks with control flow by 10×. The number
of problems we generate is primarily limited by the time
that we run the data generation, as multiple problems can
be generated from each first-order problem, and the number
of publicly available SMT problems increases year-on-year
year.

5 Experimental Evaluation
We implemented the Monte-Carlo tree search algorithm pre-
sented in Section 3 with the learned policy and value using
RL as discussed in Section 3.3. Our experimental evaluation
seeks to answer the following questions:

Q1: Can MCTS with RL be used in function synthesis?
Q2: Does our data generation improve the performance?
Q3: How does MCTS compare to other techniques?

The implementation is written in C++ using Z3 (de Moura
and Bjørner 2008) as an SMT solver to check the correctness
of potential candidate solutions. We use XGBoost (Chen and
Guestrin 2016) as a library to provide gradient-boosted trees
for policy and value estimation. Running the experiments
multiple times with different hyper-parameters ranging from
(10 to 30) we found that the best tree depths are 20 and 25
for value and policy. We did not experience any significant
improvements by changing other hyper-parameters. In the
MCTS we do 30 big-steps and 6500 rollouts with a decay
factor of 0.98B where B is the number of big-steps. These
were optimized for a 100s timeout. As a hash base for the
feature vectors, we use 212 − 3 = 4093. Our synthesis algo-
rithm exclusively learns from its previous iterations without
external guidance or solutions. For training, we take data
obtained from the previous 4 iterations instead of all previous
iterations (we tried values between 2 and 20). We do not train
during runs on the test set. Previously, we had a Python-based
implementation where we experimented with other machine
learning models such as K-Nearest Neighbours and Linear
Regression as well as larger hash bases, and found that tree
models outperformed other machine learning models.

Benchmarks & Setup: We use the SyGuS LIA data set
consisting of 1901 problems described in Section 4. We cre-
ate a 75 : 25 training/testing split on the data sets for each
of the experiments. We make the data set as well as the code
with Dockerfile and instructions on how to install dependen-
cies, compile the code, and run experiments available1. The

1https://zenodo.org/records/10377451

experiments were run on Amazon Elastic Compute Cloud
(EC2) on a r6a.8xlarge instance with an AMD EPYC
7R13 CPU and 256GB of Memory running Amazon Linux
2. We run each search procedure with a timeout of 100 sec-
onds. Our implementation introduces non-determinism in
two ways: training of the machine learning models and a
random tie break in child selection when two or more child
nodes have the same scores. We ran experiments 5 times with
fixed seeds.

5.1 Results
Q1: Can MCTS with RL be used in function synthesis?
We run experiments on the union of all benchmark sets result-
ing in 1425 training and 476 testing problems. The results
are shown in experiment 1 (Exp. 1) of Table 2. The baseline
is the first iteration of the reinforcement learning loop. In this
iteration, we have not gathered any training data and have no
trained guidance so use default value and policy functions.
From the second iteration onwards, policy and value func-
tions are trained on the data obtained from the training set in
the previous iterations (no data is collected from the testing
set). Table 2 shows a comparison of the performance of the
best iterations of each of the 5 experiment runs on the train-
ing and testing set. The best iteration of each experiment on
average solves 859.8 and 289 problems on the training and
testing set respectively. This is an improvement of 27.2 and
26.4 percentage points compared with the first iteration for
training and testing sets. Figure 2 plots the number of solved
testing problems for each iteration for each experiment.

