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In brief

As global health concerns shift with aging

populations, the looming threat of kidney

diseases necessitates better treatment

management. This study introduces an

AI-driven model adept at predicting

critical health risks for kidney disease

patients undergoing peritoneal dialysis.

By not just predicting but also explaining

these risks, the research paves the way

for timely, personalized medical

interventions.
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THE BIGGER PICTURE As global populations age and their lifestyles change, the threat of end-stage renal
disease (ESRD) grows ever more significant. Consequently, an increasing number of patients require life-
sustaining treatments such as peritoneal dialysis (PD). For these PD patients, their medical journey involves
more than just treatment, it is about comprehending the trajectory of their health, navigating potential health
risks, and underlining the urgent need for real-time, personalized risk predictions. We employ deep learning
not only to predict but also to comprehend the mortality risks associated with PD patients. Our model
doesn’t merely ‘‘tell’’; it ‘‘explains.’’ It offers clinicians insight into the reasons behind its predictions by high-
lighting crucial medical factors that shape these outcomes. Additionally, we created a functional AI-doctor
interaction system, empowering professionals to visualize a patient’s health trajectory and grasp the
personalized reference values of clinical indicators.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
The study aims to develop AICare, an interpretable mortality prediction model, using electronic medical re-
cords (EMR) from follow-up visits for end-stage renal disease (ESRD) patients. AICare includes a multi-
channel feature extractionmodule and an adaptive feature importance recalibrationmodule. It integrates dy-
namic records and static features to perform personalized health context representation learning. The
dataset encompasses 13,091 visits and demographic data of 656 peritoneal dialysis (PD) patients spanning
12 years. An additional public dataset of 4,789 visits from 1,363 hemodialysis (HD) patients is also consid-
ered. AICare outperforms traditional deep learning models in mortality prediction while retaining interpret-
ability. It uncovers mortality-feature relationships and variations in feature importance and provides refer-
ence values. An AI-doctor interaction system is developed for visualizing patients’ health trajectories and
risk indicators.
INTRODUCTION

The prevalence of end-stage renal disease (ESRD) continues to

increase and has become a significant healthcare burden world-
This is an open access article und
wide. Approximately 3.8 million people currently rely on some

form of dialysis for the treatment of ESRD worldwide.1 ESRD is

a long-term disease, and patients need continuous medical

care and treatment for years or even decades. Peritoneal dialysis
Patterns 4, 100892, December 8, 2023 ª 2023 The Authors. 1
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(PD) is a well-established renal replacement therapy (RRT) mo-

dality and the leading form of home-based life-supporting dial-

ysis therapy for patients with ESRD.2 Over the past decade,

the use of PD increased dramatically worldwide.

During long-term PD, patients may still encounter various vital

risks, such as cardio-cerebrovascular disease and infection.3

These risks may cause adverse outcomes, and patients need

lifelong treatment with periodic follow-up visits to monitor their

health status. Predicting mortality risk and identifying modifiable

risk factors from routine clinic visit records are of great impor-

tance for personalizedmedicine and early intervention to prevent

adverse outcomes and improve the survival of long-term PD pa-

tients. Recent studies have attempted to utilize artificial intelli-

gence (AI) techniques to evaluate the health status of patients.

However, there are still some critical issues that have not yet

been thoroughly addressed by existing works.

Issue1: Perform dynamic mortality prediction at each
follow-up visit based on the effective utilization of both
sequential medical records and the baseline
demographic information
Most AI-based electronic medical record (EMR) analysis

research on kidney disease patients only uses static baseline in-

formation to perform one-time health prediction based on tradi-

tional machine learning methods.4–13 These methods cannot

perform real-time health prediction, and thus the practical utility

in the clinical application is limited. Other research models the

disease process by incorporating sequential EMRs.14–16 How-

ever, these models cannot yet effectively together embed the

baseline information and the sequential records and capture

the interaction between them during the health status embed-

ding procedure, which leads to limited prediction performance.

Issue2: Provide fine-grained interpretability for each
patient individually by selecting key features that
contribute themost tomortality prediction (patient-level
interpretability) and simultaneously achieve high
prediction performance
Key factors strongly indicate that health risk are different among

patients. Medical experts need to understand how a model

makes a specific decision for a particular patient. This requires

sufficient model interpretability to ensure that prediction results

are trustworthy for developing bespoke interventions and ex-

tracting medical knowledge. However, most existing studies

fail to ensure the model’s trustworthiness in providing verifiable

interpretations. On one hand, traditional machine learning

models, such as decision trees,7,8,11,12,17 are clinically interpret-

able, but they cannot capture complex longitudinal progressions

and thus have inferior prediction performances. On the other

hand, the decision-making process in deep learning-based

models is a black box and fails to provide human-understand-

able interpretation.13,14 Some recent works apply the Shapley
Figure 1. Mortality prediction research overview for peritoneal dialysis

(1) We collect an over 12-year, long-term, and real-world clinical EMR dataset of P

records, and clinical outcomes. The prediction task is defined as a 1-year mor

interpretable health status representation learning framework consisting of a m

calibration module. (3) We perform a model interpretability analysis for diverse m

medical knowledge (taking albumin as an example). (4) We build an interactive A
additive explanation (SHAP),18,19 feature permutation,9,10 and in-

verse analysis20 strategies to improve the interpretability. How-

ever, these post hoc interpretation21 methods can only provide

coarse-grained interpretability, which is difficult to understand

at the patient level. It is still challenging to simultaneously

provide satisfactory interpretability and achieve high prediction

performance.
Issue3: Adaptively analyze the importance of each
feature alongwith the variation of its value (feature-level
interpretability) to provide medical advice and extract
knowledge
The way of attending to the medical feature in the prediction pro-

cess should be flexible and individualized according to its value.

However, most existing studies analyze the health status of pa-

tients in a fixed decision process7,12,17 or embed clinical features

via fixed parameters of neural networks without ante hoc inter-

pretability.9,13,20 To the best of our knowledge, none of the exist-

ing AI-based clinical prediction studies for kidney disease pa-

tients explicitly analyze the changes in the feature importance

with features’ values.