Q2: Does our data generation improve performance?
Doing a more fine-grained analysis of the experiments, we
find that the testing set in the previous experiments contains
249 problems from the old data set. Of these, between 75
(30.1%) and 78 (31.3%) are solved with a mean of 76.4
(30.7%) and a stdev of 1.14. To compare, we conduct two
additional experiments with the following data set-ups, with
data sets from Old and New problems, as described in Sec-
tion 4, and report the results in Table 2

1. Train with old and test with old problems (Exp. 2)
2. Train with new and test with old problems (Exp. 3).

In Exp. 2 the trained search agent solves almost 1.85 times as
many problems as the baseline (16.6% baseline and 30.7%
on average in the best iteration on the testing set). In contrast,
Exp. 3 shows that training exclusively on new problems and
testing exclusively on old problems only improves perfor-
mance on the testing set (i.e. old problems) by 2.4% (15.9%
on baseline and 18.3% on average in the best iteration). In
line 8 we highlight the performance of the setup in Experi-
ment 3 on the same test set as in Experiment 2, which has a
similar marginal performance improvement. We find that the
new training data does not improve the performance on the
old test set compared with simply training on the old data, but
as can be seen in Exp. 1 (line 3) of Table 2, it also does not
diminish the performance on the old problems, whilst still
enabling us to solve a significant number of the new problems
that cvc5 is unable to solve. We hypothesize this is because
our new benchmark set is not typical of the existing SyGuS



action data total baseline Solved in Best Iteration cvc5

# # % min max # mean % mean stdev # %

Exp. 1
1 train old + new 1425 471.6 33.1% 852 865 859.8 60.3% 3.97 834 58.5%
2 test on old + new 476 163.4 34.3% 287 292 289 60.7% 1.87 295 62.0%
3 test on old 249 49.4 19.8% 75 78 76.4 30.7% 1.14 115 46.2%

Exp. 2 4 train on old 717 112.2 15.7% 205 224 210.8 29.4% 7.6 315 41.0%
5 test on old* 240 39.8 16.6% 69 79 73.6 30.7% 3.58 108 45.0%

Exp. 3
6 train on new 944 479.6 50.8% 874 886 879.6 93.2% 3.37 727 77.0%
7 test on old 957 151.8 15.9% 169 184 175.4 18.3% 5.97 402 42.0%
8 test on old* 240 38.6 16.1% 45 50 47.4 19.8% 2.51 108 45.0%

Table 2: Results summary. Training and testing sets are disjoint sets. The two old* data sets are the exact same sets.

benchmarks (this is also demonstrated by cvc5’s failure to
solve many of these examples).

Q3: How does MCTS compare to other techniques? We
compare our approach to cvc5 (Barbosa et al. 2022), the Sy-
GuS solver which performed best in the most recent SyGuS
competition (Alur et al. 2017). In Exp. 1 the best iteration
of our tool on average solves 25.8 problems more (min. 18,
max. 31 more) than cvc5 in the training set and on average 6
fewer (min. 3, max. 8 fewer) on the test set. On average, we
solve 41 test set and 141 training set problems on which cvc5
fails. Exp. 2 and 3 show that cvc5 performs poorly compared
with our synthesis tool on the newly generated benchmarks.
In particular, when used as training set, we solve 93.2% of
the new problems while cvc5 only solves 77%. In contrast,
the best iteration of our tool lags behind cvc5 by around
12 to 15 percentage points on the old data set, as shown by
Exp. 2. cvc5 is a mature software consisting of over 400k
lines of code incorporating many decision procedures and
domain-specific heuristics to improve function search. In
comparison, our implementation exclusively uses the learned
search heuristics presented in Sections 3 and 3.3, and is able
to perform comparably to cvc5 on the testing set and even
outperform cvc5 in some setups.

Limitations We do not compare our approach to special-
ized invariant synthesis tools, which may outperform our
technique on invariant benchmarks but cannot handle the
general SyGuS problems. We are also unable to compare
to Euphony (Lee et al. 2018) as the available code does not
compile, and they do not report results on LIA. Our con-
clusions are based on results on the SyGuS datasets, using
hyperparameters tuned on these datasets, and these results
may not hold in other domains. We also require a base set
of problems to be solved in the first iteration to generate
data to train from in succeeding iterations. Finally, our data-
generation approach is only applicable to domains where
first-order (verification) problems are available, and we wish
to solve second-order (synthesis) problems. However, this
is the case in many areas such as software verification/syn-
thesis (David et al. 2018), unit test generation, and reactive
motion planning.

1 3 5 7 9 11 13 15 17 19

iteration

0

100

200

300

400

s
o
lv

e
d
 p

ro
b
le

m
s

Figure 2: Number of solved problems in the testing set for
each iteration in each of the 5 experiment runs. Each line
represents one experimental run.

6 Conclusions and Future Work
We presented a synthesis algorithm for SyGuS based on
MCTS, incorporating machine-learned policy and value pre-
dictors and guidance based on UCT, and developed a method
to generate SyGuS problems from preexisting SMT problems
using anti-unification and unification. Our approach, using
simple syntactic features and gradient-boosted tree models,
improves on the baseline synthesizer by over 26% on training
and testing sets in the best iteration, and solves benchmarks
that are out of reach of state-of-the-art synthesis tools. In
future work, we will exploit our new data to investigate the
application of other data-dependent machine learning meth-
ods to the SyGuS domain, for instance, algorithm selection
and run-time prediction (Healy, Monahan, and Power 2016),
and we hope that others will do the same.

Acknowledgements: This work was in part supported by
the Oxford-DeepMind Graduate Scholarship, the Engineer-
ing and Physical Sciences Research Council (EPSRC), an
Amazon Research Award, and the Austrian Science Fund
(FWF) project AUTOSARD (36623).



References
Abate, A.; David, C.; Kesseli, P.; Kroening, D.; and Polgreen,
E. 2018. Counterexample guided inductive synthesis modulo
theories. In International Conference on Computer Aided
Verification, 270–288. Springer.
Alur, R.; Bodı́k, R.; Juniwal, G.; Martin, M. M. K.;
Raghothaman, M.; Seshia, S. A.; Singh, R.; Solar-Lezama,
A.; Torlak, E.; and Udupa, A. 2013. Syntax-guided synthe-
sis. In Formal Methods in Computer-Aided Design, FMCAD
2013, Portland, OR, USA, October 20-23, 2013, 1–8. IEEE.
Alur, R.; Fisman, D.; Singh, R.; and Udupa, A. 2017. Syntax
Guided Synthesis Competition. https://sygus.org/.
Alur, R.; Radhakrishna, A.; and Udupa, A. 2017. Scaling
Enumerative Program Synthesis via Divide and Conquer. In
TACAS (1), volume 10205 of Lecture Notes in Computer
Science, 319–336.
Baader, F.; and Nipkow, T. 1998. Term rewriting and all that.
Cambridge University Press.
Balog, M.; Gaunt, A. L.; Brockschmidt, M.; Nowozin, S.; and
Tarlow, D. 2017. DeepCoder: Learning to Write Programs.
In ICLR (Poster). OpenReview.net.
Barbosa, H.; Barrett, C. W.; Brain, M.; Kremer, G.; Lachnitt,
H.; Mann, M.; Mohamed, A.; Mohamed, M.; Niemetz, A.;
Nötzli, A.; Ozdemir, A.; Preiner, M.; Reynolds, A.; Sheng,
Y.; Tinelli, C.; and Zohar, Y. 2022. cvc5: A Versatile and
Industrial-Strength SMT Solver. In TACAS (1), volume 13243
of Lecture Notes in Computer Science, 415–442. Springer.
Bavishi, R.; Lemieux, C.; Fox, R.; Sen, K.; and Stoica, I.
2019. AutoPandas: neural-backed generators for program
synthesis. Proc. ACM Program. Lang., 3(OOPSLA): 168:1–
168:27.
Bunel, R.; Hausknecht, M.; Devlin, J.; Singh, R.; and Kohli,
P. 2018. Leveraging grammar and reinforcement learning for
neural program synthesis. In International Conference on
Learning Representations.
Cazenave, T. 2013. Monte-Carlo Expression Discovery. Int.
J. Artif. Intell. Tools, 22(1).
Cerna, D. M.; and Kutsia, T. 2023. Anti-unification and
Generalization: A Survey. CoRR, abs/2302.00277.
Chasins, S. E.; and Newcomb, J. L. 2016. Using SyGuS to
Synthesize Reactive Motion Plans. In SYNT@CAV, volume
229 of EPTCS, 3–20.
Chen, T.; and Guestrin, C. 2016. XGBoost: A Scalable Tree
Boosting System. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, KDD ’16, 785–794. New York, NY, USA: ACM.
ISBN 978-1-4503-4232-2.
Chen, Y.; Wang, C.; Bastani, O.; Dillig, I.; and Feng, Y. 2020.
Program Synthesis Using Deduction-Guided Reinforcement
Learning. In CAV (2), volume 12225 of Lecture Notes in
Computer Science, 587–610. Springer.
Chvalovský, K.; Jakubuv, J.; Suda, M.; and Urban, J. 2019.
ENIGMA-NG: Efficient Neural and Gradient-Boosted Infer-
ence Guidance for E. In CADE, volume 11716 of Lecture
Notes in Computer Science, 197–215. Springer.