To address these challenges, we propose a deep learning-

based interpretable mortality risk prediction framework for PD

patients, AICare. As shown in Figure 1, it is built upon a real-

world longitudinal EMR dataset of PD patients spanning 12

years, including baseline demographic information and out-

comes, as well as patient-level follow-up lab tests and diagnosis

records spanned by an average of 20 visits per patient. The main

contributions of this work are summarized below.

(1) Our proposed framework, AICare, models the health

trajectory based on multivariate EMR data of PD

patients and achieves better prediction performance than

state-of-the-art (SOTA) methods while simultaneously

providing fine-grained patient-level interpretability. As

shown inFigure 1 section 2, AICare employs amultichannel

medical feature embedding architecture to extract sequen-

tial patterns from high-dimensional medical features. The

squeezed embedding of static information and dynamic

features is treated as a health context vector to guide the

feature importance recalibration (addressing Issue1). AI-

Care assigns attention weights for each feature by looking

at the health context for clues that can help lead to a

more individual representation of the health status. On the

dynamic mortality prediction tasks, AICare achieves

47.2% AUPRC (area under the precision-recall curve) on

the PD dataset, which is 11.8% relatively higher than the

SOTA comparative baseline model. We also introduce an

additional experiment dataset, which is described in the

supplemental information.

(2) AICare provides an elucidation of the relationship between

the causes of mortality in patients with PD and clinical
(PD) patients

D patients, consisting of static baseline information, longitudinal multivariable

tality prediction at each clinical visit. (2) We propose a deep learning-based

ultichannel feature extraction module and an adaptive feature importance re-

ortality causes and observe the change of feature importance to extract novel

I-doctor system to visualize the health trajectory.

Patterns 4, 100892, December 8, 2023 3



Figure 2. Average feature importance heatmap for diverse mortality causes generated by AICare

The darker the color, the greater the importance. Serum albumin is the most important feature in mortality prediction, especially for PD patients who died of

gastrointestinal (GI) disease or peripheral vascular disease (PVD). Diastolic blood pressure (DBP) is the second indicative feature, especially for PD patients who

died of cachexia, cancer, or cerebrovascular disease (CVE).
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features (patient-level interpretability in Issue2) based onan

end-to-enddeep learningmodel. As shown in Figure 1 sec-

tion 3.1 and Figure 2, AICare achieves fine-grained inter-

pretability by adaptively emphasizing high-risk features

during the prediction process based on a feature recalibra-

tionmodule.We report detailedpatient-level interpretability

analyses; serum albumin, diastolic blood pressure, and

chlorine are the most important indicators for most PD pa-

tients. Albumin is a strong indicator for patientswho died of

gastrointestinal disease and peripheral vascular disease.

Diastolic blood pressure (DBP) is an indicator for patients

who died of cachexia, cancer, and cerebrovascular dis-

ease. Systolic Blood Pressure (SBP) is indicative of cancer

and PD-associated peritonitis deaths.

(3) AICare reveals the variationpattern ineach feature’s impor-

tance forPDpatientmortality prediction (feature-level inter-

pretability in Issue3). As shown in Figure 1 section 3., Fig-

ures 3 and 4, and Table 5, AICare provides the ante hoc

attention weight of each clinical feature according to its

value and the patient’s condition. We report detailed

feature-level interpretability analyses. There are two varia-

tion patterns of importance in medical features: V-shaped

parabolic curves (e.g., albumin and DBP) and L-shaped

fold lines (e.g., SBP and hemoglobin). For example, the

importance weight of albumin is presented as a V-shaped

curve with 32 g/L as the lowest turning point. For most

PDpatients,when albumin is lower (higher) than the turning
Patterns 4, 100892, December 8, 2023
point of 32g/L, themore extreme the value, themoreatten-

tion weight is assigned by AICare, which means that this

feature playsan essential role in the health status represen-

tation learning, and the predicted mortality risk rises (de-

clines). AICare recommends improving albumin to higher

than 32 g/L—the higher the better. The importance weight

ofSBPpresents asanL-shapedcurvewith130mmHgasa

turning point. For SBPover 130mmHg,AICare pays nearly

no attention to SBP. AICare recommends raising the SBP

to at least 130mmHg formost PDpatients, but a further in-

crease in SBP will not bring many benefits.

(4) We develop a practical AI-doctor interaction system to

visualize the trajectory of patients’ health status and risk

indicators. Model deployment has been the last but most

challenging step toward clinical application. Deploying the

deep models in an accessible way for clinicians to allow

them to easily understand model predictions and model

decisionprocessstill needsextraconsiderations.Asshown

in Figure 1 section 4, to further facilitate personalized

clinical service, we deploy an AI-doctor interaction system

online with open-source code at https://github.com/

Accountable-Machine-Intelligence/AICare. Our developed

health trajectory visualization system with anonymous

case studies (patient IDs A1–A20) is publicly available at

http://v.ai-care.top/A8. Visualization of the importance of

the features is available at http://v.ai-care.top/statistics/

feature. Users can upload the data online to get the

https://github.com/Accountable-Machine-Intelligence/AICare
https://github.com/Accountable-Machine-Intelligence/AICare
http://v.ai-care.top/A8
http://v.ai-care.top/statistics/feature
http://v.ai-care.top/statistics/feature
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Figure 3. Feature importance variation learned by AICare (features a–h)
The clinical visits are marked as colored dots and histograms. Red represents high risk predicted by AICare, while green represents low risk. The average feature

importance is visualized as blue fold lines. The traditional clinical reference values are vertically marked as blue dotted lines. There are two variation patterns of

(legend continued on next page)
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Table 1. Statistics of baseline information and label assignment

Total Mortality (%) Survival (%)

Patients 656 261 (39.8%) 395 (60.2%)

Visits 13,091 1,196 (9.1%) 11,895 (90.9%)

Age

16–40 96 (14.6%) 10 (10.4%) 86 (89.6%)

40–60 217 (33.1%) 64 (29.5%) 153 (70.5%)

60–80 297 (45.3%) 153 (51.5%) 144 (48.5%)

80–98 44 (6.7%) 33 (75.0%) 11 (25.0%)

Diabetes

Patients with

diabetes

244 (37.2%) 120 (49.2%) 124 (50.8%)

Gender

Female 327 (49.8%) 125 (38.2%) 202 (61.8%)

Male 328 (50.2%) 136 (41.5%) 192 (58.5%)

The real-world dataset contains 656 peritoneal dialysis (PD) patients with

13,091 clinical visits. There are 39.8% patients who died before the final

follow-up. The age range of patients enrolled is 16–98 years.