David, C.; Kesseli, P.; Kroening, D.; and Lewis, M. 2018. Pro-
gram Synthesis for Program Analysis. ACM Trans. Program.
Lang. Syst., 40(2): 5:1–5:45.
de Moura, L. M.; and Bjørner, N. S. 2008. Z3: An Efficient
SMT Solver. In TACAS, volume 4963 of Lecture Notes in
Computer Science, 337–340. Springer.
Ellis, K.; Nye, M. I.; Pu, Y.; Sosa, F.; Tenenbaum, J.; and
Solar-Lezama, A. 2019. Write, Execute, Assess: Program
Synthesis with a REPL. In NeurIPS, 9165–9174.
Färber, M.; Kaliszyk, C.; and Urban, J. 2021. Machine Learn-
ing Guidance for Connection Tableaux. J. Autom. Reason.,
65(2): 287–320.
Fedyukovich, G.; Prabhu, S.; Madhukar, K.; and Gupta, A.
2019. Quantified Invariants via Syntax-Guided Synthesis.
In CAV (1), volume 11561 of Lecture Notes in Computer
Science, 259–277. Springer.
Feng, Y.; Martins, R.; Bastani, O.; and Dillig, I. 2018. Pro-
gram synthesis using conflict-driven learning. In PLDI, 420–
435. ACM.
Gauthier, T. 2020. Deep Reinforcement Learning for Synthe-
sizing Functions in Higher-Order Logic. In LPAR, volume 73
of EPiC Series in Computing, 230–248. EasyChair.
Healy, A.; Monahan, R.; and Power, J. F. 2016. Predicting
SMT Solver Performance for Software Verification. In F-
IDE@FM, volume 240 of EPTCS, 20–37.
Irving, G.; Szegedy, C.; Alemi, A. A.; Eén, N.; Chollet, F.;
and Urban, J. 2016. DeepMath - Deep Sequence Models for
Premise Selection. In NIPS, 2235–2243.
Jakubuv, J.; and Urban, J. 2017. ENIGMA: Efficient
Learning-Based Inference Guiding Machine. In CICM, vol-
ume 10383 of Lecture Notes in Computer Science, 292–302.
Springer.
Jha, S.; Gulwani, S.; Seshia, S. A.; and Tiwari, A. 2010.
Oracle-guided component-based program synthesis. In ICSE
(1), 215–224. ACM.
Jha, S.; and Seshia, S. A. 2017. A theory of formal synthesis
via inductive learning. Acta Informatica, 54(7): 693–726.
Kaliszyk, C.; Urban, J.; Michalewski, H.; and Olsák, M. 2018.
Reinforcement Learning of Theorem Proving. In NeurIPS,
8836–8847.
Kamil, S.; Cheung, A.; Itzhaky, S.; and Solar-Lezama, A.
2016. Verified lifting of stencil computations. In PLDI,
711–726. ACM.
Kocsis, L.; and Szepesvári, C. 2006. Bandit Based Monte-
Carlo Planning. In ECML, volume 4212 of Lecture Notes in
Computer Science, 282–293. Springer.
Kutsia, T. 2013. Anti-Unification: Algorithms and Applica-
tions. In UNIF@RTA/TLCA, volume 19 of EPiC Series in
Computing, 2. EasyChair.
Laurent, J.; and Platzer, A. 2022. Learning to Find Proofs
and Theorems by Learning to Refine Search Strategies: The
Case of Loop Invariant Synthesis. In NeurIPS.
Lee, W.; Heo, K.; Alur, R.; and Naik, M. 2018. Accelerating
search-based program synthesis using learned probabilistic
models. In PLDI, 436–449. ACM.



Martelli, A.; and Montanari, U. 1982. An Efficient Unifi-
cation Algorithm. ACM Trans. Program. Lang. Syst., 4(2):
258–282.
Medeiros, L. C.; Aleixo, D. S.; and Lelis, L. H. S. 2022. What
Can We Learn Even from the Weakest? Learning Sketches
for Programmatic Strategies. In AAAI, 7761–7769. AAAI
Press.
Morton, K.; Hallahan, W. T.; Shum, E.; Piskac, R.; and San-
tolucito, M. 2020. Grammar Filtering for Syntax-Guided
Synthesis. In AAAI, 1611–1618. AAAI Press.
Odena, A.; Shi, K.; Bieber, D.; Singh, R.; Sutton, C.; and Dai,
H. 2021. BUSTLE: Bottom-Up Program Synthesis Through
Learning-Guided Exploration. In ICLR. OpenReview.net.
Plotkin, G. D. 1970. A Note on Inductive Generalization.
Machine Intelligence, 5: 153–163.
Raza, M.; Gulwani, S.; and Milic-Frayling, N. 2014. Pro-
gramming by Example Using Least General Generalizations.
In AAAI, 283–290. AAAI Press.
Reynolds, A.; Barbosa, H.; Nötzli, A.; Barrett, C. W.; and
Tinelli, C. 2019. cvc4sy: Smart and Fast Term Enumeration
for Syntax-Guided Synthesis. In CAV (2), volume 11562 of
Lecture Notes in Computer Science, 74–83. Springer.
Reynolds, A.; and Tinelli, C. 2017. SyGuS Techniques in
the Core of an SMT Solver. In SYNT@CAV, volume 260 of
EPTCS, 81–96.
Si, X.; Naik, A.; Dai, H.; Naik, M.; and Song, L. 2020.
Code2Inv: A Deep Learning Framework for Program Ver-
ification. In CAV (2), volume 12225 of Lecture Notes in
Computer Science, 151–164. Springer.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; Lillicrap, T.; Simonyan, K.; and Hassabis, D. 2018. A
general reinforcement learning algorithm that masters chess,
shogi, and Go through self-play. Science, 362(6419): 1140–
1144.
Solar-Lezama, A. 2009. The sketching approach to program
synthesis. In Asian Symposium on Programming Languages
and Systems, 4–13. Springer.
Toni, G. D.; Erculiani, L.; and Passerini, A. 2021. Learn-
ing compositional programs with arguments and sampling.
CoRR, abs/2109.00619.
Weber, T.; Conchon, S.; Déharbe, D.; Heizmann, M.;
Niemetz, A.; and Reger, G. 2019. The SMT Competition
2015-2018. J. Satisf. Boolean Model. Comput., 11(1): 221–
259.
Yernaux, G.; and Vanhoof, W. 2019. Anti-unification in Con-
straint Logic Programming. Theory Pract. Log. Program.,
19(5-6): 773–789.