Table 2. Statistics of age and visit frequency

Statistic Avg Med Max Min Std

Age (year) 58.55 60.70 97.45 16.79 15.81

Visits per patient 19.95 16 69 1 13.53

High-risk visits per patient 2 0 29 0 2.95

Duration of follow-up (year) 3.98 3.43 10.44 0.1 2.67

Visit interval (month) 2.73 2.48 29.87 – 2.67

Peritoneal dialysis (PD) patients were followed up every 3 months. There

are about 20 visits recorded for each patient. Avg, average; Med, median;

Max, maximum; Min, minimum; Std, standard deviation.

ll
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prediction results immediately (http://v.ai-care.top/predict)

or download the code to train the model based on their da-

taset offline.Wemadeanabstract presentation video intro-

ducing our work (https://youtu.be/CY2glHchsC8).
RESULTS

Data description and problem formulation
We collected the EMR data of 656 PD patients with 13,091 visit

records, spanning over 12 years, from January 1, 2006, to

January 1, 2018, including patients’ baseline data, longitudinal

visit records, and outcomes.

(1) Baseline data include patients’ demographic data (e.g.,

age and gender) and the diagnosis of diabetes at the

beginning of dialysis. The statistics of the baseline

data and the assignment of the labels are shown in

Table 1.

(2) Visit data include laboratory tests and patients’ vital signs

at each visit. The visit frequency statistics and the feature

values distribution are shown in Tables 2 and 3, respec-

tively.

(3) Outcome data include patients’ outcomes at the end of

the data collection window, including death date and

cause of death (e.g., cancer). The outcomes of all pa-

tients were followed and further recorded until October

31, 2018.
ture importance: V-shaped parabolic curves (e.g., albumin, DBP) and L-shaped

n example of a V-shaped parabolic curve. For most patients, when albumin is

re attentionweight is assigned by AICare, whichmeans this feature takes essen

s (declines). As a result, AICare recommends improving the serum albumin to a

ssure (SBP) importance variation as an example of an L-shaped fold line. For m

value, themore attention weight is assigned. However, when SBP is higher tha

longer affect the representation learning of health status. As a result, AICare re

g many benefits.

Patterns 4, 100892, December 8, 2023
The feature sets consist of 16 longitudinal medical features

and 4 baseline features. The age distribution of the patients is

58.55 ± 15.81 years, and the number of average records per pa-

tient is 19.95 ± 13.53. We fill in the missing values with the most

recent historical recorded values.

We conduct the 1-year dynamic mortality prediction task.

Given a patient’s visit records with T visits, the binary classifica-

tion task is to predict the mortality risk in the future 1 year byt at

each visit t. Tomeet actual clinical practice, we also define an un-

certain phase of patient health status. For patients with negative

labels (alive, y = 0), the uncertain phase is 1 year before the end

date of data collection because we do not know the outcomes of

these patients in the future 1 year. For patients with positive la-

bels (dead, y = 1) at t, the uncertain phase is between the t� 2

year and the t� 1 year because we are uncertain about the

ground-truth health status during these visits. The final dataset

contains 1,196 visits with positive labels (i.e., died within 1

year) and 10,804 records with negative labels. For more details

about the dataset and the problem formulation, please see the

supplemental information.

Prediction performance
The prediction performance of AICare and the baseline models

on the 10-fold cross-validation mortality prediction of PD pa-

tients, evaluated by AUPRC and area under the receiver oper-

ating characteristic curve (AUROC), are shown in Table 4. AICare

achieves 47.2% AUPRC, which is relatively 11.8% higher than

the best baseline model.1 This indicates that AICare can effi-

ciently embed the long-term longitudinal multivariable sequential

data and static baseline data to learn the representation of the

health status of PD patients individually, using the multichannel

feature extraction module and the adaptive feature importance

recalibration module. More details about the experiment are

listed in the supplemental information, including the prediction

performance of diverse mortality causes and detailed descrip-

tions of the comparative baselinemethods. To verify the applica-

tion universality of AICare on other patient cohorts, we also
fold lines (e.g., SBP and Hb). We take the serum albumin importance variation

lower (higher) than the turning point of 32 g/L, the more extreme the value, the

tial part in health status representation learning, and the predictedmortality risk

bove 32 g/L—the higher the better. On the contrary, we take the systolic blood

ost patients, when SBP is lower than the turning point of 130 mmHg, the lower

n 130mmHg, the attention weight drops to nearly 0%,meaning this feature will

commends improving the SBP to at least 130 mm Hg, but higher SBP will not

http://v.ai-care.top/predict
https://youtu.be/CY2glHchsC8
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Figure 4. Feature importance variation learned by AICare (features i–p)
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Table 3. Feature summary of the peritoneal dialysis (PD) dataset

Abbreviation Full name Unit High-risk visits (y = 1) Low-risk visits (y = 0) Missing

Dynamic Features Mean Std Med Mean Std Med

Albumin albumin g/L 33.81 4.437 34.3 37.87 4.337 38 25%

DBP diastolic blood pressure mm Hg 70.28 14.71 70 78.59 13.79 80 18%

SBP systolic blood pressure mm Hg 125.3 25.19 127 134.4 21.61 135 14%

Cl chlorine mmol/L 96.02 4.155 96 98.21 4.923 98 17%

Cr creatinine mmol/L 779.6 250.3 741 868.9 270.3 853 10%

Urea urea mmol/L 18.12 5.545 17.8 20.09 5.363 19.8 11%

Ca calcium mmol/L 2.358 0.277 2.345 2.406 0.341 2.39 12%

Na sodium mmol/L 137.1 4.262 137.9 138.5 4.617 139 21%

K potassium mmol/L 4.240 0.783 4.17 4.320 0.718 4.25 11%

P phosphorus mmol/L 1.549 0.450 1.5 1.606 0.430 1.57 13%

CO2 CP CO2 combining power mmol/L 27.45 3.562 27.5 27.38 3.630 27.4 8%

Hb hemoglobin g/L 111.4 19.54 113 114.6 17.05 115 12%

Weight body weight kg 59.98 11.05 59.59 62.26 11.07 62 41%

Glucose glucose mmol/L 7.758 3.665 6.7 6.689 3.089 5.7 30%

hs-CRP hypersensitive

C-reactive protein

mg/L 17.57 28.07 8.49 7.954 13.96 3.19 29%

WBC white blood cell

count

3109/L 8.238 2.767 7.895 7.773 2.754 7.43 10%

Baseline features

Age age year 66.12 13.01 67.82 53.30 15.54 54.53 0%

Gender female (0) or male (1) – 0.53 0.50 1 0.49 0.50 0 0%

Height height cm 162.2 9.95 160.5 164.1 10.98 163.8 0%

Diabetes is (1) or is not (0) diabetic – 0.45 0.50 0 0.31 0.46 0 0%

This dataset comprises 16 dynamic features recorded at each clinical visit and 4 static baseline features recorded at the first visit. Med, median; Std,

standard deviation.

ll
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introduce an additional experiment dataset to train the model

and test the prediction performance, which consists of 1,363

ESRD patients receiving hemodialysis (HD) from another grade
Table 4. Mortality prediction performance of PD patients

Method AUPRC AUROC

GRU (gated recurrent unit)22 0.422 (0.109) 0.781 (0.047)

Transformer23 0.406 (0.097) 0.789 (0.047)

MT-RHN (multi-task recurrent

highway network)15
0.413(0.107) 0.777(0.063)

LSTM (long short-term

memory network)19
0.395(0.100) 0.782(0.065)

biLSTM-FC (bidirectional

LSTM with fully connected

layer)24

0.398(0.089) 0.758(0.067)

LR (logistic regression)5 0.370 (0.084) 0.610 (0.044)

XGBoost17 0.379 (0.087) 0.597 (0.033)

DT (decision tree)12 0.319 (0.040) 0.607 (0.027)

LightGBM18 0.405 (0.082) 0.604 (0.028)

AICare 0.472 ** (0.075) 0.816 ** (0.033)

Our proposed model, AICare, outperforms other comparative baseline

approaches, including deep models. The values in parentheses are the

standard deviation of 10-fold cross-validation. **: p<0.01.

8 Patterns 4, 100892, December 8, 2023
A tertiary hospital. The prediction performance is listed in the

supplemental information.

Interpretability analysis
AICare provides fine-grained interpretability to help clinicians

understand the prediction decision process. At each visit, the

model provides dynamic importance weights for the features

that indicate the contributions of each feature to the final predic-

tion result. In this section, we discuss the detailed interpretability

analyses.

Average feature importance for diverse causes of death

We calculate the average importance of each feature for pa-

tients, which is shown as a heatmap in Figure 2. The results indi-

cate that serum albumin, DBP, and chlorine (Cl) are considered

important health indicators for most PD patients because their

columns are darker than other feature columns. Some findings

of the relationship between the causes of mortality in PD patients

and clinical features are listed below.

Albumin is the strongest indicator of most causes of death,

especially for cerebrovascular disease (CVE), peripheral

vascular disease (PVD) and gastrointestinal (GI) disease, accord-

ing to the heatmap generated by AICare. This may be because

albumin is an indicator of protein energy wasting, correlated

with suboptimal GI intake and inflammation.25,26 Hypoalbumine-

mia is a strong predictor for PD-related peritonitis,27 which is the

primary reason for deaths from infection and peritonitis. Besides,



Table 5. Importance variation pattern and recommended reference value (turning point) learned by AICare for PD patients

Feature Unit Importance variation learned by AICare Traditional reference range Consistency

Variation type Recommendation Turning point Lower limit Upper limit

Albumin g/L V shape higher >32 40 55 O

DBP mm Hg V shape higher >70 60 80 �
SBP mm Hg L shape at least >130 100 120 3

Cl mmol/L V shape higher >96 96 106 O

Cr mmol/L L shape at least >900 62 115 3

Urea mmol/L L shape at least >20 3.1 9 3

Calcium mmol/L L shape at least >2.5 2.25 2.75 �
Na mmol/L L shape at least >135.5 135 145 O

K mmol/L L shape at least >4 3.5 5.5 O

P mmol/L L shape at least >1.5 1.1 1.3 3

CO2CP mmol/L L shape at least >25 20 29 �
Hb g/L L shape at least >114 115 150 O

Weight kg L shape at least >59 – – –

Glucose mmol/L L shape not exceed <6 3.9 6.1 O

Hs-CRP mg/L L shape not exceed <16 0.5 10 O

WBC 3109/L irregular unknown – 3.5 9.5 –

This table is a quantified summary of Figures 3 and 4. Recommendation ‘‘higher’’ means that AICare suggests increasing this feature’s value above the

turning point. ‘‘At least’’ means that AICare suggests maintaining the value above the turning point, but a further increase may not bring many

benefits. Consistency ð�) means that there is some overlap between the reference range recommended by AICare for PD patients and the

traditional reference range for outpatients. We have publicly deployed the visualization charts of the variation in importance of features at

http://v.ai-care.top/statistics/feature.
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our model generates a high attention weight of albumin for pa-

tients who are still alive, which means that low-risk scores are

associated with high albumin value. More details about albumin

can be found in the supplemental information.

DBP is a risk indicator for CVE, PD-related peritonitis, cancer,

and cachexia deaths. This may be because DBP is a marker of

atherosclerosis and is strongly independently related to athero-

thrombotic brain infarction incidence.28 Low DBP could also be

an indicator for low peripheral vascular resistance or increased

arterial stiffness29,30 that is strongly associated with a high inci-

dence of cardio-cerebral vascular disease.31 Additionally, low

bloodpressure (BP) is a surrogate predictor for specific comorbid-

ities, heart failure, chronic inflammation, andmalnutrition,32 which

may be related to death from peritonitis, cancer, and cachexia.

Sodium (Na), potassium (K), and body weight are important in-

dicators for cachexia deaths. This may be because patients with

cachexia often experience lowNa and K levels due to insufficient

food intake. Decreasing weight for these patients is a common

phenomenon.

Hemoglobin (Hb) is an important indicator for GI disease

deaths. GI bleeding is a critical manifestation of uremic GI dis-

ease. Hb and K are indicators for cancer deaths, which are

consistent with the fact that cancer is highly associated with re-

fractory anemia, anorexia, and, consequently, hypokalemia due

to insufficient intake.

Urea, body weight, K, albumin, DBP and SBP are important in-

dicators for PD-related peritonitis deaths. The risk factors for

peritonitis, a common complication of PD patients, have been

well defined27 and include hypoalbuminemia, hypokalemia, pro-

tein energy wasting, etc. This is consistent with the results of

our model.
Change of feature importance with feature values

AICare quantifies the feature importance changes with feature

values in amacroscopic perspective for the whole patient cohort

to help clinicians better understand the decision process,

perform individualized intervention, and extract new medical

knowledge, as shown in Figures 3 and 4.

In the left scatterplot, the x axis denotes the value of the

biomarker. The y axis denotes the feature’s importance. Each

dot represents a follow-up visit of a patient, and the color repre-

sents the predicted risk. The right histogram shows the risk dis-

tributions at different values of biomarkers. The blue curve is the

fitted curve of the average importance of the feature. We also

plot each feature’s traditional clinical reference ranges for normal

clinic outpatients as blue dotted lines, helping physicians eval-

uate the consistency between the results of AICare and the tradi-

tional ranges.

There are two obvious patterns of relationships between bio-

markers’ importance weights and recorded values: a V-shaped

parabolic curve and an L-shaped fold line. For the V-shaped

parabolic pattern (e.g., albumin and DBP), an extremely high or

low feature value will cause high importance attention weight

through AICare, which means the feature plays an essential

part in the learning the representation of health status. For the

L-shaped fold line pattern (e.g., SBP and Hb), the lower the

biomarker value, the higher the importance of attention weight.

The pattern of variation in importance and the recommended

reference values learned by AICare are summarized in Table 5.

We will discuss these patterns in detail in the following text.

(1) Albumin (Figure 3A). AICare believes that the albumin

importance attention weight appears to be a V-shaped
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curve with 32 g/L as a turning point. The variation of albu-

min in a descending or ascendingmanner always gets the

model’s attention. Considering that the red dots are

mostly on the left side of the figure, AICare learns that pa-

tients with an albumin level lower than 32 g/L tend to have

a high importance weight and poor prognosis (y> 0:5).

When the albumin level is lower than 23 g/L, more than

50% attention weight is given, which means that the albu-

min level becomes the most critical indicator for the

1-year mortality outcome.

On the other hand, between the range of 32 and 57 g/L, a high

albumin value also causes high importance weight and indicates

a significant improvement in the patient’s health (y< 0:5). When

the albumin level is higher than 40 g/L, it often occupies about

50% to even 100% of the feature importance weight, which

means themodel can predict the high survival expectation of pa-

tients using just this feature. As a result, AICare recommends

raising the albumin level to above 32 g/L as much as possible

for most PD patients.

The traditional clinical reference range of albumin for outpatient

clinics is 40–55 g/L, which is highly consistentwith the recommen-

ded range given by AICare. This finding is also consistent with a

recent study that evaluated the association between serum albu-

min trajectories and mortality in PD patients using the joint

modeling approach, showing that changes (increases and de-

creases) in serumalbuminover timewerestronglyandsignificantly

associated with mortality after adjustment for the risk factor.33.
(2) DBP (Figure 3B). DBP is another critical feature in the

evaluation of patient health status. Similar to albumin,

both high and low levels of DBP will affect the model’s

attention. The importance weight of DBP varies in a

V-shaped curve with 70 mm Hg as a turning point. In the

40–70 mm Hg range, the model pays more attention to

DBP as it gets lower and predicts a poor prognosis.

When the DBP is below 40 mm Hg, it takes more than

30% of the model attention weights. Most patients whose

DBP is below 60 mm Hg are more likely to have a high

health risk, marked as red dots in the figure.

On the other hand, in the range of 70–120 mm Hg, the model

pays more attention as the DBP gets higher and predicts better

prognosis outcomes. When DBP is above 85 mm Hg, it also oc-

cupies about 20% of model attention weights, and patients are

predicted to have a low-risk condition for most cases, marked

as green dots in the figure. As a result, AICare recommends

increasing the DBP to above 70 mm Hg, while a greater DBP in-

dicates lower risk.

This is consistent with recent studies of dialysis patients. Higher

DBPwas associatedwithdecreased earlymortality in the first year

after the start of RRT.34 All-cause mortality risk was minimal at

77 mm Hg for DBP in 7,335 Chinese PD patients.35 DBP lower

than 70 mm Hg may be related to an increased mortality risk in

both nondiabetic patients with chronic kidney disease and HS pa-

tients.35–38 The traditional normal reference range of DBP for

outpatient clinics is 60–80mmHg,whilemaintainingDBPat a rela-

tively higher level is conducive to improving the survival of PD pa-

tients. Further research about DBP for PD patients is needed.
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(3) SBP (Figure 3C). Unlike the features discussed above, AI-

Care believes that SBP is a typical feature whose impor-

tance weights vary in an L-shaped fold line with 130 mm

Hg as a turning point, meaning that the importance

weights decrease as the value increases. For SBP below

60 mm Hg, AICare gives more than 50% attention, and in

most cases, patients are likely to be predicted to have

poor outcomes, presented as red dots in the figure. For

SBP over 130 mm Hg, AICare pays nearly no attention

to SBP (a< 1%), which means that SBP does not affect

health status representation learning. As a result, AICare

recommends maintaining the SBP at 130 mm Hg or

slightly higher for most PD patients. A further improve-

ment over 130 mm Hg does not significantly help reduce

mortality risk.

This is consistent with clinic experience andmost of the recent

studies. Lower BP was a surrogate marker for severe comorbid

conditions (e.g., heart failure or ischemic heart disease), chronic

inflammation, andmalnutrition and, hence, can lead toworseout-

comes by limiting blood flow to vital organs.35,39 The traditional

reference range of SBP for outpatient clinics is 100–120 mm

Hg. Although accepted definitions of hypertension and BP treat-

ment targets in the dialysis population have not beendetermined,

and definitive recommendations regarding BP treatment targets

in dialysis patients have not been made, it is clear that hypoten-

sion should be avoided.40

(4) Creatinine (Cr) (Figure 3E). The importance variation curve

of serum Cr is also L shaped, similar to SBP. For Cr levels

in the 160–900 mmol/L range, the lower the level, the more

attention is paid by AICare.When the Cr level drops below

400 mmol/L, the model provides more than 15% of atten-

tion weights, and the patients are likely to face a poor

prognosis (y> 0:5). For serum creatinine levels in the range

of 900–1750 mmol/L, it often only occupies 5% of atten-

tion weights, and patients in this range generally have a

lower mortality risk (y< 0:5). As a result, AICare recom-

mends maintaining the Cr level at least 900 mmol/L or

slightly higher for most PD patients.

This is consistent with the finding of a previous study that a low

Cr level (707–815 mmol/L as reference) as a proxy of low muscle

mass, nutritional status, and protein energy wasting (PEW) may

be associated with adverse outcomes in PD patients.41,42 In

contrast, a high Cr level is associated with a relatively lower mor-

tality risk.41 Cr should be maintained at a certain level. The tradi-

tional reference range of Cr for normal outpatient clinics is 62–

115 mmol/L, which is unsuitable for PD patients. Note that AICare

provides a rough recommendation for most PD patients in this

dataset. We will specify this finding for different cohorts (e.g.,

different gender) in future work.

(5) Hb (Figure 4L). The curve of the importance variation of

Hb is L shaped. The model pays more attention to the

Hb level at 44–114 g/L as the Hb level decreases. Hb oc-

cupies about 20%–60% of the model attention weights

when the Hb level is below 100 g/L. Patients in this range

are more likely to have a high mortality risk. The model

pays almost no attention to Hb levels above 114 g/L. As
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Figure 5. Case study I: Patient died of multi-

ple organ failure

Mortality risk prediction results and interpretability

analysis are deployed on a health trajectory inter-

active visualization system. The x axis denotes the

visit date. The y axis denotes the predictedmortality

risk (visualized as a pink translucent curve) and

feature values. AICare provides the features’

importance weights as interpretability at each visit,

symbolized as the size of each data point on the line

chart and also listed in the inset labels. AICare pays

most attention to albumin, Hb, and DBP for this

patient, and the patient died of multiple organ fail-

ure. The health trajectory interactive visualization

system is publicly deployed at http://v.ai-care.top/

A8 and is available in English and simplified

Chinese.
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a result, AICare recommends keeping Hb levels at least

114 g/L, but further increases in Hb may not bring many

benefits.

As indicated by a previous study, an Hb level lower than 100

g/L was significantly associated with a higher risk for all-cause

and cardiovascular deaths.43 Lower Hb is also associated with

a higher mortality risk in ESA (erythropoiesis-stimulating

agents)-treated PD patients.44 Current anemia management

guidelines also suggest not using ESAs tomaintain a Hb concen-

tration above 110 g/L in adults.45

More analyses about the features’ importance are listed in the

supplemental information.
Case studies with the health trajectory interactive
visualization system
To intuitively show the prediction process and verify the reason-

ability of AICare when applied to clinical practice, we develop an

online AI-doctor system with an interactive interface to visualize

the patient’s health trajectory with the importanceweights of fea-

tures at each time step. This systemmakes the prediction results

of deep learning models more accessible to clinicians and helps

physicians make individualized clinical decisions. We draw a

two-dimensional line chart to show the changes in the patient’s

biomarkers. The x axis is the visit timeline, and the y axis is the

value of biomarkers. At each time step, we plot the predicted

risk curve byi (values from 0%–100%). The attention weights of

different biomarkers at each time step are also visualized, sym-

bolized as the size of each data point on the line chart. The larger

the point, the higher the attention weight.

In the following, we analyze two patient cases using our sys-

tem. The clinical visit dates were reset to start in 1000 (year) on

the online visualization system to protect privacy.Case I

Patient died of multiple organ failure (Figure 5): the first patient

died in 1007 (year) due to prostate cancer andmultiple organ fail-

ure. Figure 5 shows the patient’s risk prediction and historical

visit information.

During the period the red dotted box covers in the figure, AI-

Care kept predicting a high risk 3 years before the adverse

outcome. AICare mainly focused on albumin, DBP, and Hb due

to their abnormal values and declining patterns. It is evident

that the values of Hb and DBP decreased sharply at the begin-

ning of 1004, which decreased by 69 g/L (from 130 g/L to 61
g/L) and 27 mm Hg (from 79 mm Hg to 52 mm Hg), respectively.

AICare sensed the changes rapidly and started to pay attention

to them. There was 31.0% of attention given to Hb and 19.8%

given to DBP. We can also find a sudden drop of albumin from

32.9 mmol/L to 24.5 mmol/L in 1007 (year), and the albumin level

remained at a low level during the last several visits since then,

which kept drawing 30%–40%of attention weights of our model.

According to the records, this patient had a series of comor-

bidities since 1004, including unstable angina pectoris, periph-

eral arterial disease (PAD), prostate cancer, anemia, diabetic

foot, and inflammatory bowel disease, which were closely

related to the abnormal biomarkers identified by AICare.

Specifically, the decline of DBP indicated worsening arterial

stiffness, which may be associated with severe atherosclerosis,

such as coronary heart disease, PAD, and diabetic foot in this

patient. The abnormal Hb level indicated deleterious anemia

and could be associated with GI bleeding, severe infection,

malnutrition, prostate cancer, diabetic foot, and inflammatory

bowel disease.25,26,46 With the help of AICare, physicians may

be reminded early to perform a further examination to confirm

and treat the these conditions accordingly.Case II

Patient died of digestive system diseases (Figure 6): the sec-

ond patient was diagnosed with ischemic kidney disease, and

PD therapy was initiated. This patient died in December 1004

due to GI disease.

Since July 1003, the risk score generated by AICare increased

continuously increased. The attention varied but focused mainly

on serum chloride, Na, and urea levels, which were indicators of

insufficient intake or GI loss (the details are shown at http://v.ai-

care.top/A2). In November 1004, 53.9% of AI attention was as-

signed to serum albumin (the albumin level decreased from 38

g/L to 20.8 g/L). Finally, during the last visit in December, the

risk score for this patient was 90.3, and 66.2% attention was

given to the albumin level. AICare captured the most important

clinical features related to patient death and generated a timely

high risk score.

Materials and ethics issues
This retrospective study was approved by the Medical Scientific

Research Ethical Committee. The input of AICare is routinely

collected laboratory test results and static baseline information.

Patients do not need to conduct any additional unnecessary

tests. Our study was granted an exemption from informed
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Figure 6. Case study II: Patient died of diges-

tive system disease

AICare pays most attention to albumin and urea for

this patient. The patient died of digestive system

disease. The health trajectory is shown at http://v.ai-

care.top/A2.
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consent by the ethics committee due to its retrospective nature

and the fact that it did not involve any intervention in the patients’

treatment.

Our paper and online system do not contain any sensitive in-

formation that could be used to identify individual patients. Pa-

tients’ private information was anonymized during the analysis.

Patient names were replaced with unique patient IDs (e.g., A1,

A2). Contact information, including phone numbers and ad-

dresses, was deleted. Clinical visit dates were reset to start in

1000 (year) in the online visualization system, and the date of

birth was also reset with the corresponding offset.

We developed a practical AI-doctor interaction system to visu-

alize the trajectory of patients’ health status and risk indicators.

Our developed health trajectory visualization system with anon-

ymous case studies (patient IDs A1–A20) is publicly available at

http://v.ai-care.top/A8. Visualization of the importance of the

features is available at http://v.ai-care.top/statistics/feature.

All code for the model, the deep learning training parameters,

and the training data are openly available. They can be accessed

on Zenodo via https://doi.org/10.5281/zenodo.10003570 and

http://v.ai-care.top/download. Users can upload data online to

get prediction results immediately (http://v.ai-care.top/predict)

or download the code to train the model offline based on their da-

taset. More data that support the findings of this study are avail-

able from the corresponding author upon reasonable request.

DISCUSSION

Implications
The whole procedure of PD treatment needs a dynamic predic-

tion of patient mortality risk to help patients prevent adverse out-

comes, based on the medical records collected along with the

visits. Individual-level dynamic mortality prediction for long-

term PD has not yet been substantially studied. Besides, deep

models, which can capture complex longitudinal progressions,

are often black boxes and fail to provide human-understandable

interpretation. Thus, medical professionals lack trustworthiness

in deep models.

In this work, we develop a deep learning-based generalizable

model capable of learning massive amounts of EMR data and

exploring personal characteristics to perform clinical predic-

tions. AICare captures the clinical features that strongly indicate

the health status of patients in various conditions. It builds per-

sonal health status embedding and provides reasonably fine-

grained interpretability in terms of feature importance at each

follow-up visit.
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In the experiment based on a real-world

clinical dataset, 656 incident PD patients

were enrolled at the Department of

Nephrology of a large grade A tertiary hos-

pital. AICare is used to predict 1-year mor-
tality at each follow-up visit. We compare the performance of AI-

Care with existing related SOTA clinical predictive models. The

experiment results show that AICare outperforms the published

baseline approaches with 11.8% relative improvement on

AUPRC and powerful interpretability.

To facilitate personalized clinical service and verify the reason-

ability of the model, we develop an AI-doctor interaction system

to reveal the patient’s health trajectory and the corresponding vi-

tal biomarkers while predicting a prognosis. After the trial of our

system, experienced nephrology department physicians suggest

that AICare can offer opportunities to identify patients with poten-

tial mortality risks within a time window that enables early individ-

ualized treatment and outcome improvement. The medical

knowledge learned by AICare has been positively confirmed by

human medical experts and related medical literature.

Key findings and clinical recommendations
restatements
Important features summary

Some of the key findings generated by AICare are summarized

below. For more details about the medical findings, please see

Figures 3 and 4 and Table 5.

Albumin is the most indicative feature for the prediction of

1-year mortality in patients with PD, especially for GI disease,

PVD, and living patients. The feature importance weight of albu-

min presents as a V-shaped curve along with the albumin level. A

higher albumin level brings better survival expectations. AICare

recommends raising the albumin level to above 32 g/L as

much as possible for most PD patients.

DBP is the second important feature. It is indicative especially

for cachexia, cancer, CVE and living patients. SBP is indicative

for cancer and PD-associated peritonitis (PDAP). The impor-

tance weight of DBP and SBP presents as V-shaped and

L-shaped curves, respectively. AICare recommends raising the

DBP to above 70 mm Hg for most PD patients. AICare recom-

mends maintaining the SBP at least 130 mm Hg. But further in-

creases of SBP will not bring many benefits.

Cl is indicative for cachexia and infection patients. The impor-

tance weight of Cl presents as a V-shaped curve. A higher Cl

level brings better survival expectations. AICare recommends

raising the Cl level to above 96 mmol/L for most PD patients.

Cr is indicative for GI disease and cardiovascular disease

(CVD) patients. AICare recommends raising the Cr level to above

900 mmol/L, which is a rough recommendation for most PD pa-

tients in this dataset. We will specify this finding for different co-

horts (e.g., different gender) in future work.

http://v.ai-care.top/A8
http://v.ai-care.top/statistics/feature
https://doi.org/10.5281/zenodo.10003570
http://v.ai-care.top/download
http://v.ai-care.top/predict
http://v.ai-care.top/A2
http://v.ai-care.top/A2
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Urea is indicative for PDAP and PVD patients. AICare recom-

mends raising the urea level to above 20 mmol/L for most PD

patients.

Phosphorus (P) is indicative for PDAP, cancer, CVD, and CVE

patients. The importance weight of P presents as an L-shaped

curve. AICare recommends raising the P level to above

1.5 mmol/L for most PD patients. Further increases will not bring

benefits.

Hb is indicative for GI disease patients. The importance weight

of Hb presents as an L-shaped curve. AICare recommends

raising Hb level above 114 g/L for most PD patients. Further in-

creases will not bring many benefits.

Prediction performance for mortality causes

As shown in Table.S1, experiment results indicate that AICare

can effectively predict the most common adverse outcomes of

PD patients (e.g., cachexia, PVD, infection, and cancer). How-

ever, CVE and CVD are the most challenging mortality causes

to predict. CVE47 patients in particular often acutely suffer from

sudden death without apparent signs. This suggests that more

frequent clinical follow-up and more clinical tests should be

included as features (e.g., ECG examination) to perform early

screening for CVE.

Limitations and future work
Introducing multicenter EMRs to increase the data

amount

A major limitation of this study is the single-center design, which

makes the data amount of the research scarce. The limitation

also results in a relatively small sample of positive cases. How-

ever, the analyzed data of 656 PD patients with 13,091 visits

cover a long-term longitudinal trajectory of PD patients. There

are about 20 visits recorded for each patient, with an average

visit interval of 2.7 months and an average follow-up time of 4

years. To the best of our knowledge, this is rarely seen in the ex-

isting medical literature. Besides, we also introduce an HD EMR

dataset as an additional experimental dataset to test the predic-

tion performance. In future work, we will extend AICare to multi-

center healthcare systems and conduct a prospective multi-

center controlled experiment to validate the framework in other

clinical scenarios.

Incorporating more clinical features to depict health

status

During the data collection process for this study, we collected

many medical features of patients, most of which were dis-

carded due to high missing rates. Our model only had access

to the autofiltered 16 longitudinal medical features and 4 demo-

graphic features for each patient. The novelty of this research

does not only lie in incremental model performance improve-

ments. This predictive performance was achieved without

hand selection or hand-made variables deemed important by a

medical expert. AICare can achieve satisfactory prediction re-

sults and discover medical findings, proving the model’s validity

and practicability. In future releases, we expect to incorporate

more medical features, such as medication records, dialysis ad-

equacy records, complication records, and health data collected

at home.

Providing recommendations for diverse patient cohorts

To obtain relatively stable and reasonable conclusions, the clin-

ical recommendations in this paper are roughly generated by AI-
Care for most PD patients. Asmore data are collected in the next

release, wewill provide refined recommendations for diverse pa-

tient cohorts (e.g., different genders and ages).

Embedding sequences with a relatively regular time

interval

Our 1-year mortality risk prediction system, as developed in this

paper, is primarily designed for scenarios involving outpatient

follow-up of PD patients. It aligns with the approach of most rele-

vant methods that deal with sequential EMRs using time-series-

encodingmodels for prognosis prediction tasks, as illustrated by

the methods listed in the Related work section in the supple-

mental information. Our network framework, AICare, is best

suited for situations where there is a relatively regular interval be-

tween medical visits. For example.

(1) The majority of PD patients typically undergo routine

outpatient lab tests at hospitals approximately every

2.5 months.

(2) In intensive care unit (ICU) settings, medical records for

patients might be recorded on a daily basis or at even

shorter intervals, as demonstrated in the sepsis prediction

task in the supplemental information.

However, we acknowledge that some scenarios may involve

significantly irregular records. In cases where raw data are input

into our model without regularization, it could potentially result in

a decline in prediction performance. To address this issue, it is

crucial to preprocess the data using regularization techniques48

or implement time-aware mechanisms to mitigate the adverse

effects of irregular records.49,50 Dealing with irregular records

is indeed an important research branch within EMR analysis,

but it is not the primary focus of this study.

Features with low importance weight

No significantly meaningful importance pattern was discovered

for white blood cell count (WBC). This may be because WBC is

not a crucial feature in mortality prediction or because WBC is

such a special clinical feature that AICare does not know how

to use it to embed the health representation. This reminds us

to design proper embedding network modules (e.g., convolu-

tional layers) to effectively utilize different feature effectively. Be-

sides, considering that the proportion of immune cells may indi-

cate the health status as a human-constructed advanced

feature, we will introduce more related clinical features about

the immune.

A robust prospective evaluation in future work

In this study, our focus is on application of our methodology to

the 1-year mortality risk prediction task for PD patients and the

interpretation of the results. Although it is widely believed that

accurate predictions can be used to improve care,51 this is not

a foregone conclusion, and prospective trials are needed to

demonstrate this.52,53 We acknowledge that clinical practice is

influenced by numerous factors, and while our observations pro-

vide some newmedical insights, they should be considered pre-

liminary and require further validation in larger prospective eval-

uations to establish efficacy and safety for patients. These

observations, while serving as a reference and source of inspira-

tion for subsequent research on EMR analysis, should not be

immediately implemented in clinical practice without undergoing

further validation. We will recruit patients and conduct a larger

and more robust prospective evaluation in the future. We will
Patterns 4, 100892, December 8, 2023 13
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conduct a blinded application-grounded evaluation by inviting

dozens of experienced medical practitioners (with 7–20 years

of clinical practice time) from nephrology departments of

different hospitals to test the practical effectiveness and degrees

of physicians’ recognition. The prototype version of the trial sys-

tem with online questionnaires has already been developed and

can be found at http://v.ai-care.top/table/questionnaire/a1. The

AI-doctor interaction system is available in English and simplified

Chinese. The questionnaire page is currently only available in

simplified Chinese.

Conclusion
AICare is a generic framework proposed to model a patient’s

health status based on multivariate time-series EMR data. The

AICare captures complex longitudinal progressions in patients’

health conditions and provides dynamic predictions of mortality

risk while also offering fine-grained interpretability to understand

how the model arrives at specific predictions for individual pa-

tients. This interpretability aspect enables them to build trust in

the model’s predictions and better comprehend the reasoning

behind the recommendations.

Our work also includes the development of an AI-doctor inter-

action system that leverages the capabilities of AICare to support

clinicians in prognosis prediction. The system provides an intui-

tive visualization of the patient’s health trajectory over time, allow-

ing clinicians to track changes in key health indicators and identify

trends in mortality risk predictions. Moreover, AICare offers

personalized recommendations based on the model’s predic-

tions, suggesting target values for essential health indicators to

improve the patient’s survival outlook. These recommendations

are instrumental in helping clinicians devise personalized treat-

ment plans and monitoring strategies for their patients.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Yasha Wang is the lead contact of this study and can be reached via e-mail

(wangyasha@pku.edu.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The code, training parameters, and training data are openly available on Zen-

odo (https://doi.org/10.5281/zenodo.10003570) and our website (http://v.ai-

care.top/download). Users can instantly get predictions by uploading data

to http://v.ai-care.top/predict or download the code for offline training with
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